1
|
Ji Y, Li R, Tang G, Wang W, Chen C, Yang Q. The interrelated roles of RAB family proteins in the advancement of neoplastic growth. Front Oncol 2025; 15:1513360. [PMID: 40196733 PMCID: PMC11974252 DOI: 10.3389/fonc.2025.1513360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rab Proteins, A Subfamily Of The Ras Superfamily Of Small Gtpases, Are Critical Regulators Of Intracellular Vesicular Trafficking, Which Is Intricately Linked To Various Cellular Processes. These Proteins Play Essential Roles Not Only In Maintaining Cellular Homeostasis But Also In Mediating The Complex Interplay Between Cancer Cells and Their Microenvironment. Rab Proteins Can Act As Either Oncogenic Factors Or Tumor Suppressors, With Their Functions Highly Dependent On The Cellular Context. Mechanistic Studies Have Revealed That Rab Proteins Are Involved In A Variety Of Processes, Including Vesicular Transport, Tumor Microenvironment Regulation, Autophagy, Drug Resistance, and Metabolic Regulation, and Play Either A Promotional Or Inhibitory Role In Cancer Development. Consequently, Targeting Rab Gtpases To Restore Dysregulated Vesicular Transport Systems May Offer A Promising Therapeutic Strategy To Inhibit Cancer Progression. However, It Is Equally Important To Consider The Potential Risks Of Disrupting Rab Functions, As Their Roles Are Highly Context-Dependent and May Have Opposing Effects In Different Malignancies. This Review Focuses On The Multifaceted Involvement Of Rab Family Proteins In Cancer Progression Underscores Their Importance As Potential Therapeutic Targets and Underscores The Need For A Deeper Understanding Of Their Complex Roles In Tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
2
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
3
|
Chen Y, Yin D, Feng X, He S, Zhang L, Chen D. Bioinformatics-Based Construction of Immune-Related microRNA and mRNA Prognostic Models for Hepatocellular Carcinoma. Cancer Manag Res 2024; 16:1793-1811. [PMID: 39741650 PMCID: PMC11687126 DOI: 10.2147/cmar.s482688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction The development and progression of Hepatocellular Carcinoma (HCC) is more relevant to immune regulation. Therefore, there is an urgent need to find immune-related molecular markers that can predict the prognosis and immune status of HCC. Methods RNA-seq and clinical HCC data from the Cancer Genome Atlas (TCGA) were analyzed for differential expression of microRNA (miRNAs), mRNAs, and lncRNAs. MiRNAs associated with immune scores were identified by Spearman analysis and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. MiRNAs and mRNAs were screened for prognosticity using COX regression. Kaplan-Meier survival analysis, risk scores, and correlation with clinical features were performed. Immune infiltration, Tumor Immune Dysfunction and Exclusion (TIDE), and chemotherapy prediction analyses were performed for high and low risk groups. Finally, prognostic mRNA expression was validated in cell lines. Results Five prognostic miRNAs (hsa-miR-145-3p, hsa-miR-150-3p, hsa-miR-153-3p, hsa-miR-223-3p, hsa-miR-424-3p) were identified in the study. A risk score model based on these prognostic miRNAs accurately predicted overall survival and was validated in GSE31384. Six mRNAs (KCTD17, MAFG, RAB10, SFPQ, TRMT6, UBE2D2) were further identified as prognostic. A risk model including these mRNAs also accurately predicted overall survival, and higher risk scores were associated with lower survival. Univariate and multivariate Cox regression analyses confirmed that both miRNA and mRNA risk scores were independent prognostic factors. The TIDE results showed lower TIDE scores and T-cell exclusion scores in the low risk score group. Chemotherapeutic drug sensitivity analysis revealed that the high-risk group was more sensitive to multiple chemotherapeutic agents. In addition, real-time quantitative PCR (RT-qPCR) results of the cell lines supported the results of the public database analysis. Conclusion This study validated immune-related prognostic miRNAs and mRNAs and identified risk signatures for HCC, potentially advancing HCC prognosis and treatment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Oncology, Nantong First People’s Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, People’s Republic of China
| | - Dian Yin
- Department of Oncology, Nantong First People’s Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, People’s Republic of China
| | - Xiu Feng
- Department of Oncology, Nantong First People’s Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, People’s Republic of China
| | - Shennan He
- Department of Oncology, Nantong First People’s Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, People’s Republic of China
| | - Liang Zhang
- Department of Oncology, Nantong First People’s Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, People’s Republic of China
| | - Dongqin Chen
- Department of Oncology, Nantong First People’s Hospital and Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226000, People’s Republic of China
| |
Collapse
|
4
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Zhou X, Hang S, Wang Q, Xu L, Wang P. Decoding the Role of O-GlcNAcylation in Hepatocellular Carcinoma. Biomolecules 2024; 14:908. [PMID: 39199296 PMCID: PMC11353135 DOI: 10.3390/biom14080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Post-translational modifications (PTMs) influence protein functionality by modulating protein stability, localization, and interactions with other molecules, thereby controlling various cellular processes. Common PTMs include phosphorylation, acetylation, ubiquitination, glycosylation, SUMOylation, methylation, sulfation, and nitrosylation. Among these modifications, O-GlcNAcylation has been shown to play a critical role in cancer development and progression, especially in hepatocellular carcinoma (HCC). This review outlines the role of O-GlcNAcylation in the development and progression of HCC. Moreover, we delve into the underlying mechanisms of O-GlcNAcylation in HCC and highlight compounds that target O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) to improve treatment outcomes. Understanding the role of O-GlcNAcylation in HCC will offer insights into potential therapeutic strategies targeting OGT and OGA, which could improve treatment for patients with HCC.
