1
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
2
|
Wang H, Wei S, Wang L, Zhang Z. Comprehensive Analysis of circRNA-Related mRNAs as Prognostic Factors in Non-Smoking Women with Lung Adenocarcinoma. Int J Gen Med 2024; 17:5757-5771. [PMID: 39650787 PMCID: PMC11625186 DOI: 10.2147/ijgm.s490478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Background Non-smoking women with lung adenocarcinoma(NSWLA) is a significant health problem globally; the carcinogenesis and prognostic signature remain poorly understood. Circular RNAs (circRNAs) are gradually implicated in cancer formation through sponging miRNAs to regulate mRNAs. Methods Tumor and paracancerous specimens from non-smoking women after lung adenocarcinoma surgery were collected for high-throughput sequencing of circRNA. miRNA and mRNA datasets were downloaded from TCGA. A circRNA-miRNA-mRNA network was built using differentially expressed circRNAs (DEcircRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs). Following that, GSEA was applied to analyze the biological function of mRNAs in the ceRNA network. Utilizing the mRNAs associated with prognosis, we created an original prognostic risk score model. The expression of DEmRNA in the ceRNA network was verified by mRNA-seq and scRNA-seq data (GSE131907). The expression of BTBD3 and EIF4EBP2 was then verified by immunohistochemistry. Results 16 pairs of adenocarcinoma tissues and their corresponding para-tumor samples were collected from thoracic surgery. We created a circRNA related ceRNA in NSWLA. The hsa_circ_0002346 regulation of the cancer cell proliferation may through the hsa_circ_0002346/miR-96-5p/EIF4EBP2 axis. Hsa_circ_0072309 may affect proliferation of lung adenocarcinoma and activate Nature Killer cells by targeting miR-32-5p to regulate PCMTD1 expression. Based upon mRNA (BTBD3, CFL2, EIF4EBP2, EVI5, PCMTD1, SYDE2) related to overall survival, we also created a predictive signature. According to mRNA-seq, scRNA-seq, and immunohistochemical data, the expression of BTBD3 and EIF4EBP2 was lower in tumor samples than in normal tissues nearby. Conclusion The circRNA related mRNAs played an important role in predicting the overall survival of NSWLA. The circRNA in the ceRNA network might unravel the pathogenesis and be potential novel targets for NSWLA.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, People’s Republic of China
| | - Song Wei
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, People’s Republic of China
| | - Lijun Wang
- Department of Respiratory Disease, Building 8 of Tongling People’s Hospital, Tongling, Anhui, 244000, People’s Republic of China
| | - Zhihong Zhang
- Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, People’s Republic of China
| |
Collapse
|
3
|
Wang T, Du Y, Song H, Sun J, Jiang W, Xu Z. hsa_circ_0072309 Inhibits Oncogenesis in Hepatocellular Carcinoma by Epigenetic Activation of its Host Gene. Cell Biochem Biophys 2024; 82:3251-3263. [PMID: 39283585 DOI: 10.1007/s12013-024-01330-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 11/20/2024]
Abstract
Recently, numerous studies have revealed the participation of circular RNAs (circRNAs) in cancer progression. Likewise, this research focused on circRNAs in hepatocellular carcinoma (HCC). A lowly expressed circRNA hsa_circ_0072309 in HCC was screened by analyzing the circRNA microarray GSE242797 and GSE216115 and identified in clinical specimens and cells. Subsequently, CCK-8, colony formation, and transwell assays were performed. The results revealed that hsa_circ_0072309 overexpression suppressed HCC cell proliferation, migration, invasion, and sorafenib resistance, whereas its suppression showed opposite results. Mechanistic investigation found an interaction between hsa_circ_0072309 and its host gene leukemia inhibitory factor receptor (LIFR) in HCC. We found that LIFR overexpression promoted the hsa_circ_0072309 formation. In turn, hsa_circ_0072309 recruited the E1A binding protein p300 to promote the enrichment of H3K27 acetylation (H3K27ac) in the LIFR enhancer, thus transcriptionally promoting LIFR expression. To conclude, we revealed a hsa_circ_0072309/LIFR regulatory loop in HCC, which may provide a potential target for HCC treatment.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Yanan Du
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Haiyang Song
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Jiewei Sun
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China
| | - Wenjin Jiang
- Department of Interventional Therapy, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China.
| | - Zhiying Xu
- Nuclear Medicine Department, Yantai Yuhuangding Hospital, NO.20 East Yuhuangding Road, 264000, Yantai, China.
| |
Collapse
|
4
|
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM, Kiasari BA. Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract 2024; 263:155569. [PMID: 39236498 DOI: 10.1016/j.prp.2024.155569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Breast cancer (BC) is the most common cancer among women, characterized by significant heterogeneity. Diagnosis of the disease in the early stages and appropriate treatment plays a crucial role for these patients. Despite the available treatments, many patients due to drug resistance do not receive proper treatments. Recently, circular RNAs (circRNAs), a type of non-coding RNAs (ncRNAs), have been discovered to be involved in the progression and resistance to drugs in BC. CircRNAs can promote or inhibit malignant cells by their function. Numerous circRNAs have been discovered to be involved in the proliferation, invasion, and migration of tumor cells, as well as the progression, pathogenesis, tumor metastasis, and drug resistance of BC. Circular RNAs can also serve as a biomarker for diagnosing, predicting prognosis, and targeting therapy. In this review, we present an outline of the variations in circRNAs expression in various BCs, the functional pathways, their impact on the condition, and their uses in clinical applications.
Collapse
Affiliation(s)
- Nafiseh Tashakori
- Department of Medicine, Faculty of Internal Medicine,Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maria V Mikhailova
- Department of Prosthetic Dentistry, I.M. Schenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
6
|
Karamali N, Daraei A, Rostamlou A, Mahdavi R, Akbari Jonoush Z, Ghadiri N, Mahmoudi Z, Mardi A, Javidan M, Sohrabi S, Baradaran B. Decoding contextual crosstalk: revealing distinct interactions between non-coding RNAs and unfolded protein response in breast cancer. Cancer Cell Int 2024; 24:104. [PMID: 38468244 PMCID: PMC10926595 DOI: 10.1186/s12935-024-03296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Breast cancer is significantly influenced by endoplasmic reticulum (ER) stress, impacting both its initiation and progression. When cells experience an accumulation of misfolded or unfolded proteins, they activate the unfolded protein response (UPR) to restore cellular balance. In breast cancer, the UPR is frequently triggered due to challenging conditions within tumors. The UPR has a dual impact on breast cancer. On one hand, it can contribute to tumor growth by enhancing cell survival and resistance to programmed cell death in unfavorable environments. On the other hand, prolonged and severe ER stress can trigger cell death mechanisms, limiting tumor progression. Furthermore, ER stress has been linked to the regulation of non-coding RNAs (ncRNAs) in breast cancer cells. These ncRNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play essential roles in cancer development by influencing gene expression and cellular processes. An improved understanding of how ER stress and ncRNAs interact in breast cancer can potentially lead to new treatment approaches. Modifying specific ncRNAs involved in the ER stress response might interfere with cancer cell survival and induce cell death. Additionally, focusing on UPR-associated proteins that interact with ncRNAs could offer novel therapeutic possibilities. Therefore, this review provides a concise overview of the interconnection between ER stress and ncRNAs in breast cancer, elucidating the nuanced effects of the UPR on cell fate and emphasizing the regulatory roles of ncRNAs in breast cancer progression.
Collapse
Affiliation(s)
- Negin Karamali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arshia Daraei
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arman Rostamlou
- Department of Medical Biology, School of Medicine, University of EGE, Bornova, Izmir, Turkey
| | - Roya Mahdavi
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Akbari Jonoush
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nooshin Ghadiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mahmoudi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Mardi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Javidan
- Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sepideh Sohrabi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Gao D, Cui C, Jiao Y, Zhang H, Li M, Wang J, Sheng X. Circular RNA and its potential diagnostic and therapeutic values in breast cancer. Mol Biol Rep 2024; 51:258. [PMID: 38302635 DOI: 10.1007/s11033-023-09172-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Breast cancer (BC) is one of the most common malignant tumors in women and still poses a significant threat to women worldwide. Recurrence of BC in situ, metastasis to distant organs, and resistance to chemotherapy are all attached to high mortality in patients with BC. Non-coding RNA (ncRNA) of the type known as "circRNA" links together from one end to another to create a covalently closed, single-stranded circular molecule. With characteristics including plurality, evolutionary conservation, stability, and particularity, they are extensively prevalent in various species and a range of human cells. CircRNAs are new and significant contributors to several kinds of disorders, including cardiovascular disease, multiple organ inflammatory responses and malignancies. Recent studies have shown that circRNAs play crucial roles in the occurrence of breast cancer by interacting with miRNAs to regulate gene expression at the transcriptional or post-transcriptional levels. CircRNAs offer the potential to be therapeutic targets for breast cancer treatment as well as prospective biomarkers for early diagnosis and prognosis of BC. Here, we are about to present an overview of the functions of circRNAs in the proliferation, invasion, migration, and resistance to medicines of breast cancer cells and serve as a promising resource for future investigations on the pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Can Cui
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yaoxuan Jiao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Han Zhang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Min Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Junjie Wang
- Department of Pathophysiology, Jiangsu University School of Medicine, Zhenjiang, 212013, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Gao F, Han J, Jia L, He J, Wang Y, Chen M. Circ_0001982 aggravates breast cancer development through the circ_0001982-miR-144-3p-GSE1 axis. J Biochem Mol Toxicol 2024; 38:e23565. [PMID: 37867456 DOI: 10.1002/jbt.23565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/29/2022] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
This study was designed to explore the role of circ_0001982 in breast cancer (BC) development. Quantitative real-time polymerase chain reaction and western blot analysis assays were used to determine circ_0001982, miR-144-3p, and gse1 coiled-coil protein (GSE1) expression. Functional assays were performed to evaluate cell proliferation, apoptosis, migration, and invasion. The glycolysis was analyzed with commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assays were conducted to analyze the relationships among circ_0001982, miR-144-3p, and GSE1. A murine xenograft model assay was performed to determine circ_0001982-induced effects on BC cell tumor properties in vivo. Circ_0001982 expression was upregulated, but miR-144-3p was reduced in BC tissues and cells in comparison with normal breast tissues and normal human mammary epithelial cells. Circ_0001982 knockdown or miR-144-3p overexpression inhibited BC cell proliferation, glycolysis, migration and invasion, and promoted apoptosis. Circ_0001982 sponged miR-144-3p and negatively regulated miR-144-3p expression in BC cells. In addition, GSE1 was identified as a target mRNA of miR-144-3p. Ectopic GSE1 expression relieved circ_0001982 depletion-induced effects on BC cell tumor properties. Furthermore, circ_0001982 absence suppressed BC cell tumor properties in vivo. Circ_0001982 contributed to the BC cell tumor properties by regulating the miR-144-3p-GSE1 axis.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Jianjun Han
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Li Jia
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Jun He
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Yun Wang
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Mi Chen
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| |
Collapse
|
9
|
Liu M, Lai M, Li D, Zhang R, Wang L, Peng W, Yang J, He W, Sheng Y, Xiao S, Nan A, Zeng X. Nucleus-localized circSLC39A5 suppresses hepatocellular carcinoma development by binding to STAT1 to regulate TDG transcription. Cancer Sci 2023; 114:3884-3899. [PMID: 37549641 PMCID: PMC10551608 DOI: 10.1111/cas.15906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Accumulating evidence indicates that circular RNAs (circRNAs) are inextricably linked to cancer development. However, the function and mechanism of nucleus-localized circRNAs in hepatocellular carcinoma (HCC) still require investigation. Here, qRT-PCR and receiver-operating characteristic curve were used to detect the expression and diagnostic potential of circSLC39A5 for HCC. The biological function of circSLC39A5 in HCC was investigated in vitro and in vivo. Nucleoplasmic separation assay, fluorescence in situ hybridization, RNA pulldown, RNA immunoprecipitation, the HDOCK Server, the NucleicNet Webserver, crosslinking-immunoprecipitation, MG132 treatment, and chromatin immunoprecipitation were utilized to explore the potential molecular mechanism of circSLC39A5 in HCC. The results showed that circSLC39A5 was downregulated in both HCC tissues and plasma and was associated with satellite nodules and lymph node metastasis/vascular invasion. CircSLC39A5 was stably expressed in plasma samples under different storage conditions, showing good diagnostic potential for HCC (AUC = 0.915). CircSLC39A5 inhibited proliferation, migration, and invasion, facilitated the apoptosis of HCC cells, and was associated with low expression of Ki67 and CD34. Remarkably, circSLC39A5 is mainly localized in the nucleus and binds to the transcription factor signal transducer and activator of transcription 1 (STAT1), affecting its stabilization and expression. STAT1 binds to the promoter of thymine DNA glycosylase (TDG). Overexpression of circSLC39A5 elevates TDG expression and reverses the increase of proliferating cell nuclear antigen (PCNA) expression and the overactive cell proliferation caused by TDG silencing. Our findings uncovered a novel plasma circRNA, circSLC39A5, which may be a potential circulating diagnostic marker for HCC, and the mechanism by which nucleus-localized circSLC39A5 exerts a transcriptional regulatory role in HCC by affecting STAT1/TDG/PCNA provides new insights into the mechanism of circRNAs.
