1
|
Geng X, Li Y, Sun Y, Cao L, Song Z. MicroRNA-181b-5p Facilitates Thyroid Cancer Growth via Targeting Programmed Cell Death 4. Mol Biotechnol 2024; 66:1154-1164. [PMID: 38253901 DOI: 10.1007/s12033-023-01013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
To explore the potential mechanism of microRNA (miR)-181b-5p promoting the progression of thyroid cancer (TC) by targeting programmed cell death 4 (PDCD4). Analysis of miR-181b-5p and PDCD4 expression in TC was performed. The impact of miR-181b-5p and PDCD4 on proliferation, migration, invasion, and apoptosis of TC cells was examined. The binding relationship between miR-181b-5p and PDCD4 was predicted and verified. miR-181b-5p was up-regulated in TC, while PDCD4 was down-regulated. Down-regulating miR-181b-5p or up-regulating PDCD4 inhibited the proliferation, migration, and invasion of TC cells, and promoted cell apoptosis. PDCD4 was the downstream target of miR-181b-5p, and down-regulation of PDCD4 counteracted the inhibitory effect of down-regulation of miR-181b-5p on the proliferation, migration, and invasion of TC cells and the promoting effect on apoptosis. miR-181b-5p inhibits the proliferation, migration, and invasion of TC cells and promotes cell apoptosis by targeting PDCD4.
Collapse
Affiliation(s)
- Xiang Geng
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, 210029, Jiangsu Province, China
| | - Yuan Li
- Department of Thyroid and Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, 210029, Jiangsu Province, China
| | - YangYang Sun
- Department of Pathology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, 210029, Jiangsu Province, China
| | - Liang Cao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, 210029, Jiangsu Province, China
| | - ZhenShun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, 301 Yanchang Middle Road, Shanghai City, 200072, China.
| |
Collapse
|
2
|
Singh P, Szigyártó IC, Ricci M, Gaál A, Quemé‐Peña MM, Kitka D, Fülöp L, Turiák L, Drahos L, Varga Z, Beke‐Somfai T. Removal and identification of external protein corona members from RBC-derived extracellular vesicles by surface manipulating antimicrobial peptides. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e78. [PMID: 38938416 PMCID: PMC11080927 DOI: 10.1002/jex2.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 06/29/2024]
Abstract
In the last years, extracellular vesicles (EVs), secreted by various cells and body fluids have shown extreme potential in biomedical applications. Increasing number of studies suggest that a protein corona could adhere to the surface of EVs which can have a fundamental effect on their function, targeting and therapeutical efficacy. However, removing and identifying these corona members is currently a challenging task to achieve. In this study we have employed red blood cell-derived extracellular vesicles (REVs) as a model system and three membrane active antimicrobial peptides (AMPs), LL-37, FK-16 and CM15, to test whether they can be used to remove protein corona members from the surface of vesicles. These AMPs were reported to preferentially exert their membrane-related activity via one of the common helical surface-covering models and do not significantly affect the interior of lipid bilayer bodies. The interaction between the peptides and the REVs was followed by biophysical techniques, such as flow-linear dichroism spectroscopy which provided the effective applicable peptide concentration for protein removal. REV samples were then subjected to subsequent size exclusion chromatography and to proteomics analysis. Based on the comparison of control REVs with the peptide treated samples, seventeen proteins were identified as external protein corona members. From the three investigated AMPs, FK-16 can be considered as the best candidate to further optimize EV-related applicability of AMPs. Our results on the REV model system envisage that membrane active peptides may become a useful set of tools in engineering and modifying surfaces of EVs and other lipid-based natural particles.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
| | - Imola Cs. Szigyártó
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| | - Maria Ricci
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| | - Anikó Gaál
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Mayra Maritza Quemé‐Peña
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
| | - Diána Kitka
- Hevesy György PhD School of ChemistryELTE Eötvös Loránd UniversityBudapestHungary
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Lívia Fülöp
- Department of Medical ChemistryUniversity of SzegedSzegedHungary
| | - Lilla Turiák
- Institute of Organic ChemistryMS Proteomics Research Group, Research Centre for Natural SciencesBudapestHungary
| | - László Drahos
- Institute of Organic ChemistryMS Proteomics Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Zoltán Varga
- Institute of Materials and Environmental ChemistryBiological Nanochemistry Research Group, Research Centre for Natural SciencesBudapestHungary
| | - Tamás Beke‐Somfai
- Institute of Materials and Environmental ChemistryBiomolecular Self‐assembly Research GroupResearch Centre for Natural SciencesBudapestHungary
| |
Collapse
|
3
|
Lv L, Du J, Wang D, Yan Z. OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1193-1204. [PMID: 35640631 DOI: 10.1093/jpp/rgac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Long Lv
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinghu Du
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Daorong Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zeqiang Yan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
4
|
Kim JY, Lee H, Kim EK, Lee WM, Hong YO, Hong SA. Low PDCD4 Expression Is Associated With Poor Prognosis of Colorectal Carcinoma. Appl Immunohistochem Mol Morphol 2021; 29:685-692. [PMID: 34029220 DOI: 10.1097/pai.0000000000000948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Programmed cell death 4 (PDCD4) is a tumor suppressor gene that inhibits tumor progression, invasion, and metastasis. Decreased PDCD4 expression is associated with poor prognosis in various types of cancers. We evaluated PDCD4 expression and its clinicopathologic correlation, including patient survival, in 289 surgically resected colorectal cancers. Low nuclear PDCD4 expression was identified in 177 (61.2%) cases and was associated with large tumor size, high pT classification, and the presence of lymphovascular and perineural invasion. The 5-year survival rate of patients with low nuclear PDCD4 expression was significantly lower than that of patients with high expression (72.2% vs. 93.3%, P<0.001). American Joint Committee on Cancer stage II and III colorectal cancer patients with low nuclear PDCD4 expression (76.9% and 67.2%, respectively) showed significantly worse overall survival than those with high expression (100% and 92.9%, P=0.002 and 0.032, respectively). Low nuclear PDCD4 expression was an independent poor prognostic factor in colorectal cancer patients (hazard ratio=3.556; 95% confidence interval, 1.739-7.271; P=0.001). Our study suggests that low PDCD4 expression is associated with aggressive behavior and can be used as a prognostic indicator of colorectal cancer patients.