Collapse
Affiliation(s)
- Xinyu Zhou
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Sirui Hang
- Department of Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.Z.); (S.H.)
| | - Qingqing Wang
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Liu Xu
- Department of Hepatobiliary Surgery, The First Hospital of Jiaxing, Jiaxing 314051, China;
| | - Peter Wang
- Department of Medicine, Zhejiang Zhongwei Medical Research Center, Hangzhou 310000, China
| |
Collapse
|
7
|
Cheng X, Wu C, Xu H, Zou R, Li T, Ye S. miR-557 inhibits hepatocellular carcinoma progression through Wnt/β-catenin signaling pathway by targeting RAB10. Aging (Albany NY) 2024; 16:3716-3733. [PMID: 38364252 PMCID: PMC10929814 DOI: 10.18632/aging.205554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 02/18/2024]
Abstract
Accumulating evidence suggests that aberrant miRNAs participate in carcinogenesis and progression of hepatocellular carcinoma (HCC). Abnormal miR-557 expression is reported to interfere with the progression of several human cancers. However, the potential roles of miR-557 in HCC remain largely unknown. In the current study, we found that miR-557 was down-regulated in HCC tissues and cell lines, and was closely related to recurrence and metastasis of HCC. Notably, overexpression of miR-557 inhibited proliferation, migration, invasion, epithelial-to-mesenchymal transition (EMT) progression, blocked cells in G0/G1 phase of MHCC-97H cells in vitro, and suppressed tumor growth in vivo. However, loss of miR-557 facilitated these parameters in Huh7 cells both in vitro and in vivo. Moreover, RAB10 was identified as a direct downstream target of miR-557 through its 3'-UTR. Furthermore, RAB10 re-expression or knockdown partially abolished the effects of miR-557 on proliferation, migration, invasion, and EMT progression of HCC cells. Mechanistically, overexpression of miR-557 suppressed Wnt/β-catenin signaling by inhibiting GSK-3β phosphorylation, increasing β-catenin phosphorylation, and decreasing β-catenin transport to the nucleus, while knockdown of miR-557 activated Wnt/β-catenin signaling. Moreover, the TOP/FOP-Flash reporter assays showed that miR-557 overexpression or knockdown significantly suppressed or activated Wnt signaling activity, respectively. Additionally, low expression of miR-557 and high expression of RAB10 in HCC tissues was closely associated with tumor size, degree of differentiation, TNM stage and poor prognosis in HCC patients. Taken together, these results demonstrate that miR-557 blocks the progression of HCC via the Wnt/β-catenin pathway by targeting RAB10.
Collapse
Affiliation(s)
- Xiaoye Cheng
- Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Can Wu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Haocheng Xu
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ruixiang Zou
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shanping Ye
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
8
|
Lv Z, Ma G, Zhong Z, Xie X, Li B, Long D. O-GlcNAcylation of RAB10 promotes hepatocellular carcinoma progression. Carcinogenesis 2023; 44:785-794. [PMID: 37218374 DOI: 10.1093/carcin/bgad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Ras-related protein Rab-10 (RAB10) is involved in tumorigenesis and progression of hepatocellular carcinoma (HCC). Here, we found RAB10, O-GlcNAc transferase (OGT), and O-GlcNAcylation were upregulated in HCC. In addition, RAB10 protein level was prominently positively correlated with the expression of OGT. O-GlcNAcylation modification of RAB10 was then investigated. Here we showed that RAB10 interacts directly with OGT in HCC cell lines, Meanwhile, O-GlcNAcylation enhanced RAB10 protein stability. Furthermore, knockdown of OGT suppressed aggressive behaviors of HCC in vitro and in vivo, while elevated RAB10 reversed these. Taken together, these results indicated that OGT mediated O-GlcNAcylation stabilized RAB10, thus accelerating HCC progression.
Collapse
Affiliation(s)
- Zhuo Lv
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Guolu Ma
- Cancer Center, Integrated Hospital of Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, China
| | - Zhuo Zhong
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Xiong Xie
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Bin Li
- Li Bin's Clinic of Traditional Chinese Medicine, Guangzhou, China
| | - De Long
- Department of Oncology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| |
Collapse
|
9
|
Yuan W, Fang W, Zhang R, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Chen XZ, Zhou C, Tang J. Therapeutic strategies targeting AMPK-dependent autophagy in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119537. [PMID: 37463638 DOI: 10.1016/j.bbamcr.2023.119537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
Macroautophagy is a health-modifying process of engulfing misfolded or aggregated proteins or damaged organelles, coating these proteins or organelles into vesicles, fusion of vesicles with lysosomes to form autophagic lysosomes, and degradation of the encapsulated contents. It is also a self-rescue strategy in response to harsh environments and plays an essential role in cancer cells. AMP-activated protein kinase (AMPK) is the central pathway that regulates autophagy initiation and autophagosome formation by phosphorylating targets such as mTORC1 and unc-51 like activating kinase 1 (ULK1). AMPK is an evolutionarily conserved serine/threonine protein kinase that acts as an energy sensor in cells and regulates various metabolic processes, including those involved in cancer. The regulatory network of AMPK is complicated and can be regulated by multiple upstream factors, such as LKB1, AKT, PPAR, SIRT1, or noncoding RNAs. Currently, AMPK is being investigated as a novel target for anticancer therapies based on its role in macroautophagy regulation. Herein, we review the effects of AMPK-dependent autophagy on tumor cell survival and treatment strategies targeting AMPK.
Collapse
Affiliation(s)
- Wenbin Yuan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Wanyi Fang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Rui Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Hao Lyu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Shuai Xiao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Dong Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China
| | - Declan William Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Cefan Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| | - Jingfeng Tang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
10
|
Zhuo J, Han J, Zhao Y, Hao R, Shen C, Li H, Dai L, Sheng A, Yao H, Yang X, Liu W. RAB10 promotes breast cancer proliferation migration and invasion predicting a poor prognosis for breast cancer. Sci Rep 2023; 13:15252. [PMID: 37709911 PMCID: PMC10502149 DOI: 10.1038/s41598-023-42434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
RAB10, a member of the small GTPase family, has complex biological functions, but its role in breast cancer (BC) remains unclear. The aim of this study was to investigate the relationship between RAB10's role in BC, its biological functions, and BC prognosis. An online database was used to analyze the correlation between differential expression of RAB10 in BC and prognosis. The results of immunohistochemical assays in clinical cohorts were combined with the database analysis. The chi-square test and COX regression were employed to analyze the correlation between RAB10 and pathological features of BC. MTT, Transwell, and wound healing assays were conducted to detect BC cell proliferation, invasion, and metastatic ability. Bioinformatics techniques were employed to explore the correlation between RAB10 and BC tumor immune cell infiltration, and to speculate the biological function of RAB10 in BC and related signaling pathways. Our findings suggest that RAB10 expression is elevated in BC and is associated with HER2 status, indicating a poor prognosis for BC patients. RAB10 can promote the proliferation, migration, and invasion ability of BC cells in vitro. RAB10 is also associated with BC immune cell infiltration and interacts with multiple signaling pathways. RAB10 is a potential biomarker or molecular target for BC.