Collapse
Affiliation(s)
- Meiliang Liu
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Mingshuang Lai
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Deyuan Li
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Ruirui Zhang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
- Department of Toxicology, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Lijun Wang
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Wenyi Peng
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
- Department of Toxicology, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Jialei Yang
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Wanting He
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Yonghong Sheng
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Suyang Xiao
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
| | - Aruo Nan
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
- Department of Toxicology, School of Public HealthGuangxi Medical UniversityNanningChina
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public HealthGuangxi Medical UniversityNanningChina
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent DiseasesGuangxi Medical UniversityNanningChina
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of EducationNanningChina
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency TumorNanningChina
| |
Collapse
|
10
|
Kałafut J, Czerwonka A, Czapla K, Przybyszewska-Podstawka A, Hermanowicz JM, Rivero-Müller A, Borkiewicz L. Regulation of Notch1 Signalling by Long Non-Coding RNAs in Cancers and Other Health Disorders. Int J Mol Sci 2023; 24:12579. [PMID: 37628760 PMCID: PMC10454443 DOI: 10.3390/ijms241612579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Notch1 signalling plays a multifaceted role in tissue development and homeostasis. Currently, due to the pivotal role of Notch1 signalling, the relationship between NOTCH1 expression and the development of health disorders is being intensively studied. Nevertheless, Notch1 signalling is not only controlled at the transcriptional level but also by a variety of post-translational events. First is the ligand-dependent mechanical activation of NOTCH receptors and then the intracellular crosstalk with other signalling molecules-among those are long non-coding RNAs (lncRNAs). In this review, we provide a detailed overview of the specific role of lncRNAs in the modulation of Notch1 signalling, from expression to activity, and their connection with the development of health disorders, especially cancers.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Karolina Czapla
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
- Department of Clinical Pharmacy, Medical University of Bialystok, Waszyngtona 15, 15-274 Bialystok, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| | - Lidia Borkiewicz
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Raławickie 1, 20-059 Lublin, Poland; (J.K.); (A.C.); (K.C.); (A.P.-P.)
| |
Collapse
|
11
|
Shen J, Si J, Wang Q, Mao Y, Gao W, Duan S. Current status and future perspectives in dysregulated miR-492. Gene 2023; 877:147518. [PMID: 37295631 DOI: 10.1016/j.gene.2023.147518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are a class of single-stranded small non-coding RNAs with a length of 21-23 nucleotides. One such miRNA, miR-492, is located in the KRT19 pseudogene 2 (KRT19P2) of chromosome 12q22 and can also be generated from the processing of the KRT19 transcript at chromosome 17q21. Aberrant expression of miR-492 has been observed in cancers of various physiological systems. miR-492 has been shown to target at least 11 protein-coding genes, which are involved in the regulation of cellular behaviors such as growth, cell cycle, proliferation, epithelial- mesenchymal transition (EMT), invasion and migration. The expression of miR-492 can be regulated by both endogenous and exogenous factors. Furthermore, miR-492 is involved in the regulation of several signaling pathways including the PI3K/AKT signaling pathway, WNT/β-catenin signaling pathway, and MAPK signaling pathway. High expression of miR-492 has been closely associated with shorter overall survival in patients with gastric cancer, ovarian cancer, oropharyngeal carcinoma, colorectal cancer, and hepatocellular carcinoma. This study systematically summarizes the related research findings on miR-492, providing potential insights for future investigations.
Collapse
Affiliation(s)
- Jinze Shen
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Jiahua Si
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Qurui Wang
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Yunan Mao
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Wei Gao
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Bhadresha K, Mirza S, Penny C, Mughal MJ. Targeting AXL in Mesothelioma: from functional characterization to clinical implication. Crit Rev Oncol Hematol 2023:104043. [PMID: 37268175 DOI: 10.1016/j.critrevonc.2023.104043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Malignant pleural mesothelioma (MM) is a highly aggressive and lethal cancer with a poor survival rate. Current treatment approaches primarily rely on chemotherapy and radiation, but their effectiveness is limited. Consequently, there is an urgent need for alternative treatment strategies, a comprehensive understanding of the molecular mechanisms underlying MM, and the identification of potential therapeutic targets. Extensive studies over the past decade have emphasized the role of Axl in driving tumor development and metastasis, while high levels of Axl expression have been associated with immune evasion, drug resistance, and reduced patient survival in various cancer types. Ongoing clinical trials are investigating the efficacy of Axl inhibitors for different cancers. However, the precise role of Axl in MM progression, development, and metastasis, as well as its regulatory mechanisms within MM, remain inadequately understood. This review aims to comprehensively investigate the involvement of Axl in MM. We discuss Axl role in MM progression, development, and metastasis, along with its specific regulatory mechanisms. Additionally, we examined the Axl associated signaling pathways, the relationship between Axl and immune evasion, and the clinical implications of Axl for MM treatment. Furthermore, we discussed the potential utility of liquid biopsy as a non-invasive diagnostic technique for early detection of Axl in MM. Lastly, we evaluated the potential of a microRNA signature that targets Axl. By consolidating existing knowledge and identifying research gaps, this review contributes to a better understanding of Axl's role in MM and sets the stage for future investigations and the development of effective therapeutic interventions.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheefa Mirza
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Common Epithelial Cancer Research Center, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington DC, United States of America.
| |
Collapse
|
13
|
Gopikrishnan M, R HC, R G, Ashour HM, Pintus G, Hammad M, Kashyap MK, C GPD, Zayed H. Therapeutic and diagnostic applications of exosomal circRNAs in breast cancer. Funct Integr Genomics 2023; 23:184. [PMID: 37243750 PMCID: PMC10224846 DOI: 10.1007/s10142-023-01083-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.
Collapse
Affiliation(s)
- Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Hossam M Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, Florida, 33701, USA
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Mohamed Hammad
- Department of Stem Cell Biology and Regenerative Medicine, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
- Clinical Biosamples & Research Services (CBRS), Noida, Uttar Pradesh, 201301, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
14
|
Dawoud A, Ihab Zakaria Z, Hisham Rashwan H, Braoudaki M, Youness RA. Circular RNAs: New layer of complexity evading breast cancer heterogeneity. Noncoding RNA Res 2023; 8:60-74. [PMID: 36380816 PMCID: PMC9637558 DOI: 10.1016/j.ncrna.2022.09.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Advances in high-throughput sequencing techniques and bioinformatic analysis have refuted the "junk" RNA hypothesis that was claimed against non-coding RNAs (ncRNAs). Circular RNAs (circRNAs); a class of single-stranded covalently closed loop RNA molecules have recently emerged as stable epigenetic regulators. Although the exact regulatory role of circRNAs is still to be clarified, it has been proven that circRNAs could exert their functions by interacting with other ncRNAs or proteins in their own physiologically authentic environment, regulating multiple cellular signaling pathways and other classes of ncRNAs. CircRNAs have also been reported to exhibit a tissue-specific expression and have been associated with the malignant transformation process of several hematological and solid malignancies. Along this line of reasoning, this review aims to highlight the importance of circRNAs in Breast Cancer (BC), which is ranked as the most prevalent malignancy among females. Notwithstanding the substantial efforts to develop a suitable anticancer therapeutic regimen against the heterogenous BC, inter- and intra-tumoral heterogeneity have resulted in an arduous challenge for drug development research, which in turn necessitates the investigation of other markers to be therapeutically targeted. Herein, the potential of circRNAs as possible diagnostic and prognostic biomarkers have been highlighted together with their possible application as novel therapeutic targets.
Collapse
Affiliation(s)
- Alyaa Dawoud
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Zeina Ihab Zakaria
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Hannah Hisham Rashwan
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Maria Braoudaki
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
- Clinical, Pharmaceutical, and Biological Science Department, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire hosted By Global Academic Foundation, New Administrative Capital, 11586, Cairo, Egypt
| |
Collapse
|
15
|
Xu BB, Huang Y, Zheng ED, Wang JY, Zhang CJ, Geng XG, Wang YN, Pan WS. Hsa_circ_0072309 is a prognostic biomarker and is correlated with immune infiltration in gastric cancer. Heliyon 2023; 9:e13191. [PMID: 36852074 PMCID: PMC9958299 DOI: 10.1016/j.heliyon.2023.e13191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Background Hsa_circ_0072309 has been identified as a tumor suppressor in several carcinomas. However, its precise role in gastric cancer (GC) remains largely unknown. This study was aimed to explore the precise role of Hsa_circ_0072309 in GC. Methods The transcriptional and clinical data of stomach adenocarcinoma were downloaded using the University of California SantaCruz (UCSC) Xena browser. The circular RNA (circRNA) datasets were obtained from the Gene Expression Omnibus (GEO) database. The expression profile and survival analysis of differentially expressed micro RNAs (DEMIs) and differentially expressed messenger RNAs (DEMs) were performed. Correlations between the expression and immune infiltration of the DEMS were studied. Additionally, the expression of hsa_circ_0072309 in GC tissues and cell lines were validated, and the relationship between its expression and clinical features was investigated. Gain- and loss-of function experiments and molecular interaction experiments were also conducted. Results Overall, 7 differentially expressed circRNAs, 13 DEMIs, and 17 DEMs were screened. Two DEMIs (hsa_miR-34a-3p and hsa_miR-326) and five DEMs (C7, MARCKSL1, UBE2T, OLR1, and HOXC11) showed significant differences in the high- and low-risk groups. The most significantly enriched Gene Ontology terms were the circadian regulation of gene expression and protein binding. The most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways were the PI3K-Akt and Ras signal pathways. Additionally, six genes were significantly correlated with immune infiltration. The real-time quantitative PCR (RT-qPCR) results revealed a significant downregulation of hsa_circ_0072309 in GC tissues related to tumor size, vascular invasion, and lymph node metastasis. A hsa_circ_0072309 overexpression suppressed whereas a hsa_circ_0072309 knockdown promoted GC cells proliferation and migration in vitro; in addition, hsa_circ_0072309 could directly bind to has-miR-34a-3p and has-miR-330-5p. Conclusions Hsa_circ_0072309 is a potential diagnostic biomarker for GC, and complement component 7 may be a tumor suppressor. These may potentially predict the prognosis of patients with GC and may become new therapeutic targets.