Collapse
Affiliation(s)
- Joo Young Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
- Department of Pathology, Uijeongbu Eulji University Medical Center, Eulji University, Gyeonggi-do
| | - Hojung Lee
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Eun Kyung Kim
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Won Mi Lee
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Young Ok Hong
- Department of Pathology, Nowon Eulji Medical Center, Eulji University
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Dongjak-gu, Seoul, Korea
| |
Collapse
|
5
|
Evaluation of the Prognostic Value of Solute Carrier Family 34 Member 2 "SLC34A2" in Papillary Thyroid Carcinoma: An Immunohistochemical Study. ACTA ACUST UNITED AC 2021; 2021:3198555. [PMID: 34336552 PMCID: PMC8298178 DOI: 10.1155/2021/3198555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Background Papillary thyroid carcinoma (PTC) usually has an indolent clinical course, yet a subset of patients might show an aggressive course. Thus, better stratification of at-risk patients is mandatory for proper management. Solute carrier family 34 member 2 (SLC34A2) is an independent prognostic indicator in several cancers. However, only a few studies have been conducted to evaluate the prognostic value of SLC34A2 in PTC, with none of them assessing its immunohistochemical (IHC) expression in a large cohort of patients with PTC or exploring its possible relationship with tumor progression. Aim of the Study. We aimed to evaluate the IHC expression of SLC34A2 in a large series of PTC patients, correlate its expression with established clinicopathological factors, and find any possible relationship between this marker and patient prognosis. Material and Methods. A total of 476 samples (including 238 samples of PTC and 238 samples of normal thyroid tissue) collected between 2002 and 2005 were extracted from the archives of the Pathology Lab, Ain Shams University Hospitals. IHC analysis was performed using an anti-SLC34A2 antibody. Follow-up data were obtained. Results High SLC34A2 expression significantly correlated with important adverse clinicopathological parameters of PTC—i.e., late tumor stage, positive extrathyroid extension, tumor size > 4 cm, and age ≥ 55 years (p ≤ 0.001 for each). Kaplan–Meier analysis revealed that high SLC34A2 expression significantly correlated with shorter disease-free survival (DFS; p = 0.005), but not with overall survival (p = 0.111). Multivariate analysis showed SLC34A2 to be an independent prognostic factor affecting DFS. Conclusions High SLC34A2 IHC expression correlated with adverse clinicopathological prognostic parameters. Furthermore, SLC34A2 was identified as an independent factor for DFS that could serve to improve risk stratification of PTC patients for better management.
Collapse
|
6
|
Zhang X, Wang L, Li H, Zhang L, Zheng X, Cheng W. Crosstalk between noncoding RNAs and ferroptosis: new dawn for overcoming cancer progression. Cell Death Dis 2020; 11:580. [PMID: 32709863 PMCID: PMC7381619 DOI: 10.1038/s41419-020-02772-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023]
Abstract
Cancer progression including proliferation, metastasis, and chemoresistance has become a serious hindrance to cancer therapy. This phenomenon mainly derives from the innate insensitive or acquired resistance of cancer cells to apoptosis. Ferroptosis is a newly discovered mechanism of programmed cell death characterized by peroxidation of the lipid membrane induced by reactive oxygen species. Ferroptosis has been confirmed to eliminate cancer cells in an apoptosis-independent manner, however, the specific regulatory mechanism of ferroptosis is still unknown. The use of ferroptosis for overcoming cancer progression is limited. Noncoding RNAs have been found to play an important roles in cancer. They regulate gene expression to affect biological processes of cancer cells such as proliferation, cell cycle, and cell death. Thus far, the functions of ncRNAs in ferroptosis of cancer cells have been examined, and the specific mechanisms by which noncoding RNAs regulate ferroptosis have been partially discovered. However, there is no summary of ferroptosis associated noncoding RNAs and their functions in different cancer types. In this review, we discuss the roles of ferroptosis-associated noncoding RNAs in detail. Moreover, future work regarding the interaction between noncoding RNAs and ferroptosis is proposed, the possible obstacles are predicted and associated solutions are put forward. This review will deepen our understanding of the relationship between noncoding RNAs and ferroptosis, and provide new insights in targeting noncoding RNAs in ferroptosis associated therapeutic strategies.
Collapse
Affiliation(s)
- Xuefei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lingling Wang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Haixia Li
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China
| | - Lei Zhang
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Xiulan Zheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| | - Wen Cheng
- Department of Ultrasonography, Harbin Medical University Cancer Hospital, 150 Haping Road, 150040, Harbin, China.
| |
Collapse
|