Collapse
Affiliation(s)
- Jian Zhuo
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanchun Zhao
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Ruiying Hao
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Chong Shen
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - He Li
- School of Clinical Medicine, The Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Luxian Dai
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Ankang Sheng
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Hanyu Yao
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Xiaohong Yang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, Yangzhou, 225007, Jiangsu, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
11
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Zhuo J, Zhao Y, Han J, Li H, Hao R, Yang Y, Dai L, Sheng A, Yang X, Liu W. Expression Value of Rab10 in Breast Cancer. CLIN EXP OBSTET GYN 2023; 50. [DOI: 10.31083/j.ceog5008169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background: Rab10 is a small GTPase protein belonging to the Ras superfamily. It is expressed and plays a role in a variety of malignant tumours. However, the expression of Rab10 and its role in breast cancer (BC) prognosis remains unclear. The aim of this study was to analyse the differential expression and prognostic value of Rab10 in BC using bioinformatics techniques and immunohistochemistry in a clinical cohort. Methods: The TIMER2, GEPIA2, and UALCAN databases were used to analyse the correlation between the differential expression of Rab10 and BC. Rab10 and BC prognosis were correlated using the Kaplan–Meier Plotter and UALCAN databases. The expression of Rab10 in BC tissues was detected using immunohistochemistry, and its correlation with the BC clinical cohort was analysed using Chi-squared tests and logistic regression analysis. Results: The expression of Rab10 mRNA identified in BC patients using TIMER2, GEPIA2, and UALCAN databases was higher than that in para-cancerous tissues. Kaplan–Meier plotter and the UALCAN database revealed that increased Rab10 expression was associated with poor prognosis in BC patients. Immunohistochemistry showed that Rab10 was expressed on cell membranes and in cytoplasm of BC tissues. In a clinical cohort, Rab10 expression correlated with histological grade, (human epidermal growth factor receptor 2) HER2 status, and molecular typing. Conclusions: Rab10 can be used as an effective clinical prognostic biomarker for BC.
Collapse
Affiliation(s)
- Jian Zhuo
- School of Clinical Medicine, Hebei University of Engineering, 056000 Handan, Hebei, China
| | - Yanchun Zhao
- Department of Outpatient, Affiliated Hospital of Hebei University of Engineering, 056000 Handan, Hebei, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, 056000 Handan, Hebei, China
| | - He Li
- School of Clinical Medicine, Hebei University of Engineering, 056000 Handan, Hebei, China
| | - Ruiying Hao
- School of Clinical Medicine, Hebei University of Engineering, 056000 Handan, Hebei, China
| | - Yan Yang
- School of Clinical Medicine, Hebei University of Engineering, 056000 Handan, Hebei, China
| | - Luxian Dai
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, 225007 Yangzhou, Jiangsu, China
| | - Ankang Sheng
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, 225007 Yangzhou, Jiangsu, China
| | - Xiaohong Yang
- Department of Breast Surgery, Yangzhou Maternal and Child Health Hospital Affiliated to Yangzhou University Medica College, 225007 Yangzhou, Jiangsu, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, 056000 Handan, Hebei, China
| |
Collapse
|
13
|
Zhang Y, Liang X, Lian Q, Liu L, Zhang B, Dong Z, Liu K. Transcriptional analysis of the expression and prognostic value of lipid droplet-localized proteins in hepatocellular carcinoma. BMC Cancer 2023; 23:677. [PMID: 37464334 DOI: 10.1186/s12885-023-10987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2023] [Indexed: 07/20/2023] Open
Abstract
The accumulation of lipid droplets (LDs) in hepatocytes is the main pathogenesis in nonalcoholic fatty liver disease (NAFLD), which is also the key risk factor for the progression of hepatocellular carcinoma (HCC). LDs behaviors are demonstrated to be associated with HCC advancement, and are tightly regulated by a subset protein localized on the surface of LDs. However, the role of LDs-localized protein in HCC has been rarely investigated. This study is focused on the transcriptional dynamic and prognostic value of LDs-localized protein in HCC. Firstly, we summarized the known LDs-localized proteins, which are demonstrated by immunofluorescence according to previous studies. Next, by the use of GEPIA/UALCAN/The Human Protein Atlas databases, we screened the transcriptional change in tumor and normal liver tissues, and found that 13 LDs-localized proteins may involve in the progression of HCC. Then we verified the transcriptional changes of 13 LDs-localized proteins by the use of HCC samples. Moreover, based on the assays of fatty liver of mice and human NAFLD liver samples, we found that the hepatic steatosis mainly contributed to the transcriptional change of selected LDs-localized proteins, indicating the involvement of these LDs-localized proteins in the negative role of NAFLD in HCC progression. Finally, we focused on the role of PLIN3 in HCC, and revealed that NAFLD status significantly promoted PLIN3 transcription in HCC tissue. Functional studies revealed that PLIN3 knockdown significantly limited the migration and chemosensitivity of hepatoma cells, suggesting the positive role of PLIN3 in HCC progression. Our study not only revealed the transcriptional change and prognostic value of lipid droplet-localized proteins in HCC, but also built the correlation between HCC and hepatic steatosis.