Collapse
Affiliation(s)
- Bei-Bei Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China.,Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Yi Huang
- Department of General Surgery, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - En-Dian Zheng
- Department of Gastroenterology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Jing-Ya Wang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Chen-Jing Zhang
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Xiao-Ge Geng
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Ya-Nan Wang
- Zhejiang University of Technology, Hangzhou, 310000, Zhejiang, China
| | - Wen-Sheng Pan
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, China.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China.,People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| |
Collapse
|
16
|
Ding M, Dai D, Yang W, Geng C, Cui G. Has_circ_0048764 promotes breast cancer progression by sponging miR-578 and regulating HMGA2 expression. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 42:448-463. [PMID: 36617513 DOI: 10.1080/15257770.2022.2155300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) function as important regulators in the progression of cancers. The role of circRNA_0048764 (circ_0048764) in the development of breast cancer (BC) remains inconclusive. This work investigates the biological function and molecular mechanism of circ_0048764 in BC. METHODS Quantitative real-time PCR (qRT-PCR) was conducted to measure the expression levels of circ_0048764, microRNA-578 (miR-578) and high mobility group AT-hook 2 (HMGA2) mRNA. The viability of BC cells was examined by cell counting kit 8 (CCK-8) assay. Besides, cyclin D1, proliferating cell nuclear antigen (PCNA) and HMGA2 expression levels were detected by western blot. The migrative and invasive capability of BC cells were probed by transwell assay. The relationships between miR-578 and circ_0048764 or HMGA2 3'-UTR were validated by dual-luciferase reporter gene assay. RESULTS Circ_0048764 was highly expressed in BC tissues and cells, which was significantly associated with tumor size (≥2 cm), lymph node status (positive), and higher TNM stage of BC patients. Circ_0048764 depletion suppressed the proliferative, migrative, and invasive abilities of BC cells, which was rescued by transfection of miR-578 inhibitors. The binding sites were verified between circ_0048764 and miR-578. HMGA2 was identified to be a target of miR-578 in BC cells, and circ_0048764 positively regulated HMGA2 expression in BC cells via repressing miR-578. CONCLUSION Circ_0048764 promotes BC cell growth, migration and invasion via absorbing miR-578 and up-regulating HMGA2.
Collapse
Affiliation(s)
- Mingjian Ding
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei, P.R. China.,Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Dianlu Dai
- Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Wenhua Yang
- Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| | - Cuizhi Geng
- Breast Center, The Fourth Hospital of Hebei Medical University, Shijiangzhuang, Hebei, P.R. China
| | - Guozhong Cui
- Department of Thyroid Mammary Gland, Cangzhou Central Hospital, Cangzhou, Hebei, P.R. China
| |
Collapse
|
17
|
Circular RNA hsa_circ_0012673 Promotes Breast Cancer Progression via miR-576-3p/SOX4 Axis. Mol Biotechnol 2023; 65:61-71. [PMID: 35794450 DOI: 10.1007/s12033-022-00524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/14/2022] [Indexed: 01/11/2023]
Abstract
Circular RNAs (circRNAs) have been reported to exert critical roles in human cancers. In this study, we investigated the role and molecular mechanism of hsa_circ_0012673 in breast cancer. Herein, we found that the expression of hsa_circ_0012673 was upregulated in breast cancer tissues and cell lines. Knockdown of hsa_circ_0012673 using RNA interference technique suppressed the proliferation, migration, and invasion of breast cancer cells. Mechanistically, hsa_circ_0012673 sponged miR-576-3p to stabilize SRY-box transcription factor 4 (SOX4), and thereby facilitating breast cancer cell proliferation, migration and invasion. Collectively, our study identified the oncogenic properties of hsa_circ_0012673/miR-576-3p/SOX4 axis in breast cancer, providing potential and exploitable diagnostic and therapeutic molecules for breast cancer.
Collapse
|
18
|
Yu Q, Dai J, Shu M. Circular RNA-0072309 has antitumor influences in Hep3B cell line by targeting microRNA-665. Biofactors 2023; 49:79-89. [PMID: 32048412 DOI: 10.1002/biof.1618] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/10/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is a malignant tumor that occurs in the liver and has a high mortality rate. We strived to detect the role and mechanism of circRNA-0072309 in liver cancer. Hep3B cell line was transfected with pc-circ and si-circ for viability, colony formation, apoptosis, migration, and invasion tests, which were individually performed by CCK-8, colony formation detection, flow cytometry assay, migration and invasion assays. What is more, the luciferase reporter assay was conducted to determine the target relationship between the circRNA-0072309 and microRNA (miR)-665. The expression of circRNA-0072309 was examined by qRT-PCR. The expression of proteins was examined via western blot. CircRNA-0072309 was lowly expressed in liver cancer tissues and positively associated with 5-year survival rate. The viability, colony formation, invasive and migratory ability were inhibited by abundant circRNA-0072309, which promoted cell apoptosis on the contrary. CircRNA-0072309 knockdown induced opposite effects, but could not affect apoptosis. Overexpressed miR-665 in tumor tissues was targeted and negatively controlled by circRNA-0072309. The PI3K/AKT and Wnt/β-catenin pathways were inhibited by abundant circRNA-0072309. miR-665 overexpression disturbed those effects derived from pc-circ. The circRNA-0072309 had antitumor influences in Hep3B cell line through targeting miR-665 relying on the deactivation of PI3K/AKT and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Qiuyun Yu
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Science (Ningbo No.2 Hospital), Ningbo, Zhejiang, China
| | - Jinhua Dai
- Department of Clinical Laboratory, Hwa Mei Hospital, University of Chinese Academy of Science (Ningbo No.2 Hospital), Ningbo, Zhejiang, China
| | - Ming Shu
- Department of Hepatobiliary Surgery, Hwa Mei Hospital, University of Chinese Academy of Science (Ningbo No.2 Hospital), Ningbo, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, Zhejiang, China
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, Zhejiang, China
| |
Collapse
|
19
|
Hussen BM, Mohamadtahr S, Abdullah SR, Hidayat HJ, Rasul MF, Hama Faraj GS, Ghafouri-Fard S, Taheri M, Khayamzadeh M, Jamali E. Exosomal circular RNAs: New player in breast cancer progression and therapeutic targets. Front Genet 2023; 14:1126944. [PMID: 36926585 PMCID: PMC10011470 DOI: 10.3389/fgene.2023.1126944] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer is the most prevalent type of malignancy among women. Exosomes are extracellular vesicles of cell membrane origin that are released via exocytosis. Their cargo contains lipids, proteins, DNA, and different forms of RNA, including circular RNAs. Circular RNAs are new class of non-coding RNAs with a closed-loop shape involved in several types of cancer, including breast cancer. Exosomes contained a lot of circRNAs which are called exosomal circRNAs. By interfering with several biological pathways, exosomal circRNAs can have either a proliferative or suppressive role in cancer. The involvement of exosomal circRNAs in breast cancer has been studied with consideration to tumor development and progression as well as its effects on therapeutic resistance. However, its exact mechanism is still unclear, and there have not been available clinical implications of exo-circRNAs in breast cancer. Here, we highlight the role of exosomal circRNAs in breast cancer progression and to highlight the most recent development and potential of circRNAas therapeutic targets and diagnostics for breast cancer.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Medical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaimany, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Khayamzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Academy of Medical Sciences, Tehran, Iran
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Classic and New Markers in Diagnostics and Classification of Breast Cancer. Cancers (Basel) 2022; 14:cancers14215444. [PMID: 36358862 PMCID: PMC9654192 DOI: 10.3390/cancers14215444] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Simple Summary With ever-increasing incidence, breast cancer is considered a most diagnosed type of cancer among women worldwide. Breast cancer arises through malignant transformation of ductal or lobular cells in female (or male) breast and the genetic, phenotypic and morphological heterogeneity has an effect on tumour’s behaviour, thereby instigating a need for individual personalized therapy. A traditional assessment of tumour’s characteristics involves a biopsy and histological analysis of a tumour tissue, and in recent years has been accompanied by analysis of molecular biomarkers to enhance the results. In this work we aimed to thoroughly investigate the latest data in this field of study and give a comprehensive review of novel molecular biomarkers of breast cancer and methodologies used to analyse them. Abstract Breast cancer remains the most frequently diagnosed form of female’s cancer, and in recent years it has become the most common cause of cancer death in women worldwide. Like many other tumours, breast cancer is a histologically and biologically heterogeneous disease. In recent years, considerable progress has been made in diagnosis, subtyping, and complex treatment of breast cancer with the aim of providing best suited tumour-specific personalized therapy. Traditional methods for breast cancer diagnosis include mammography, MRI, biopsy and histological analysis of tumour tissue in order to determine classical markers such as estrogen and progesterone receptors (ER, PR), cytokeratins (CK5/6, CK14, C19), proliferation index (Ki67) and human epidermal growth factor type 2 receptor (HER2). In recent years, these methods have been supplemented by modern molecular methodologies such as next-generation sequencing, microRNA, in situ hybridization, and RT-qPCR to identify novel molecular biomarkers. MicroRNAs (miR-10b, miR-125b, miR145, miR-21, miR-155, mir-30, let-7, miR-25-3p), altered DNA methylation and mutations of specific genes (p16, BRCA1, RASSF1A, APC, GSTP1), circular RNA (hsa_circ_0072309, hsa_circRNA_0001785), circulating DNA and tumour cells, altered levels of specific proteins (apolipoprotein C-I), lipids, gene polymorphisms or nanoparticle enhanced imaging, all these are promising diagnostic and prognostic tools to disclose any specific features from the multifaceted nature of breast cancer to prepare best suited individualized therapy.