Collapse
Affiliation(s)
- Yize Zhang
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qinghai Lian
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zihui Dong
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kunpeng Liu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
15
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. An Insight into the Arising Role of MicroRNAs in Hepatocellular Carcinoma: Future Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:7168. [PMID: 37108330 PMCID: PMC10138911 DOI: 10.3390/ijms24087168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a frequent highly malignant form of primary liver cancer and is the third cause of death attributable to malignancy. Despite the improvement in the therapeutic strategies with the exploration of novel pharmacological agents, the survival rate for HCC is still low. Shedding light on the multiplex genetic and epigenetic background of HCC, such as on the emerging role of microRNAs, is considered quite promising for the diagnosis and the prediction of this malignancy, as well as for combatting drug resistance. MicroRNAs (miRNAs) constitute small noncoding RNA sequences, which play a key role in the regulation of several signaling and metabolic pathways, as well as of pivotal cellular functions such as autophagy, apoptosis, and cell proliferation. It is also demonstrated that miRNAs are significantly implicated in carcinogenesis, either acting as tumor suppressors or oncomiRs, while aberrations in their expression levels are closely associated with tumor growth and progression, as well as with local invasion and metastatic dissemination. The arising role of miRNAs in HCC is in the spotlight of the current scientific research, aiming at the development of novel therapeutic perspectives. In this review, we will shed light on the emerging role of miRNAs in HCC.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Army Hospital of Athens, 11525 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
16
|
Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, Norouzi R, Rafiei R, Koohpar ZK, Raei B, Zandieh MA, Salimimoghadam S, Entezari M, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Targeting and regulation of autophagy in hepatocellular carcinoma: revisiting the molecular interactions and mechanisms for new therapy approaches. Cell Commun Signal 2023; 21:32. [PMID: 36759819 PMCID: PMC9912665 DOI: 10.1186/s12964-023-01053-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/15/2023] [Indexed: 02/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Nadafzadeh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahr-E Kord Branch, Islamic Azad University, Tehran, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Norouzi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reihaneh Rafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Zhang C, Dan Q, Lai S, Zhang Y, Gao E, Luo H, Yang L, Gao X, Lu C. Rab10 protects against DOX-induced cardiotoxicity by alleviating the oxidative stress and apoptosis of cardiomyocytes. Toxicol Lett 2023; 373:84-93. [PMID: 36309171 DOI: 10.1016/j.toxlet.2022.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug, but its clinical application is limited by cardiotoxicity. As a member of the Rab family, Rab10 has multiple subcellular localizations and carries out a wide variety of functions. Here, we explored the role of Rab10 on DOX-induced cardiotoxicity. Cardiac-specific Rab10 transgenic mice were constructed and treated with DOX or saline. We found that cardiac-specific overexpression of Rab10 alleviated cardiac dysfunction and attenuated cytoplasmic vacuolization and mitochondrial damage in DOX-treated mouse heart tissues. Immunofluorescence staining and Western blot analysis showed that Rab10 alleviated DOX-induced apoptosis and oxidative stress in cardiomyocytes in mouse heart tissues. We demonstrated that DOX mediated apoptosis, oxidative stress and depolarization of the mitochondrial membrane potential in H9c2 cells, while overexpression and knockdown of Rab10 attenuated and aggravated these effects, respectively. Furthermore, we found that Mst1, a serine-threonine kinase, was cleaved and translocated into the nucleus in H9c2 cells after DOX treatment, and knockdown of Mst1 alleviated DOX-induced cardiomyocyte apoptosis. Overexpression of Rab10 inhibited the cleavage of Mst1 mediated by DOX treatment in vivo and in vitro. Together, our findings demonstrated that cardiac-specific overexpression of Rab10 alleviated DOX-induced cardiac dysfunction and injury via inhibiting oxidative stress and apoptosis of cardiomyocytes, which may be partially ascribed to the inhibition of Mst1 activity.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Qinghua Dan
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Song Lai
- Department of Cardiology, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yutong Zhang
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Erer Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China
| | - Haiyan Luo
- Department of Genetics, National Research Institute for Family Planning, Beijing, China
| | - Liping Yang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, China
| | - Xiaobo Gao
- Department of Genetics, National Research Institute for Family Planning, Beijing, China.
| | - Cailing Lu
- Department of Genetics, National Research Institute for Family Planning, Beijing, China; Graduate School of Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy 2022; 18:949-970. [PMID: 33525971 PMCID: PMC9196749 DOI: 10.1080/15548627.2021.1883881] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
As a self-degradative mechanism, macroautophagy/autophagy has a role in the maintenance of energy homeostasis during critical periods in the development of cells. It also controls cellular damage through the eradication of damaged proteins and organelles. This process is accomplished by tens of ATG (autophagy-related) proteins. Recent studies have shown the involvement of non-coding RNAs in the regulation of autophagy. These transcripts mostly modulate the expression of ATG genes. Both long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have been shown to modulate the autophagy mechanism. Levels of several lncRNAs and miRNAs are altered in this process. In the present review, we discuss the role of lncRNAs and miRNAs in the regulation of autophagy in diverse contexts such as cancer, deep vein thrombosis, spinal cord injury, diabetes and its complications, acute myocardial infarction, osteoarthritis, pre-eclampsia and epilepsy.Abbreviations: AMI: acute myocardial infarction; ATG: autophagy-related; lncRNA: long non-coding RNA; miRNA: microRNA.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Wu Z, Pan J, Yang J, Zhang D. LncRNA136131 suppresses apoptosis of renal tubular epithelial cells in acute kidney injury by targeting the miR-378a-3p/Rab10 axis. Aging (Albany NY) 2022; 14:3666-3686. [PMID: 35482482 PMCID: PMC9085219 DOI: 10.18632/aging.204036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
The pathogenesis of acute kidney injury (AKI) is not fully understood. To date, the exact role and regulatory mechanism of long non-coding RNA (lncRNA)136131 in AKI remains unclear. Here, we demonstrate that lncRNA136131 in BUMPT cells is induced by antimycin A. Furthermore, after incubating BUMPT cells in antimycin for two hours, lncRNA136131 prevented BUMPT cell apoptosis and cleaved caspase-3 expression. Mechanistically, lncRNA136131 sponged miR-378a-3p and then increased the expression of Rab10 to suppress apoptosis. Finally, I/R-induced decline of renal function, tubular damage, renal tubular cells apoptosis, and the upregulation of cleaved caspase-3 were aggravated by lncRNA136131 siRNA. In contrast, this effect was attenuated by the overexpression of lncRNA136131. In conclusion, lncRNA136131 protected against I/R-induced AKI progression by targeting miR-378a-3p/Rab10 and may be utilized as a novel target for AKI therapeutics.
Collapse
Affiliation(s)
- Zhifen Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Pan
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
20
|
de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villarán E, Muntané J. The Role of Non-Coding RNAs in Autophagy During Carcinogenesis. Front Cell Dev Biol 2022; 10:799392. [PMID: 35309939 PMCID: PMC8926078 DOI: 10.3389/fcell.2022.799392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Macroautophagy (autophagy herein) is a cellular stress response and a survival pathway involved in self-renewal and quality control processes to maintain cellular homeostasis. The alteration of autophagy has been implicated in numerous diseases such as cancer where it plays a dual role. Autophagy serves as a tumor suppressor in the early phases of cancer formation with the restoration of homeostasis and eliminating cellular altered constituents, yet in later phases, autophagy may support and/or facilitate tumor growth, metastasis and may contribute to treatment resistance. Key components of autophagy interact with either pro- and anti-apoptotic factors regulating the proximity of tumor cells to apoptotic cliff promoting cell survival. Autophagy is regulated by key cell signaling pathways such as Akt (protein kinase B, PKB), mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) involved in cell survival and metabolism. The expression of critical members of upstream cell signaling, as well as those directly involved in the autophagic and apoptotic machineries are regulated by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Consequently, non-coding RNAs play a relevant role in carcinogenesis and treatment response in cancer. The review is an update of the current knowledge in the regulation by miRNA and lncRNA of the autophagic components and their functional impact to provide an integrated and comprehensive regulatory network of autophagy in cancer.
Collapse
Affiliation(s)
- Patricia de la Cruz-Ojeda
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain
| | - Elena Navarro-Villarán
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| | - Jordi Muntané
- Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain.,Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain.,Networked Biomedical Research Center Hepatic and Digestive Diseases (CIBEREHD o Ciberehd), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Bai W, Cheng L, Xiong L, Wang M, Liu H, Yu K, Wang W. Identification of Prognostic Genes in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:2895-2904. [PMID: 35300146 PMCID: PMC8923701 DOI: 10.2147/ijgm.s347535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/11/2022] [Indexed: 12/05/2022] Open
Abstract
Background Previous studies have demonstrated the important role of tumor stem cells (TSCs) in the development of hepatocellular carcinoma (HCC); however, TSC-related genetic markers have not been investigated. Aim The aim of the present study was to identify stem cell-related signature genes to predict the prognosis of HCC, using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Methods In total, 423 liver HCC tissue samples, including 373 tumor and 50 adjacent normal tissue samples from TCGA, and 115 primary tumor and 52 adjacent non-tumor tissue samples from the GEO GSE76427 database, were used in the present study. The non-negative matrix factorization (NMF) algorithm, t-distributed stochastic neighbor embedding (t-SNE) algorithm and Cox regression analysis were combined for model construction and validation. Results Overall, six clusters were identified using the NMF and t-SNE algorithms with 470 stem cell-related genes. The results demonstrated that patients in cluster 5 had the worst prognosis. For multivariate Cox survival analysis, 15 genes with optimal lambda values were chosen and eight genes were incorporated into the final regression model using the optimal Akaike information criterion value. Validation of the risk model using the aforementioned eight signature genes demonstrated the models strong reliability and stable predictive performance. Conclusion The results of the present study indicated that the eight-gene (Hes family BHLH transcription factor 5, KIT ligand, methyltransferase-like 3, proteasome 26S subunit non-ATPase 1, Ras-related protein Rab-10, treacle ribosome biogenesis factor 1, YTH N6-methyladenosine RNA binding protein 2 and Zinc Finger CCCH-Type Containing 13) signature constructed by the model may be reliable in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Wenhui Bai
- Department of Hepatobiliary Surgery, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Li Cheng
- Department of Intensive Care Unit, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Liangkun Xiong
- Department of Hepatobiliary Surgery, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Maoming Wang
- Department of Hepatobiliary Surgery, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Hao Liu
- Department of Hepatobiliary Surgery, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Kaihuan Yu
- Department of Hepatobiliary Surgery, Eastern Campus, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Weixing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Correspondence: Weixing Wang; Kaihuan Yu, Email ;
| |
Collapse
|
22
|
Duan X, Yu X, Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis. Bioengineered 2022; 13:2387-2397. [PMID: 35030981 PMCID: PMC8974080 DOI: 10.1080/21655979.2021.2024637] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gastric cancer (GC) is a tumor with high incidence and lack of early diagnostic markers. The aim of this study was to explore novel regulatory circular RNAs (circRNAs) in GC and their underlying mechanisms. Differentially expressed circRNAs were analyzed using the Gene Expression Omnibus (GEO). mRNA and miRNA expression levels were determined using real-time reverse transcription polymerase chain reaction (RT-qPCR). Protein expression was detected using Western blotting. Cellular functions were evaluated using the cell counting kit-8 (CCK-8) assay and flow cytometry analysis. Immunofluorescence analysis was used to visually identify microtubule-associated protein 1 light chain 3 (LC3) puncta on a per-cell basis. Furthermore, dual-luciferase reporter and RNA pull-down assays were performed to verify the interaction between microRNA (miR)-182 and circ_0001658/Ras-related protein Rab-10 (RAB10). Circ_0001658 was identified to be aberrantly expressed in GC tissues and was demonstrated in GC cell lines (AGS and HGC27) in vitro. MiR-182 bound to circ_0001658 and RAB10. Circ_0001658 and RAB10 were upregulated, whereas miR-182 was suppressed in AGS and HGC27 cells. GC cell viability and autophagy were inhibited and apoptosis was promoted after circ_0001658 knockdown, and the cellular functions were reversed by downregulating miR-182. Moreover, upregulated RAB10 neutralized the effects of miR-182 on cell viability, autophagy, and apoptosis of GC cells. Silencing circ_0001658 restrained cell viability, suppressed autophagy, and promoted apoptosis of GC cells by sponging miR-182 to suppress the expression of RAB10. Therefore, circ_0001658 may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Xinxing Duan
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Xiong Yu
- Department of General Surgery, Affiliated Jiujiang Hospital of Nanchang University, Jiujiang, China
| | - Zhengrong Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
24
|
Zhao W, Liu X. MiR-3682 promotes the progression of hepatocellular carcinoma (HCC) via inactivating AMPK signaling by targeting ADRA1A. Ann Hepatol 2022; 27 Suppl 1:100570. [PMID: 34706275 DOI: 10.1016/j.aohep.2021.100570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES This study aimed to investigate miR-3682 as a biomarker in hepatocellular carcinoma (HCC). MATERIALS AND METHODS MiRNA and RNA profiles of 375 HCC tissues and 50 normal liver samples were downloaded from The Cancer Genome Atlas (TCGA) database. Multivariate Cox regression and Kaplan-Meier analyses were applied to examine the prognostic value of factors. Target genes of miR-3682 were analyzed by TargetScan and dual-luciferase reporter assay. Online Database for Annotation, Visualization, and Integrated Discovery (DAVID) to perform KEGG pathway enrichment. Cell counting kit-8, colony formation and migration and invasion assays were performed to analyze biological behaviors of HCC cells. RESULTS MiR-3682 was identified to be highly expressed in HCC tissues and cell lines. And miR-3682 was negatively and independently associated with the outcome of HCC patients. Inhibition of miR-3682 suppressed HCC cell viability and mobility. ADRA1A, predicted and confirmed as the novel target of miR-3682, was an independent and positive prognostic predictor for HCC. In addition, the knockdown of ADRA1A partially offset the inhibitory effect of miR-3682 inhibitor on the growth and mobility of HCC cells. DAVID enrichment and western blot of key signaling-related proteins analyses revealed that miR-3682 inactivated 5'-AMP-activated protein kinase (AMPK) signaling by negatively regulating ADRA1A. Mechanically, it was partially through suppressing AMPK signaling via targeting ADRA1A that miR-3682 supported the HCC cell malignant phenotype. CONCLUSIONS This study implicates that miR-3682 plays an oncogenetic role in HCC and can be considered a novel therapeutic target and prognostic indicator of HCC.