Collapse
|
21
|
Wang J, Lai X, Peng X. CircLIFR Inhibits Non-small Cell Lung Cancer Progression by Acting as a miR-429 Sponge to Enhance CELF2 Expression. Biochem Genet 2022; 61:725-741. [PMID: 36104590 DOI: 10.1007/s10528-022-10285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading reason for tumor-related mortality, while non-small cell lung cancer (NSCLC) is the most usual type of lung cancer. Circular RNAs (circRNAs) have emerged as vital regulators in the development of human cancers, including NSCLC. We aimed to explore the functions of circRNA leukemia inhibitory factor receptor (circLIFR) in NSCLC progression. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify the expression of circLIFR, microRNA-429 (miR-429), and Elav-like family member 2 (CELF2) in NSCLC tissues and cells. Cell proliferation capability of NSCLC cells was determined by Cell Counting Kit-8 (CCK-8) and colony formation assays. The flow cytometry assay was performed to evaluate cell-cycle distribution and apoptosis of NSCLC cells. The abilities of migration and invasion were measured by transwell assay. In addition, the activities of caspase 3 and caspase 9 were measured by the assay kits. The interaction relationship between miR-429 and circLIFR or CELF2 was analyzed by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The expression levels of related proteins were examined by Western Blot assay. The xenograft experiment was established to explore the role of circLIFR in vivo. CircLIFR, circular, and stable transcript in NSCLC cells, was decreased more than 2 folds in NSCLC tissues and cells than controls (P < 0.0001). Importantly, overexpression of circLIFR impeded cell proliferation, migration, invasion, and inactivated protein kinase B (AKT)/phosphatase and tensin homolog (PTEN)-signaling pathways while enhanced apoptosis and cell-cycle arrest in NSCLC cells, which was overturned by upregulation of miR-429 or silencing of CELF2. Furthermore, the upregulation of circLIFR inhibited NSCLC tumor growth in vivo. Overexpression of circLIFR could suppress NSCLC progress by acting as a sponge of miR-429 to regulate the expression of CELF2 and PTEN/AKT-signaling pathways in NSCLC.
Collapse
Affiliation(s)
- Junbin Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Beijing, China
| | - Xinyi Lai
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Beijing, China
| | - Xuxing Peng
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, No. 1120, Lianhua Road, Futian District, Beijing, China.
| |
Collapse
|
22
|
Ji J, Tang J, Ren P, Cai W, Shen M, Wang Q, Yang X, Chen W. Downregulation of circLIFR exerts cancer-promoting effects on hepatocellular carcinoma in vitro. Front Genet 2022; 13:986322. [PMID: 36176304 PMCID: PMC9513674 DOI: 10.3389/fgene.2022.986322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal malignant tumors worldwide. Circular RNAs (circRNAs) are a special type of RNA that lacks the 5′ and 3’ ends. The functional roles of circRNAs in HCC remain largely unknown. Using high-throughput sequencing, we found several differentially expressed circRNAs in HCC tissues compared with nearby normal tissues. Among them, circRNA derived from the LIFR gene, named circLIFR, was significantly downregulated in HCC. Intriguingly, circLIFR overexpression in SK-Hep-1 cells promoted cell growth and invasion. RNA pull-down and mass spectrometry detection revealed circLIFR interacting with TANK binding kinase 1 (TBK1). Anti-TBK1 RIP confirmed the interaction between circLIFR and TBK1. TBK1 is a serine/threonine kinase that regulates several signaling pathways, including the NF-κB pathway. TBK1 inhibitors inhibit NF-κB activation. Overexpression of circLIFR overcame the in-hibitory function of TBK1, resulting in the upregulation of several genes, including MMP13, MMP3, VEGF, and MAPK. This study shows that the downregulation of circLIFR in HCC has a can-cer-promoting effect by interacting with TBK1 to promote the activation of downstream NF-κB pathway genes related to cell proliferation, migration, and invasion. This novel finding reveals the diversity of circRNA functions in HCC and provides novel insights into the role of circRNAs.
Collapse
Affiliation(s)
- Jingzhang Ji
- Center for Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jialyu Tang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Intervention, Wen Zhou Central Hospital, Wenzhou, China
| | - Ping Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenpin Cai
- Department of Laboratory Medicine, Wen Zhou Traditional Chinese Medicine Hospital, Wenzhou, China
| | - Meina Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiunan Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Yang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Wei Chen
- Center for Laboratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Chen,
| |
Collapse
|
23
|
CircFBXW7 Inhibits Proliferation, Migration, and Invasion of Nonsmall Cell Lung Cancer Cells by Regulating miR-492. JOURNAL OF ONCOLOGY 2022; 2022:8699359. [PMID: 36117850 PMCID: PMC9477579 DOI: 10.1155/2022/8699359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
Background CircFBXW7 has been determined to be involved in various cancers; however, its role in nonsmall cell lung cancer (NSCLC) remains unclear. This study examined the function and potential mechanism of circFBXW7 in NSCLC. Methods The structure of circFBXW7 was verified via RT-PCR and Sanger sequencing. The expression of circFBXW7 in NSCLC was determined by qRT-PCR. The effect of circFBXW7 overexpression on the proliferation, migration, and invasion of NSCLC cells was examined by CCK-8 and Transwell assays. Furthermore, a circFBXW7-miRNA network was established to explore their interaction. Predicted miRNA was determined by qRT-PCR. Moreover, the miRNA mimics were synthesized, wherein its effect on proliferation, migration, and invasion of NSCLC cells overexpressed circFBXW7 was assessed. Results The circularity of circFBXW7 was verified. The expression of circFBXW7 was found to be downregulated in NSCLC cells compared with that in normal human lung epithelial BEAS-2B cells. Overexpression of circFBXW7 reduced cell proliferation, migration, and invasion. Furthermore, according to the circFBXW7-miRNA network prediction and qRT-PCR validation, miR-492 was identified to be the target of circFBXW7. The inhibitory effect of circFBXW7 overexpression on cell proliferation, migration, and invasion was reversed by miR-492 mimics. Conclusion CircFBXW7 is downregulated in NSCLC. CircFBXW7 inhibits NSCLC cells proliferation, migration, and invasion by regulating miR-492.
Collapse
|
24
|
Zheng M, Cai WH, Wang MF, Deng YJ, Huang LL, Cao YJ. Microarray Profile of Circular RNAs Identifies hsa_circ_0001583 as A New Circular RNA Biomarker for Breast Cancer: A Retrospective Study. CELL JOURNAL 2022; 24:500-505. [PMID: 36274202 PMCID: PMC9588163 DOI: 10.22074/cellj.2022.8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Breast cancer (BC) is the most common cancer, which is currently the leading cause of cancer death. Circular RNAs (circRNAs) play important roles in cancer, however, circRNAs serving as vital index in BC for guiding treatment have not yet been identified. The aim of our study is to explore a novel kind of potential biomarker for BC. MATERIALS AND METHODS In this retrospective study, the samples used for assays were two groups of breast tumor tissue obtained from four BC patients, including four pairs of tumor tissues and adjacent nontumor samples. The circRNA expression profiles were detected via microarray and validated by real-time quantitative polymerase chain reaction (PCR). RESULTS The differentially expressed circRNAs in tested samples were screened and analyzed by using human circRNA microarray. After analysis, considering a fold gene expression change of ≥2.0 and P<0.05, results suggested that 256 circRNAs were significantly up-regulated and 277 circRNAs were significantly down-regulated. Besides, the results of the real-time quantitative PCR assay showed that the expression of hsa_circ_0001583 was significantly up-regulated in BC groups (P<0.05) by real-time quantitative PCR. Therefore, we thought hsa_circ_0001583 might serve as a novel kind of biomarker for BC. CONCLUSION Hsa_circ_0001583 showed significant up-regulation in BC patients with paired adjacent tissues. Many cancer immune pathways were related to has_circ_0001583, including autoimmune thyroid disease, chemokine and T-cell receptor signaling pathways.
Collapse
Affiliation(s)
- Min Zheng
- Department of Oncology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical
University, Fujian, Fuzhou, P. R. China
| | - Wei-Hua Cai
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Hospital of Fujian Medical University, Fujian,
Fuzhou, P. R. China
| | - Mou-Feng Wang
- Department of Oncology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical
University, Fujian, Fuzhou, P. R. China
| | - Yu-Jie Deng
- Department of Oncology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical
University, Fujian, Fuzhou, P. R. China
| | - Ling-Ling Huang
- Department of Oncology, Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical
University, Fujian, Fuzhou, P. R. China
| | - Yong-Jin Cao
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Hospital of Fujian Medical University, Fujian,
Fuzhou, P. R. China,Department of Thyroid and Breast SurgeryThe First Affiliated Hospital of Fujian Medical UniversityFujianFuzhouP. R. China
| |
Collapse
|
25
|
Magalhães L, Ribeiro-dos-Santos AM, Cruz RL, Nakamura KDDM, Brianese R, Burbano R, Ferreira SP, de Oliveira ELF, Anaissi AKM, Nahúm MCDS, Demachki S, Vidal AF, Carraro DM, Ribeiro-dos-Santos Â. Triple-Negative Breast Cancer circRNAome Reveals Hsa_circ_0072309 as a Potential Risk Biomarker. Cancers (Basel) 2022; 14:cancers14133280. [PMID: 35805051 PMCID: PMC9265318 DOI: 10.3390/cancers14133280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Triple Negative Breast Cancer (TNBC) is a highly aggressive type of cancer that lacks biomarkers for its early discovery, leading to overall poor prognosis after its diagnosis. Circular RNAs (circRNAs) are a new class of regulatory RNAs and are promising biomarkers for several human diseases, including TNBC. In this study, we profiled the expression of all circRNAs present in TNBC in order to identify new biomarkers for this disease and it was possible to observe that 16 were deregulated, among them hsa_circ_0072309. In two distinct sets of samples, hsa_circ_0072309 was able to distinguish TNBC from healthy controls, making it a promising risk biomarker for this disease. Additionaly, since circRNAs are known to interact with RNA-Binding Proteins (RBPs), we investigated its probable function in this cancer and found that by interacting with such RBPs, this circRNA is acting in several cancer-related biological pathways. Recognizing these differentially expressed circRNAs and identifying their role can lead to a better understanding of dysregulated pathways in TNBC and ultimately allow the development of personalized therapies in this molecular subtype of breast cancer. Abstract Circular RNAs (circRNAs) are a class of long non-coding RNAs that have the ability to sponge RNA-Binding Proteins (RBPs). Triple-negative breast cancer (TNBC) has very aggressive behavior and poor prognosis for the patient. Here, we aimed to characterize the global expression profile of circRNAs in TNBC, in order to identify potential risk biomarkers. For that, we obtained RNA-Seq data from TNBC and control samples and performed validation experiments using FFPE and frozen tissues of TNBC patients and controls, followed by in silico analyses to explore circRNA-RBP interactions. We found 16 differentially expressed circRNAs between TNBC patients and controls. Next, we mapped the RBPs that interact with the top five downregulated circRNAs (hsa_circ_0072309, circ_0004365, circ_0006677, circ_0008599, and circ_0009043) and hsa_circ_0000479, resulting in a total of 16 RBPs, most of them being enriched to pathways related to cancer and gene regulation (e.g., AGO1/2, EIF4A3, ELAVL1, and PTBP1). Among the six circRNAs, hsa_circ_0072309 was the one that presented the most confidence results, being able to distinguish TNBC patients from controls with an AUC of 0.78 and 0.81, respectively. This circRNA may be interacting with some RBPs involved in important cancer-related pathways and is a novel potential risk biomarker of TNBC.