Collapse
Affiliation(s)
- Wenyue Zhao
- Department of gastrology, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China
| | - Xueping Liu
- Department of gastrology, Shandong Provincial Third Hospital, Shandong University, Jinan 250031, China.
| |
Collapse
|
25
|
Yosef T, Ibrahim WA, Matboli M, Swilam AA, El-Nakeep S. New stem cell autophagy surrogate diagnostic biomarkers in early-stage hepatocellular carcinoma in Egypt: A pilot study. World J Hepatol 2021; 13:2137-2149. [PMID: 35070014 PMCID: PMC8727222 DOI: 10.4254/wjh.v13.i12.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stem cell autophagy disruption is responsible for the development of hepatocellular carcinoma (HCC). Many non-coding RNAs are linked to the activation and inhibition of certain genes. The SQSTM1 gene controls stem cell autophagy as shown in previous studies. The upregulation of SQSTM1 is associated with the inhibition of autophagy in cancerous stem cells in patients with HCC. AIM To determine whether serum microRNA, hsa-miR-519d, is linked to SQSTM1 gene and whether they could be used as diagnostic biomarkers for early-stage HCC. METHODS In silico analysis was performed to determine the most correlated genes of autophagy with microRNAs. SQSTM1 and hsa-miR-519d were validated through this pilot clinical study. This study included 50 Egyptian participants, who were classified into three subgroups: Group 1 included 34 patients with early-stage HCC, Group 2 included 11 patients with chronic liver disease, and Group 3 (control) included 5 healthy subjects. All patients were subjected to full laboratory investigations, including viral markers and alpha-fetoprotein (AFP), abdominal ultrasound, and clinical assessment with the Child-Pugh score calculation. Besides, the patients with HCC underwent triphasic computed tomography with contrast to diagnose and determine the tumor site, size, and number. Quantitative real-time polymerase chain reaction was used to assess hsa-miR-519d-3p and SQSTM1 in the serum of all the study participants. RESULTS Hsa-miR-519d-3p was significantly upregulated in patients with HCC compared with those with chronic liver disease and healthy subjects with an area under the curve (AUC) of 0.939, with cutoff value 8.34, sensitivity of 91.2%, and specificity of 81.8%. SQSTM1 was upregulated with an AUC of 0.995, with cutoff value 7.89, sensitivity of 97.1%, and specificity of 100%. AFP significantly increased in patients with HCC with an AUC of 0.794, with cutoff value 7.30 ng/mL, sensitivity of 76.5%, and specificity of 72.7%. CONCLUSION This study is the first to show a direct relation between SQSTM1 and hsa-miR-519d-3p; they are both upregulated in HCC. Thus, they could be used as surrogate diagnostic markers for stem cell autophagy disturbance in early-stage HCC.
Collapse
Affiliation(s)
- Tarek Yosef
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Wesam Ahmed Ibrahim
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Marwa Matboli
- Department of Biochemistry, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt
| | - Amina Ahmed Swilam
- Department of Internal Medicine, Health Affair Directorate, Ministry of Health and Population, Cairo 11591, Egypt
| | - Sarah El-Nakeep
- Gastroenterology and Hepatology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| |
Collapse
|
26
|
Li Y, Xiong Y, Wang Z, Han J, Shi S, He J, Shen N, Wu W, Wang R, Lv W, Deng Y, Liu W. FAM49B promotes breast cancer proliferation, metastasis, and chemoresistance by stabilizing ELAVL1 protein and regulating downstream Rab10/TLR4 pathway. Cancer Cell Int 2021; 21:534. [PMID: 34645466 PMCID: PMC8513284 DOI: 10.1186/s12935-021-02244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most common cancers and the leading cause of death in women. Previous studies have demonstrated that FAM49B is implicated in several tumor progression, however, the role and mechanism of FAM49B in BC remain to be explored. Therefore, in this study, we aimed to systematically study the role of FAM49B in the proliferation, metastasis, apoptosis, and chemoresistance of BC, as well as the corresponding molecular mechanisms and downstream target. METHODS The ONCOMINE databases and Kaplan-Meier plotter databases were analyzed to find FAM49B and its prognostic values in BC. FAM49B expression in BC and adjacent non-tumor tissues was detected by western blot and IHC. Kaplan-Meier analysis was used to identify the prognosis of BC patients. After FAM49B knockdown in MCF-7 and MDA-MB-231 cells, a combination of co-immunoprecipitation, MTT, migration, and apoptosis assays, nude mouse xenograft tumor model, in addition to microarray detection and data analysis was used for further mechanistic studies. RESULTS In BC, the results showed that the expression level of FAM49B was significantly higher than that in normal breast tissue, and highly expression of FAM49B was significantly positively correlated with tumor volume, histological grade, lymph node metastasis rate, and poor prognosis. Knockdown of FAM49B inhibited the proliferation and migration of BC cells in vitro and in vivo. Microarray analysis revealed that the Toll-like receptor signaling pathway was inhibited upon FAM49B knockdown. In addition, the gene interaction network and downstream protein validation of FAM49B revealed that FAM49B positively regulates BC cell proliferation and migration by promoting the Rab10/TLR4 pathway. Furthermore, endogenous FAM49B interacted with ELAVL1 and positively regulated Rab10 and TLR4 expression by stabilizing ELAVL1. Moreover, mechanistic studies indicated that the lack of FAM49B expression in BC cells conferred more sensitivity to anthracycline and increased cell apoptosis by downregulating the ELAVL1/Rab10/TLR4/NF-κB signaling pathway. CONCLUSION These results demonstrate that FAM49B functions as an oncogene in BC progression, and may provide a promising target for clinical diagnosis and therapy of BC.