Collapse
Affiliation(s)
- Leandro Magalhães
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
| | - André M. Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
| | - Rebecca L. Cruz
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
| | - Kivvi Duarte de Mello Nakamura
- Genomic and Molecular Biology Group, International Research Center/CIPE, A.C. Camargo Center, São Paulo 01508-010, Brazil; (K.D.d.M.N.); (R.B.); (D.M.C.)
| | - Rafael Brianese
- Genomic and Molecular Biology Group, International Research Center/CIPE, A.C. Camargo Center, São Paulo 01508-010, Brazil; (K.D.d.M.N.); (R.B.); (D.M.C.)
| | - Rommel Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Belém 66063-240, Brazil;
| | - Sâmio Pimentel Ferreira
- Department of Clinical Oncology, Ser Clínica Oncológica, Belém 66035-265, Brazil; (S.P.F.); (E.L.F.d.O.)
| | | | - Ana Karyssa Mendes Anaissi
- Postgraduate Program of Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém 66073-000, Brazil; (A.K.M.A.); (M.C.d.S.N.); (S.D.)
| | - Márcia Cristina de Sousa Nahúm
- Postgraduate Program of Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém 66073-000, Brazil; (A.K.M.A.); (M.C.d.S.N.); (S.D.)
| | - Samia Demachki
- Postgraduate Program of Oncology and Medical Sciences, Center of Oncology Research, Federal University of Pará, Belém 66073-000, Brazil; (A.K.M.A.); (M.C.d.S.N.); (S.D.)
| | - Amanda F. Vidal
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
- Environmental Genomics Laboratory, Vale Institute of Technology, Belém 66055-090, Brazil
| | - Dirce Maria Carraro
- Genomic and Molecular Biology Group, International Research Center/CIPE, A.C. Camargo Center, São Paulo 01508-010, Brazil; (K.D.d.M.N.); (R.B.); (D.M.C.)
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (INCITO), A.C. Camargo Center, São Paulo 01508-010, Brazil
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Postgraduate Program of Genetics and Molecular Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (L.M.); (A.M.R.-d.-S.); (R.L.C.); (A.F.V.)
- Correspondence:
| |
Collapse
|
26
|
Lian X, Cao D, Hu X, Mo W, Yao X, Mo J, Wang H. Circular RNAs Hsa_circ_101555 and Hsa_circ_008068 as Diagnostic Biomarkers for Early-Stage Lung Adenocarcinoma. Int J Gen Med 2022; 15:5579-5589. [PMID: 35707741 PMCID: PMC9191692 DOI: 10.2147/ijgm.s367999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/31/2022] [Indexed: 12/28/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a life-threatening disease worldwide with a high mortality rate. The early diagnosis of LUAD is crucial for improving subsequent treatment and prognosis. However, biomarkers for early detection remain a clinical challenge in LUAD. Here, we aimed to develop circular RNAs (circRNAs) in circulating plasma from LUAD patients as valuable diagnostic biomarkers in LUAD. Methods CircRNA expression was determined by circRNA microarray in three pairs of LUAD tumour tissues and patient-matched normal lung tissues. Hsa_circ_101555 and hsa_circ_008068 were selected as potential biomarkers in LUAD tissues and plasma by RT-PCR, respectively. The diagnostic value was analysed by the area under the curve (AUC) and the receiver operating characteristic (ROC) test. Results Our results showed that 6261 circRNAs were upregulated and 7238 circRNAs were downregulated in LUAD tumour tissues compared with patient-matched normal lung tissues. Hsa_circ_101555 and hsa_circ_008068 were filtered as biomarkers for early-stage LUAD. Q-PCR results showed that hsa_circ_101555 and hsa_circ_008068 were significantly upregulated in both LUAD cancer tissues and circulating plasma. Hsa_circ_101555 and hsa_circ_008068 were positively associated with tumour differentiation, tumour size and CEA (P<0.05). The ROC analysis showed that hsa_circ_101555 and hsa_circ_008068 had a better diagnostic potential compared to the traditional biomarkers (CEA, SCC, CYFRA21-1) in the detection of early-stage LUAD. Conclusion The circular RNAs hsa_circ_101555 and hsa_circ_008068 could serve as novel diagnostic biomarkers for early-stage LUAD.
Collapse
Affiliation(s)
- Xue Lian
- Department of Respiratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233000, People's Republic of China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Dakui Cao
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Xun Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Weiqiang Mo
- Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Xiujuan Yao
- Department of Pathology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Juanfen Mo
- The Key Laboratory, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| | - Haiqin Wang
- Department of Respiratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233000, People's Republic of China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, People's Republic of China
| |
Collapse
|
27
|
Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, Deng G, Zhang S, Liu B, Chen Q. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther 2022; 28:897-912. [PMID: 35212145 PMCID: PMC9062556 DOI: 10.1111/cns.13821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 01/02/2023] Open
Abstract
Aims Circular RNAs have been reported to play key roles in the progression of various cancers, including gliomas. The present study was designed to investigate the role of hsa_circ_0072309 in autophagy and temozolomide (TMZ) sensitivity in glioblastoma (GBM). Methods The effect of hsa_circ_0072309 on autophagy and TMZ sensitivity were examined by GFP‐RFP‐LC3, transmission electron microscopy(TEM), flow cytometry, Western blot, and immunofluorescence. The mechanism of hsa_circ_0072309 regulating p53 signaling pathway was analyzed using Western blot, IP, and rescue experiments. Results Low hsa_circ_0072309 expression predicts poor prognosis for glioma patients. The regulation of hsa_circ_0072309 on autophagy and TMZ sensitivity depends on the status of p53. Hsa_circ_0072309 promoted autophagy by p53 signaling pathway and enhanced sensitivity of glioblastoma to temozolomide (TMZ) in p53 wild‐type GBM, but not in p53 mutant GBM. Hsa_circ_0072309 inhibits p53 ubiquitination and increases the stability of p53 protein in the context of p53 wild‐type. MiR‐100 mediates hsa_circ_0072309 regulating p53. P53 inhibitor or autophagy inhibitor could reverse the effect of hsa_circ_0072309 on TMZ sensitivity in p53 wild‐type GBM. Conclusions This study revealed a function of hsa_circ_0072309 promoting autophagy by p53 signaling pathway and enhancing TMZ sensitivity. These findings demonstrated that hsa_circ_0072309 may be a potential and promising target in designing the treatment strategy for GBM.
Collapse
Affiliation(s)
- Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
28
|
CircLIFR suppresses hepatocellular carcinoma progression by sponging miR-624-5p and inactivating the GSK-3β/β-catenin signaling pathway. Cell Death Dis 2022; 13:464. [PMID: 35581180 PMCID: PMC9114368 DOI: 10.1038/s41419-022-04887-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Circular RNAs have been reported to play essential roles in the tumorigenesis and progression of various cancers. However, the biological processes and mechanisms involved in hepatocellular carcinoma (HCC) remain unclear. Initial RNA-sequencing data and qRT-PCR results in our cohort showed that hsa_circ_0072309 (also called circLIFR) was markedly downregulated in HCC tissues. Kaplan-Meier analysis indicated that higher levels of circLIFR in HCC patients correlated with favorable overall survival and recurrence-free survival rates. Both in vitro and in vivo experiments indicated that circLIFR inhibited the proliferation and invasion abilities of HCC cells. We therefore conducted related experiments to explore the mechanism of circLIFR in HCC. Fluorescence in situ hybridization results revealed that circLIFR was mainly located in the cytoplasm, and RNA immunoprecipitation assays indicated that circLIFR was significantly enriched by Ago2 protein. These results suggested that circLIFR may function as a sponge of miRNAs to regulate HCC progression. We further conducted bioinformatics prediction as well as dual-luciferase reporter assays, and the results of which showed that circLIFR could sponge miR-624-5p to stabilize glycogen synthase kinase 3β (GSK-3β) expression. Loss and gain of function experiments demonstrated that regulation of the expression of miR-624-5p or GSK-3β markedly affected HCC progression induced by circLIFR. Importantly, we also proved that circLIFR could facilitate the degradation of β-catenin and prevent its translocation to the nucleus in HCC cells. Overall, our study demonstrated that circLIFR acts as a tumor suppressor in HCC by regulating miR-624-5p and inactivating the GSK-3β/β-catenin signaling pathway.
Collapse
|
29
|
Wang W, Zhou L, Li Z, Lin G. Circ_0014130 is involved in the drug sensitivity of colorectal cancer through miR-197-3p/PFKFB3 axis. J Gastroenterol Hepatol 2022; 37:908-918. [PMID: 35288979 DOI: 10.1111/jgh.15829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/18/2022] [Accepted: 03/04/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM Colorectal cancer (CRC) is one of the most deadly cancers in the world, with few treatments and a poor prognosis. In recent years, many circular RNAs have been studied in CRC, but the role of circ_0014130 in CRC has not been investigated. Therefore, this research is designed to investigate the impact of circ_0014130 on the resistance of 5-fluorouracil (5-FU) in CRC. METHODS Quantitative real-time polymerase chain reaction was conducted to assess the expression of circ_0014130, microRNA-197-3p (miR-197-3p), and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3). The expression of PFKFB3 protein was detected by Western blot. The effect of cric_0014130 on drug resistance in CRC was verified by Cell Counting Kit-8 assay, clone formation assay, Transwell, and flow cytometry. The effect of circ_0014130 on tumor growth was evaluated by xenograft tumor model in vivo. RESULTS Circ_0014130 and PFKFB3 were increased, while miR-197-3p was reversed in CRC tissues and cells. Knocking down circ_0014130 can promote cell apoptosis, inhibit the proliferation of CRC cells, and reduced the IC50 of 5-FU. In addition, miR-197-3p inhibitors reversed the effect of si-circ_0014130 on CRC cells. Similarly, overexpression of PFKFB3 can regulate CRC cell behavior and 5-FU resistance caused by miR-197-3p. Finally, decrease of circ_0014130 was demonstrated to enhance the resistance of 5-FU in CRC tissues in vivo. CONCLUSION Circ_0014130 modulates 5-FU resistance in CRC by modulating the miR-197-3p/PFKFB3 axis, which is helpful for drug chemotherapy in CRC.
Collapse
Affiliation(s)
- Wei Wang
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Lijiang Zhou
- Department of Oncology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Zheng Li
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Guanhong Lin
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
30
|
CircMAN1A2 is upregulated by Helicobacter pylori and promotes development of gastric cancer. Cell Death Dis 2022; 13:409. [PMID: 35484118 PMCID: PMC9051101 DOI: 10.1038/s41419-022-04811-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 01/22/2023]
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of gastric cancer. It has been reported that circRNAs play a vital role in the development of multiple types of cancer. However, the role of H. pylori-induced circRNAs in the development of gastric cancer has not been studied. In this study, we found that H. pylori could induce the upregulation of circMAN1A2 in AGS and BGC823 cells independent of CagA. The downregulation of circMAN1A2 could inhibit the proliferation, migration and invasion of gastric cancer cells, and circMAN1A2 could promote the progression of gastric cancer induced by H. pylori by sponging miR-1236-3p to regulate MTA2 expression. Furthermore, circMAN1A2 knockdown inhibited xenograft tumour growth in vivo, and the overexpression of circMAN1A2 was associated with the progression of gastric cancer. Hence, Helicobacter pylori induced circMAN1A2 expression to promote the carcinogenesis of gastric cancer, and circMAN1A2 might be a new potential diagnostic marker and therapeutic target for gastric cancer.
Collapse
|
31
|
Li H, Yin H, Yan Y. Circ_0041732 regulates tumor properties of triple-negative breast cancer cells by the miR-149-5p/FGF5 pathway. Int J Biol Markers 2022; 37:178-190. [PMID: 35341378 DOI: 10.1177/03936155221086599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancers with a high recurrence and mortality. The important factors promoting the TNBC process have not been fully identified. In this research, the role of a TNBC-related circular RNA (circRNA), circ_0041732, was revealed in TNBC cell tumor properties. METHODS The expression levels of circ_0041732, microRNA-149-5p (miR-149-5p) and fibroblast growth factor 5 (FGF5) were detected by quantitative real-time polymerase chain reaction. The protein expression was determined by Western blot analysis or immunohistochemistry assay. Cell proliferation was detected by cell counting kit-8 and cell colony formation assays. Cell apoptosis was analyzed by flow cytometry and caspase-3 activity assays. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. Cell angiogenic capacity was investigated by a tube formation assay. The targeting relationship between miR-149-5p and circ_0041732 or FGF5 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of circ_0041732 knockdown on tumor formation were determined by an in vivo assay. RESULTS Circ_0041732 and FGF5 expression were significantly upregulated, whereas miR-149-5p was downregulated in TNBC tissues and cells compared with normal breast tissues and cells, respectively. Circ_0041732 silencing inhibited TNBC cell proliferation, migration, invasion, and tube formation, but induced apoptosis. Additionally, circ_0041732 regulated TNBC cell tumor properties by binding to miR-149-5p. MiR-149-5p also modulated TNBC cell tumor properties by targeting FGF5. Furthermore, circ_0041732 knockdown hindered tumor formation in vivo. CONCLUSION Circ_0041732 silencing suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p. This finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hongyang Li
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui City, Jiangsu Province, China
| | - Hailin Yin
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui City, Jiangsu Province, China
| | - Yao Yan
- Department of Internal Medicine Oncology, Lianshui People's Hospital, Lianshui City, Jiangsu Province, China
| |
Collapse
|
32
|
De Palma FDE, Salvatore F, Pol JG, Kroemer G, Maiuri MC. Circular RNAs as Potential Biomarkers in Breast Cancer. Biomedicines 2022; 10:725. [PMID: 35327527 PMCID: PMC8945016 DOI: 10.3390/biomedicines10030725] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the high heterogeneity and initially asymptomatic nature of breast cancer (BC), the management of this disease depends on imaging together with immunohistochemical and molecular evaluations. These tests allow early detection of BC and patient stratification as they guide clinicians in prognostication and treatment decision-making. Circular RNAs (circRNAs) represent a class of newly identified long non-coding RNAs. These molecules have been described as key regulators of breast carcinogenesis and progression. Moreover, circRNAs play a role in drug resistance and are associated with clinicopathological features in BC. Accumulating evidence reveals a clinical interest in deregulated circRNAs as diagnostic, prognostic and predictive biomarkers. Furthermore, due to their covalently closed structure, circRNAs are highly stable and easily detectable in body fluids, making them ideal candidates for use as non-invasive biomarkers. Herein, we provide an overview of the biogenesis and pleiotropic functions of circRNAs, and report on their clinical relevance in BC.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
- Inter-University Center for multifactorial and multi genetic chronic human diseases, “Federico II”-Naples, Tor Vergata-Roma II, and Chieti-Pescara Universities, 80131 Naples, Italy
| | - Jonathan G. Pol
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Institut Universitaire de France, 75005 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 Labellisée Par La Ligue Nationale Contre Le Cancer, Centre de Recherche Des Cordeliers, Inserm U1138, Université de Paris Cité, Sorbonne Université, 75006 Paris, France; (J.G.P.); (G.K.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
33
|
Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y, He J, Peng Y, Li W. Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer 2022; 21:63. [PMID: 35236349 PMCID: PMC8889743 DOI: 10.1186/s12943-022-01546-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
Background Circular RNAs (circRNAs) are differentially expressed between normal and cancerous tissues, contributing to tumor initiation and progression. However, comprehensive landscape of dysregulated circRNAs across cancer types remains unclear. Methods In this study, we conducted Ribo-Zero transcriptome sequencing on tumor tissues and their adjacent normal samples including glioblastoma, esophageal squamous cell carcinoma, lung adenocarcinoma, thyroid cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. CIRCexplorer2 was employed to identify circRNAs and dysregulated circRNAs and genes were determined by DESeq2 package. The expression of hsa_circ_0072309 (circLIFR) was measured by reverse transcription and quantitative real-time PCR, and its effect on cell migration was examined by Transwell and wound healing assays. The role of circLIFR in tumor metastasis was evaluated via mouse models of tail-vein injection and spleen injection for lung and liver metastasis, respectively. Results Distinct circRNA expression signatures were identified among seven types of solid tumors, and the dysregulated circRNAs exhibited cancer-specific expression or shared common expression signatures across cancers. Bioinformatics analyses indicated that aberrant expression of host genes and/or RNA-binding proteins contributed to circRNA dysregulation in cancer. Finally, circLIFR was experimentally validated to be downregulated in six solid tumors and to significantly inhibit cell migration in vitro and tumor metastasis in vivo. Conclusions Our results provide a comprehensive landscape of differentially expressed circRNAs in solid tumors and highlight that circRNAs are extensively involved in cancer pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01546-4.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen-Rong Liu
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuangyan Tan
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian-Kang Zhou
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomin Xu
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Ming
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Cheng
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiao Li
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Zeng
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Juan He
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, Med-X Center for Manufacturing, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Zhou Y, Tong Z, Zhu X, Huang S, Dong Z, Ye Z. hsa_circ_0072309 Expression Profiling in Non-small-Cell Lung Carcinoma and Its Implications for Diagnosis and Prognosis. Front Surg 2022; 9:842292. [PMID: 35284481 PMCID: PMC8913531 DOI: 10.3389/fsurg.2022.842292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/25/2022] Open
Abstract
Circular RNAs (circRNAs), which fall into the category of endogenous ncRNAs, are linked to disease progression of neoplastic diseases. Whereas, it remains uncharacterized regarding hsa_circ_0072309's function and implications in lung carcinoma (LC). Gene Expression Omnibus (GEO) database was utilized for identifying circRNAs with aberrantly expression in LC. qRT-PCR was responsible for determining hsa_circ_0072309 levels in lung adenocarcinoma (LAC). Also, its involvement in LC cell progression was investigated. Experimentally, hsa_circ_0072309 was identified as one of the most aberrantly down-regulated circRNAs in the GEO database (GSE101684 and GSE112214). qRT-PCR revealed notably down-regulated hsa_circ_0072309 in LAC tissue, which had a close association with adverse 3-year survival, as well as LNM and advanced TNM stage. Based on ROC, the AUC of hsa_circ_0072309 was determined to be 0.887, and its specificity and susceptibility can be improved by combined detection of either CYFRA21-1 or CEA. In a word, hsa_circ_0072309 is lowly expressed in lung cancer patients and the survival rate of lowly expressed patients is significantly lower, a candidate marker with prognostic utility for the disease.
Collapse
Affiliation(s)
- Yong Zhou
- Respiratory Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhongkai Tong
- Respiratory Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Xiaoxiao Zhu
- Respiratory Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Shaoqing Huang
- Respiratory Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhaoxing Dong
- Respiratory Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Zhaoxing Dong
| | - Zhenyue Ye
- Respiratory Department, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Zhenyue Ye
| |
Collapse
|
35
|
miR-652 Inhibits the Proliferation, Migration, and Invasion of Osteosarcoma Cells by Targeting HOXA9 and Regulating the PI3K/Akt Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:4809312. [PMID: 35111226 PMCID: PMC8803419 DOI: 10.1155/2022/4809312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/04/2022]
Abstract
Objective The aim of this study was to investigate the abnormal expression of miR-652 in osteosarcoma and its related mechanism. Materials and Methods Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression of miR-652 and HOXA9 in osteosarcoma tissues and normal tissues. A bioinformatics method was used to predict target genes of miR-652, and then luciferase reporter genes and western blot tests were used to verify expression of target genes. The miR-652 overexpression models were established by transfecting miR-652 mimics into osteosarcoma U-2OS cells, and HOXA9 overexpression models were simultaneously established by transfecting pcDNA3.1-HOXA9 into osteosarcoma U-2OS cells. Cell proliferation ability was detected by the CCK-8 assay, cell migration ability was detected by the scratch test, and cell invasion ability was detected by the Transwell invasion assay. Western blot tests were used to verify the expression of HOXA9, p-PI3K, p-AKT, MMP2 and MMP9. Results miR-652 and HOXA9 showed low expression and overexpression, respectively, in osteosarcoma tissues. Proliferation, invasion, and migration abilities of osteosarcoma cells and the level of protein expression of p-PI3K, p-Akt, MMP2, and MMP9 were significantly decreased with enhanced miR-652 expression (P < 0.01), while overexpression of HOXA9 reversed this situation. The results of dual-luciferase reporter gene showed that expression and activity of HOXA9 were downregulated accordingly, and the level of HOXA9 protein was decreased with enhancing miR-652 expression (P < 0.01). Conclusion miR-652 may negatively regulate HOXA9 expression and inhibit the proliferation, migration, and invasion abilities of osteosarcoma cells through the PI3K/Akt signaling pathway.
Collapse
|
36
|
Liu F, Wu X, Zhu H, Wang F. Influence of dysregulated expression of circular RNA on the diagnosis and prognosis of breast cancer in Asia: a meta-analysis study. BMJ Open 2021; 11:e044267. [PMID: 34728436 PMCID: PMC8565556 DOI: 10.1136/bmjopen-2020-044267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Recent studies have reported a correlation between non-coding RNAs such as circular RNAs (circRNAs) and clinical value of various cancers. However, the diagnostic and prognostic role of circRNA in breast cancer remains controversial. DESIGN Systematic review and meta-analysis. METHODS Diagnostic efficacy was estimated by sensitivity, specificity and area under the curve (AUC). Pooled HRs with 95% CIs estimated overall survival (OS), and ORs with 95% CIs investigated clinical features. RESULTS By searching PubMed, Embase, Web of Science, CNKI and Cochrane Library, we obtained a total of 29 studies with 4405 patients. A shorter survival time was associated with high expression levels of tumour-promoter circRNAs (OS: HR=2.43, 95% CI 2.20 to 2.92, p<0.001), and tumour-suppressor circRNAs were related to a favourable prognosis (OS: HR=0.32, 95% CI 0.23 to 0.44, p<0.001). Furthermore, high expression levels of oncogenic circRNAs were associated with poor clinical outcomes; tumour-suppressor circRNAs showed the opposite result. As for the diagnostic role, the outcome indicated an AUC of 0.82 (95% CI 0.78 to 0.85), with 85% sensitivity and 86% specificity to distinguish patients with breast cancer from healthy controls. CONCLUSION Dysregulated expression of circRNA was related to diagnosis and prognosis in breast cancer, which indicated it might be a novel biomarker and a target of therapy for breast cancer. PROSPERO REGISTRATION NUMBER CRD42020207912.