Collapse
Affiliation(s)
- Yanhui Li
- Clinical School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yue Xiong
- Clinical School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Zhen Wang
- Department of Laboratory Medicine, Medical College, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jinglan He
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Na Shen
- Science and Education Division, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Wenjuan Wu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Rui Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Weiwei Lv
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yajun Deng
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
27
|
Park JS, Ma H, Roh YS. Ubiquitin pathways regulate the pathogenesis of chronic liver disease. Biochem Pharmacol 2021; 193:114764. [PMID: 34529948 DOI: 10.1016/j.bcp.2021.114764] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver disease (CLD) is considered the leading cause of global mortality. In westernized countries, increased consumption of alcohol and overeating foods with high fat/ high glucose promote progression of CLD such as alcoholic liver disease (ALD) and non-alcoholic liver disease (NAFLD). Accumulating evidence and research suggest that ubiquitin, a 75 amino acid protein, plays crucial role in the pathogenesis of CLD through dynamic post-translational modifications (PTMs) exerting diverse cellular outcomes such as protein degradation through ubiquitin-proteasome system (UPS) and autophagy, and regulation of signal transduction. In this review, we present the function of ubiquitination and latest findings on diverse mechanism of PTMs, UPS and autophagy which significantly contribute to the pathogenesis of alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), cirrhosis, and HCC. Despite its high prevalence, morbidity, and mortality, there are only few FDA approved drugs that could be administered to CLD patients. The goal of this review is to present a variety of pathways and therapeutic targets involving ubiquitination in the pathogenesis of CLD. Further, this review summarizes collective views of pharmaceutical inhibition or activation of recent drugs targeting UPS and autophagy system to highlight potential targets and new approaches to treat CLD.
Collapse
Affiliation(s)
- Jeong-Su Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Hwan Ma
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, South Korea.
| |
Collapse
|
28
|
Wang M, Wang Y, Ye F, Yu K, Wei W, Liu M, Wang R, Cui S. Exosome encapsulated ncRNAs in the development of HCC: potential circulatory biomarkers and clinical therapeutic targets. Am J Cancer Res 2021; 11:3794-3812. [PMID: 34522450 PMCID: PMC8414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most deadly malignant cancer in the world and has the third highest mortality rate among cancer-related deaths worldwide. Its poor prognosis can be attributed to late diagnosis, high risk of recurrence and drug resistance. Therefore, finding a new biomarker to help us in the early diagnosis, and exploring the molecular mechanisms involved in recurrence and drug resistance is a reasonable research direction for clinical treatment of HCC. At present, the exosomes related to HCC have been confirmed to carry ncRNAs, transfer them to target cells, and bind corresponding target molecules. Furthermore, they affect the proliferation and metastasis of hepatocellular carcinoma by promoting angiogenesis, epithelial-mesenchymal transition (EMT), and inhibiting the function of the body's immune system. They play an important role in the recurrence and resistance of HCC. Besides, exosomes are stably expressed in body fluids such as sera, are easy to collect and cause little harm to the human body. They are the best candidates for liquid biopsy. Therefore, exosomal ncRNAs have application prospects as biomarkers and targeted molecules for therapy. This article summarizes the current research involving ncRNAs in HCC-related exosomes.
Collapse
Affiliation(s)
- Mingyuan Wang
- The First School of Clinical Medicine, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Yutong Wang
- The First School of Clinical Medicine, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Fan Ye
- The First School of Clinical Medicine, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Kai Yu
- The First School of Clinical Medicine, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Weicheng Wei
- School of Pediatrics, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Muyue Liu
- The First School of Clinical Medicine, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital of PLANanjing 210002, Jiangsu, China
| | - Shiyun Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| |
Collapse
|
29
|
Corà D, Bussolino F, Doronzo G. TFEB Signalling-Related MicroRNAs and Autophagy. Biomolecules 2021; 11:985. [PMID: 34356609 PMCID: PMC8301958 DOI: 10.3390/biom11070985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
The oncogenic Transcription Factor EB (TFEB), a member of MITF-TFE family, is known to be the most important regulator of the transcription of genes responsible for the control of lysosomal biogenesis and functions, autophagy, and vesicles flux. TFEB activation occurs in response to stress factors such as nutrient and growth factor deficiency, hypoxia, lysosomal stress, and mitochondrial damage. To reach the final functional status, TFEB is regulated in multimodal ways, including transcriptional rate, post-transcriptional regulation, and post-translational modifications. Post-transcriptional regulation is in part mediated by miRNAs. miRNAs have been linked to many cellular processes involved both in physiology and pathology, such as cell migration, proliferation, differentiation, and apoptosis. miRNAs also play a significant role in autophagy, which exerts a crucial role in cell behaviour during stress or survival responses. In particular, several miRNAs directly recognise TFEB transcript or indirectly regulate its function by targeting accessory molecules or enzymes involved in its post-translational modifications. Moreover, the transcriptional programs triggered by TFEB may be influenced by the miRNA-mediated regulation of TFEB targets. Finally, recent important studies indicate that the transcription of many miRNAs is regulated by TFEB itself. In this review, we describe the interplay between miRNAs with TFEB and focus on how these types of crosstalk affect TFEB activation and cellular functions.