Collapse
Affiliation(s)
- Fengyuan Liu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Huixia Zhu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Feng Wang
- Department of Laboratory Medicine, Nantong University Affiliated Hospital, Nantong, China
- Department of Laboratory Medicine, Public Health School of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
37
|
Yu J, Li F, Li Y, Li Z, Jia G, Ding B, Zhou Y. The effects of hsa_circ_0000517/miR-326 axis on the progression of breast cancer cells and the prediction of miR-326 downstream targets in breast cancer. Pathol Res Pract 2021; 227:153638. [PMID: 34619576 DOI: 10.1016/j.prp.2021.153638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
It has been proposed that circular RNAs (circRNAs) play crucial roles in the initiation and progression of various cancers including breast cancer. Our study aimed to determine the function and regulatory mechanism of hsa_circ_0000517 in breast cancer. qRT-PCR was applied to determine hsa_circ_0000517 expression in breast cancer cells. The circular structure of hsa_circ_0000517 was confirmed using RNase R digestion assay. The subcellular distribution of hsa_circ_0000517 was analyzed using nuclear mass separation assay. Effects of hsa_circ_0000517 on the malignant behaviors of breast cancer cells were determined using CCK-8, colony formation assay, flow cytometry analysis, caspase-3 activity assay, and Transwell invasion assay. Bioinformatics analysis, luciferase reporter assay, and RIP were used to predict and confirm the interaction between hsa_circ_0000517 and miR-326. Bioinformatics analysis was used to search the possible targets of miR-326. Hsa_circ_0000517 was upregulated in breast cancer tissues and cells. Hsa_circ_0000517 was a stable circularized transcript that was preferentially distributed in the cytoplasm. Hsa_circ_0000517 knockdown inhibited cell proliferation, colony formation ability, and invasion and triggered apoptosis in breast cancer cells. Hsa_circ_0000517 acted as a sponge of miR-326 to suppress its expression. miR-326 inhibition abolished the effects of hsa_circ_0000517 knockdown on the malignant behaviors of breast cancer cells. Totally 17 genes were identified as the potential targets of miR-326 in breast cancer. In conclusion, hsa_circ_0000517 silencing repressed breast cancer progression by upregulating miR-326 expression.
Collapse
Affiliation(s)
- Jinsong Yu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang 473012, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang 473012, China
| | - Fengbo Li
- Department of Respiratory Medicine, Nanshi Hospital of Nanyang, Nanyang 473000, China
| | - Yan Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Zhong Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Guangwei Jia
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital, Nanyang 473012, China
| | - Yeqi Zhou
- Department of Radiology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an 223002, China.
| |
Collapse
|
38
|
Wang WB, Ren P, Ren FH, Huang M, Cheng X. Circ_0000526 Blocks the Progression of Breast Cancer by Sponging miR-492. Cancer Biother Radiopharm 2021; 36:467-476. [PMID: 32391718 DOI: 10.1089/cbr.2019.3513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Wen-Bin Wang
- Department of Thyroid and Breast Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Ping Ren
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Fei-hua Ren
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ming Huang
- Department of Thyroid and Breast Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| | - Xing Cheng
- Department of Thyroid and Breast Surgery, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
39
|
Circ_0008673 regulates breast cancer malignancy by miR-153-3p/CFL2 axis. Arch Gynecol Obstet 2021; 305:223-232. [PMID: 34324029 DOI: 10.1007/s00404-021-06149-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Breast cancer is an aggressive tumor, which poses a heavy burden to human health. Circular RNAs have been involved in the pathogenesis of breast cancer. This study aims to investigate whether circ_0008673 mediates breast cancer malignant progression by microRNA-153-3p (miR-153-3p)/cofilin 2 (CFL2) pathway. METHODS The RNA levels of circ_0008673, miR-153-3p and CFL2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression of CFL2, E-cadherin and N-cadherin was determined by western blot analysis. Cell proliferation was demonstrated through cell counting kit-8 and cell colony-formation assays. Cell apoptosis was detected by flow cytometry analysis. Cell migratory and invasive capacities were determined by transwell assay. The associated relationship between miR-153-3p and circ_0008673 or CFL2 was predicted by online databases, and testified by dual-luciferase reporter and RNA immunoprecipitation assays. In vivo assay was employed to demonstrate the effects of circ_0008673 silencing on tumor formation in vivo. RESULTS Circ_0008673 and CFL2 expressions were upregulated, while miR-153-3p expression was downregulated in breast cancer tissues and cells compared with adjacent normal breast tissues and cells, respectively. Circ_0008673 overexpression promoted cell proliferation, migration and invasion, and repressed cell apoptosis, while circ_0008673 silencing had opposite effects. Additionally, circ_0008673 served as a sponge of miR-153-3p. And circ_0008673 was proved to regulate breast cancer cell malignancy by sponging miR-153-3p. MiR-153-3p was found to modulate breast cancer cell carcinogenesis via targeting CFL2. Furthermore, circ_0008673 silencing repressed tumor growth in vivo. CONCLUSION Circ_0008673 promoted breast cancer progression by upregulating CFL2 expression through sponging miR-153-3p. This study provides a theoretical basis for researching circRNA-directed treatment of breast cancer.
Collapse
|
40
|
Gong L, Zhou X, Sun J. Circular RNAs Interaction with MiRNAs: Emerging Roles in Breast Cancer. Int J Med Sci 2021; 18:3182-3196. [PMID: 34400888 PMCID: PMC8364445 DOI: 10.7150/ijms.62219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Despite significant advances in cancer therapy strategies, breast cancer is one of the most common and lethal malignancies worldwide. Characterization of a new class of RNAs using next-generation sequencing opened new doors toward uncovering etiopathogenesis mechanisms of breast cancer as well as prognostic and diagnostic biomarkers. Circular RNAs (circRNAs) are a novel class of RNA with covalently closed and highly stable structures generated primarily from the back-splicing of precursor mRNAs. Although circRNAs exert their function through various mechanisms, acting as a sponge for miRNAs is their primary mechanism of function. Furthermore, growing evidence has shown that aberrant expression of circRNAs is involved in the various hallmarks of cancers. This paper reviews the biogenesis, characteristics, and mechanism of functions of circRNAs and their deregulation in various cancers. Finally, we focused on the circRNAs roles as a sponge for miRNAs in the development, metastasis, angiogenesis, drug resistance, apoptosis, and immune responses of breast cancer.
Collapse
Affiliation(s)
- Liu Gong
- Department of Medical Oncology, Hangzhou Xiasha Hospital, Hangzhou, Zhejiang Province, China
| | | | | |
Collapse
|
41
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
42
|
Wan L, Han Q, Zhu B, Kong Z, Feng E. Circ-TFF1 Facilitates Breast Cancer Development via Regulation of miR-338-3p/FGFR1 Axis. Biochem Genet 2021; 60:315-335. [PMID: 34219206 DOI: 10.1007/s10528-021-10102-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Some circular RNAs (circRNAs) have been verified to act as essential regulators in the progression of breast cancer (BC). We aimed to investigate the role of circRNA trefoil factor 1 (circ-TFF1) in BC progression. The expression of circ-TFF1, microRNA-338-3p (miR-338-3p) and fibroblast growth factor receptor 1 (FGFR1) mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was evaluated by methylthiazolyldiphenyl-tetrazolium bromide (MTT), colony formation, and 5-Ethynyl-2'-deoxyuridine (EDU) assays. Cell apoptosis and invasion were assessed by flow cytometry and transwell assay, respectively. Cellular glycolysis, including glucose consumption, lactate production, and ATP/ADP ratio, was detected by commercial kits. All protein levels were measured by western blot assay. The relationship between miR-338-3p and circ-TFF1 or FGFR1 was predicted by online bioinformatics tool and verified by dual-luciferase reporter assay. Xenograft tumor model was established to verify the function of circ-TFF1 in vivo. Circ-TFF1 was overexpressed in BC tissues and cells. Circ-TFF1 knockdown inhibited cell proliferation, invasion and glycolysis and induced apoptosis in BC cells. Circ-TFF1 acted as a sponge of miR-338-3p, and the effects of circ-TFF1 knockdown on BC cell proliferation, apoptosis, invasion, and glycolysis were abolished by miR-338-3p inhibition. FGFR1 was confirmed to be a target gene of miR-338-3p, and miR-338-3p played a tumor-suppressive role in BC by targeting FGFR1. Moreover, circ-TFF1 regulated FGFR1 expression by targeting miR-338-3p. Additionally, circ-TFF1 knockdown hampered tumorigenesis in vivo. Circ-TFF1 knockdown suppressed BC progression by regulating miR-338-3p/FGFR1 axis, providing a promising therapeutic target for BC.
Collapse
Affiliation(s)
- Long Wan
- Department of Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Bisheng Zhu
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Zhihua Kong
- Department of Ultrasound, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei Province, China
| | - Enrong Feng
- Department of Ultrasound, Xianning Hospital of Traditional Chinese Medicine, No.17 Binhe West Street, Xian'an District, Xianning, 437000, Hubei Province, China.
| |
Collapse
|
43
|
Zeng Y, Zou Y, Gao G, Zheng S, Wu S, Xie X, Tang H. The biogenesis, function and clinical significance of circular RNAs in breast cancer. Cancer Biol Med 2021; 19:14-29. [PMID: 34110722 PMCID: PMC8763001 DOI: 10.20892/j.issn.2095-3941.2020.0485] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/13/2021] [Indexed: 11/11/2022] Open
Abstract
Circular RNAs (circRNAs) are noncoding RNAs that form covalently closed loop structures. CircRNAs are dysregulated in cancer and play key roles in tumorigenesis, diagnosis, and tumor therapy. CircRNAs function as competing endogenous RNAs or microRNA sponges that regulate transcription and splicing, binding to proteins, and translation. CircRNAs may serve as novel biomarkers for cancer diagnosis, and they show potential as therapeutic targets in cancers including breast cancer (BC). In women, BC is the most common malignant tumor worldwide and the second leading cause of cancer death. Although evidence indicates that circRNAs play a critical role in BC, the mechanisms regulating the function of circRNAs in BC remain poorly understood. Here, we provide literature review aiming to clarify the role of circRNAs in BC and summarize the latest research. We provide a systematic overview of the biogenesis and biological functions of circRNAs, elaborate on the functional roles of circRNAs in BC, and highlight the value of circRNAs as diagnostic and therapeutic targets in BC.
Collapse
Affiliation(s)
- Yan Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Yutian Zou
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Guanfeng Gao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Shaoquan Zheng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Song Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Xiaoming Xie
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Hailin Tang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
44
|
Liu D, Fang L. Current research on circular RNAs and their potential clinical implications in breast cancer. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0275. [PMID: 34018386 PMCID: PMC8330541 DOI: 10.20892/j.issn.2095-3941.2020.0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is one of the most common cancers and the leading causes of death among women worldwide, and its morbidity rate is growing. Discovery of novel biomarkers is necessary for early BC detection, treatment, and prognostication. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs with covalently closed continuous loops, have been found to have a crucial role in tumorigenesis. Studies have demonstrated that circRNAs are aberrantly expressed in the tumor tissues and plasma of patients with BC, and they modulate gene expression affecting the proliferation, metastasis, and chemoresistance of BC by specifically binding and regulating the expression of microRNAs (miRNAs). Therefore, circRNAs can be used as novel potential diagnostic and prognostic markers, and therapeutic targets for BC. This article summarizes the properties, functions, and regulatory mechanisms of circRNAs, particularly current research on their association with BC proliferation, metastasis, and chemoresistance.
Collapse
Affiliation(s)
- Diya Liu
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| | - Lin Fang
- Department of Thyroid and Breast Diseases, Shanghai Tenth People’s Hospital, Shanghai 200070, China
| |
Collapse
|
45
|
Guo X, Qin M, Hong H, Xue X, Fang J, Jiang L, Kuang Y, Gao L. Circular RNA hsa_circ_0072309 inhibits the proliferation, invasion and migration of gastric cancer cells via inhibition of PI3K/AKT signaling by activating PPARγ/PTEN signaling. Mol Med Rep 2021; 23:349. [PMID: 33760104 PMCID: PMC7974328 DOI: 10.3892/mmr.2021.11988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Gastric cancer (GC) is a common malignant tumor in the digestive system, which presents without specific symptoms. Circular RNAs (circRNAs) play important roles in tumor progression and cellular functions; however, the relationship between GC and hsa_circ_0072309 remains unclear. The aim of the present study was to investigate the molecular mechanisms of hsa_circ_0072309 and the role that hsa_circ_0072309 plays in proliferation, invasion and migration of GC cells. The expression of hsa_circ_0072309 was evaluated using reverse transcription-quantitative PCR. A series of functional experiments were performed to study the role that hsa_circ_0072309 has in survival and metastasis of GC cells. In the present study, hsa_circ_0072309 was downregulated in GC cell lines and its overexpression inhibited the proliferation, migration and invasion of GC cells. In addition, hsa_circ_0072309 overexpression induced activation of the peroxisome proliferator-activated receptor γ (PPARγ)/PTEN pathway and inhibition of PI3K/AKT signaling. Moreover, pioglitazone, a PPARγ agonist, strengthened the effects of abundant hsa_circ_0072309 on the proliferative, migratory and invasive capabilities of GC cells, while GW9662, a PPARγ antagonist, abolished the effects of hsa_circ_0072309 overexpression on cell proliferation, migration and invasion. The present findings suggested that hsa_circ_0072309 inhibited proliferation, invasion and migration of gastric cancer cells via the inhibition of PI3K/AKT signaling by activating the PPARγ/PTEN signaling pathway. Targeting hsa_circ_0072309 may be an innovative therapeutic strategy for the treatment of GC.
Collapse
Affiliation(s)
- Xingpo Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Mingde Qin
- The Stem Cell and Biomedical Material Key Laboratory of Jiangsu Province (The State Key Laboratory Incubation Base), Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Han Hong
- Department of Hepato‑Pancreato‑Biliary Surgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaofeng Xue
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jian Fang
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
46
|
Circular RNA hsa_circ_0072309 inhibits non-small cell lung cancer progression by sponging miR-580-3p. Biosci Rep 2021; 40:222657. [PMID: 32293004 PMCID: PMC7199450 DOI: 10.1042/bsr20194237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Non-small cell lung cancer (NSCLC) continues to top the list of cancer mortalities worldwide. Early diagnosis and therapeutic interventions targeting NSCLC is becoming the world’s significant challenge. Circular RNAs (circRNAs) are emerging as a group of potential cancer biomarkers. Materials and methods: Quantitative real-time PCR (qRT-PCR) was employed to examine the expression of circ_0072309 in NSCLC tissues and cell lines. Cell counting kit 8 (CCK-8), wound healing and Transwell assays were used to analyze cell proliferation, migration and invasion in A549 and H1299 cells. The relationship between circ_0072309 and miR-580-3 was analyzed by Luciferase reporter and RNA pull down assays. Results: We screened circ_0072309 from Gene Expression Omnibus and found that circ_0072309 was lowly expressed in NSCLC tissues and cell lines. The transfection of circ_0072309-overexpressing vector significantly suppressed the cell proliferation, migration and invasion in A549 and H1299 cells. We predicted that miR-580-3p is a target of circ_0072309 by using publicly available bioinformatic algorithms Circinteractome tool and confirmed that circ_0072309 directly bound to miR-580-3p. Furthermore, the addition of miR-580-3p mitigated the blockage of cell proliferation, migration and invasion induced by circ_0072309. Conclusions: These data showed that circ_0072309 inhibits the progression of NSCLC progression via blocking the expression of miR-580-3p. These findings revealed the anti-tumor role of circ_0072309 during the development of NSCLC and provided a novel diagnostic biomarker and potential therapy for NSCLC.
Collapse
|
47
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
48
|
He X, Xu T, Hu W, Tan Y, Wang D, Wang Y, Zhao C, Yi Y, Xiong M, Lv W, Wu M, Li X, Wu Y, Zhang Q. Circular RNAs: Their Role in the Pathogenesis and Orchestration of Breast Cancer. Front Cell Dev Biol 2021; 9:647736. [PMID: 33777954 PMCID: PMC7991790 DOI: 10.3389/fcell.2021.647736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
As one of the most frequently occurring malignancies in women, breast cancer (BC) is still an enormous threat to women all over the world. The high mortality rates in BC patients are associated with BC recurrence, metastatic progression to distant organs, and therapeutic resistance. Circular RNAs (circRNAs), belonging to the non-coding RNAs (ncRNAs), are connected end to end to form covalently closed single-chain circular molecules. CircRNAs are widely found in different species and a variety of human cells, with the features of diversity, evolutionary conservation, stability, and specificity. CircRNAs are emerging important participators in multiple diseases, including cardiovascular disease, inflammation, and cancer. Recent studies have shown that circRNAs are involved in BC progress by regulating gene expression at the transcriptional or post-transcriptional level via binding to miRNAs then inhibiting their function, suggesting that circRNAs may be potential targets for early diagnosis, treatment, and prognosis of BC. Herein, in this article, we have reviewed and summarized the current studies about the biogenesis, features, and functions of circRNAs. More importantly, we emphatically elucidate the pivotal functions and mechanisms of circRNAs in BC growth, metastasis, diagnosis, and drug resistance. Deciphering the complex networks, especially the circRNA-miRNA target gene axis, will endow huge potentials in developing therapeutic strategies for combating BC.
Collapse
Affiliation(s)
- Xiao He
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufang Tan
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichen Wang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Xu Y, Gao P, Wang Z, Su Z, Liao G, Han Y, Cui Y, Yao Y, Zhong X. Circ-LAMP1 contributes to the growth and metastasis of cholangiocarcinoma via miR-556-5p and miR-567 mediated YY1 activation. J Cell Mol Med 2021; 25:3226-3238. [PMID: 33675150 PMCID: PMC8034453 DOI: 10.1111/jcmm.16392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of circular RNAs (circRNAs) executes important regulatory roles in carcinogenesis. Nonetheless, few studies focused on the mechanisms of circRNAs in cholangiocarcinoma (CCA). qRT‐PCR was applied to verify the dysregulated circRNAs in CCA. Fisher's exact test, Kaplan‐Meier analysis and Cox regression model were utilized to investigate the clinical implications of circ‐LAMP1 in the patients with CCA. The viability, apoptosis, migration and invasion of CCA cells were detected after silencing/overexpression of circ‐LAMP1. Xenograft and lung metastasis assays were performed to verify the in vitro results. The regulatory networks of circ‐LAMP1 were unveiled by bioinformatic analysis, RNA immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays. Up‐regulation of circ‐LAMP1 was found in CCA tissue samples and cell lines. Enhanced level of circ‐LAMP1 was linked to clinical severity, high post‐operative recurrence and poor prognosis for the patients with CCA. Gain/loss‐of‐function assays confirmed the oncogenic role of circ‐LAMP1 in mediating cell growth, apoptosis, migration and invasion. Nevertheless, the level of circ‐LAMP1 had no effect on normal biliary epithelium proliferation and apoptosis. Animal study further verified the in vitro data. Mechanistically, circ‐LAMP1 directly sponged miR‐556‐5p and miR‐567, thereby releasing their suppression on YY1 at post‐transcriptional level. Rescue assay indicated that the oncogenic role of circ‐LAMP1 is partially dependent on its modulation of YY1 in CCA. In summary, this study suggested that circ‐LAMP1 might be used as a promising biomarker/therapeutic target for CCA.
Collapse
Affiliation(s)
- Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Young Scholar of General Surgery Climbing Program of China, China
| | - Ping Gao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhidong Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanqun Liao
- Department of Interventional Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Han
- Department for Visceral, Thoracic and Vascular Surgery at the University Hospital, Technical University Dresden, Dresden, Germany
| | - Yifeng Cui
- Department of Hepatic Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Yao
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
50
|
Zhang H, Ge Z, Wang Z, Gao Y, Wang Y, Qu X. Circular RNA RHOT1 promotes progression and inhibits ferroptosis via mir-106a-5p/STAT3 axis in breast cancer. Aging (Albany NY) 2021; 13:8115-8126. [PMID: 33686957 PMCID: PMC8034942 DOI: 10.18632/aging.202608] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
To explore the effect of circRHOT1 on breast cancer progression and the underlying mechanism. Significantly, our data revealed that the depletion of circRHOT1 was able to repress the proliferation and induce the apoptosis of breast cancer cells. CircRHOT1 knockdown could remarkably inhibit the invasion and migration in the breast cancer cells. Meanwhile, the depletion of circRHOT1 enhanced the erastin-induced inhibition effect on cell growth of breast cancer cells. The circRHOT1 knockdown notably increased the levels of reactive oxygen species (ROS), iron, and Fe2+ in breast cancer cells. Mechanically, circRHOT1 was able to sponge microRNA-106a-5p (miR-106a-5p) and inhibited ferroptosis by down-regulating miR-106a-5p in breast cancer cells. Besides, miR-106a-5p induced ferroptosis by targeting signal transducer and activator of transcription 3 (STAT3) in the system. Moreover, the overexpression of STAT3 and miR-106a-5p inhibitor could reverse circRHOT1 knockdown-mediated breast cancer progression. Functionally, circRHOT1 promoted the tumor growth of breast cancer in vivo. In conclusion, we discovered that circRHOT1 contributed to malignant progression and attenuated ferroptosis in breast cancer by the miR-106a-5p/STAT3 axis. Our finding provides new insights into the mechanism by which circRHOT1 promotes the development of breast cancer. CircRHOT1 and miR-106a-5p may serve as potential targets for breast cancer therapy.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhicheng Ge
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zihan Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yinguang Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yang Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiang Qu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|