Collapse
Affiliation(s)
- Davide Corà
- Department of Translational Medicine, Piemonte Orientale University, 28100 Novara, Italy;
- Center for Translational Research on Autoimmune and Allergic Diseases—CAAD, 28100 Novara, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute-IRCCS-FPO, Laboratory of Vascular Oncology, 10060 Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute-IRCCS-FPO, Laboratory of Vascular Oncology, 10060 Candiolo, Italy
| |
Collapse
|
30
|
Shen D, Zhao HY, Gu AD, Wu YW, Weng YH, Li SJ, Song JY, Gu XF, Qiu J, Zhao W. miRNA-10a-5p inhibits cell metastasis in hepatocellular carcinoma via targeting SKA1. Kaohsiung J Med Sci 2021; 37:784-794. [PMID: 34002462 DOI: 10.1002/kjm2.12392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
A variety of microRNAs (miRNAs) are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, the role of miR-10a-5p in the progression of HCC remains unclear. Therefore, the purpose of this study was to determine the role of miR-10a-5p in the development of HCC and the possible molecular mechanism. miR-10a-5p expression in HCC tissues and plasma from patients was detected by quantitative real-time polymerase chain reaction. Migratory changes in HCC cells were detected after the overexpression of miR-10a-5p. Epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Finally, through luciferase assay and rescue experiments, the mechanism by which miR-10a-5p regulates its downstream gene, human spindle and kinetochore-associated complex subunit 1, SKA1 and the interaction between these molecules in the development of HCC were determined. The expression of miR-10a-5p was markedly downregulated in HCC tissues, cell lines, and plasma. The overexpression of miR-10a-5p significantly inhibited the migration, invasion, and EMT of HCC cells. Furthermore, SKA1 was shown to be a downstream gene of miR-10a-5p. SKA1 silencing had the same effect as miR-10a-5p overexpression in HCC. In particular, the overexpression of SKA1 reversed the inhibitory effects of miR-10a-5p in HCC. Taken together, low miR-10a-5p expression is associated with HCC progression. miR-10a-5p inhibits the malignant development of HCC by negatively regulating SKA1.
Collapse
Affiliation(s)
- Duo Shen
- Medical School, Southeast University, Nanjing, China
| | - Hong-Yu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Dong Gu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin-Wei Wu
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Hang Weng
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Yun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-Feng Gu
- Medical School, Southeast University, Nanjing, China
| | - Jie Qiu
- Medical School, Southeast University, Nanjing, China.,Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhao
- Medical School, Southeast University, Nanjing, China.,Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Chen S. Identification of SARS-CoV-2 Proteins Binding Human mRNAs As a Novel Signature Predicting Overall Survival in Hepatocellular Carcinoma. DNA Cell Biol 2020; 40:359-372. [PMID: 33290144 DOI: 10.1089/dna.2020.6278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the virus causing coronavirus disease 2019 (COVID-19), has been confirmed in cancers through binding specific mRNAs to invade human cells. Therefore, the aim of this study described here was to develop and validate novel SARS-CoV-2 proteins binding human mRNAs (SPBRs) signature to predict overall survival (OS) in hepatocellular carcinoma (HCC). Using multivariate Cox regression analysis, a set of SPBRs was identified to establish a multigene signature in the Cancer Genome Atlas repositories cohort. Furthermore, a nomogram was established based on the signature and clinical risk factors to improve risk stratification for individual patients. External validation was performed in the International Cancer Genome Consortium (ICGC) cohort. A six-SPBR signature was built to classify patients into two risk groups using a risk score with different OS in two cohorts (all p < 0.0001). Multivariate regression analysis demonstrated the signature was an independent predictor of HCC. Moreover, the signature presented an excellent diagnostic power in differentiating HCC and normal tissues. Gene set enrichment analysis demonstrated that high-risk group was closely enriched in cell cycle, DNA replication, microRNAs in cancer, and cytokine-cytokine receptor interaction. The novel signature demonstrated great clinical value in predicting the OS for patients with HCC, and will provide a good reference between cancer research and SARS-CoV-2 and help individualized treatment in HCC.
Collapse
Affiliation(s)
- Shimin Chen
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Taihe Country, Taihe, China
| |
Collapse
|
32
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
33
|
Lychee seed polyphenol inhibits Aβ-induced activation of NLRP3 inflammasome via the LRP1/AMPK mediated autophagy induction. Biomed Pharmacother 2020; 130:110575. [PMID: 32768883 DOI: 10.1016/j.biopha.2020.110575] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that the enhancement of microglial autophagy inhibits the NLRP3 inflammasome mediated neuroinflammation in Alzheimer's disease (AD). Meanwhile, low density lipoprotein receptor-related protein 1 (LRP1) highly expressed in microglia is able to negatively regulate neuroinflammation and positively regulate autophagy. In addition, we have previously reported that an active lychee seed fraction enriching polyphenol (LSP) exhibits anti-neuroinflammation in Aβ-induced BV-2 cells. However, its molecular mechanism of action is still unclear. In this study, we aim to investigate whether LSP inhibits the NLRP3 inflammasome mediated neuroinflammation and clarify its molecular mechanism in Aβ-induced BV-2 cells and APP/PS1 mice. The results showed that LSP dose- and time-dependently activated autophagy by increasing the expression of Beclin 1 and LC3II in BV-2 cells, which was regulated by the upregulation of LRP1 and its mediated AMPK signaling pathway. In addition, both the Western blotting and fluorescence microscopic results demonstrated that LSP could significantly suppress the activation of NLRP3 inflammasome by inhibiting the expression of NLRP3, ASC, the cleavage of caspase-1, and the release of IL-1β in Aβ(1-42)-induced BV-2 cells. In addition, the siRNA LRP1 successfully abolished the effect of LSP on the activation of AMPK and its mediated autophagy, as well as the inhibition of NLRP3 inflammasome. Furthermore, LSP rescued PC-12 cells which were induced by the conditioned medium from Aβ(1-42)-treated BV-2 cells. Moreover, LSP improved the cognitive function and inhibited the NLRP3 inflammasome in APP/PS1 mice. Taken together, LSP inhibited the NLRP3 inflammasome-mediated neuroinflammation in the in vitro and in vivo models of AD, which was closely associated with the LRP1/AMPK-mediated autophagy. Thus, the findings from this study further provide evidences for LSP serving as a potential drug for the treatment of AD in the future.
Collapse
|
34
|
Zhang B, Huang L, Tu J, Wu T. Hypoxia-Induced Placenta-Specific microRNA (miR-512-3p) Promotes Hepatocellular Carcinoma Progression by Targeting Large Tumor Suppressor Kinase 2. Onco Targets Ther 2020; 13:6073-6083. [PMID: 32612368 PMCID: PMC7323795 DOI: 10.2147/ott.s254612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Sustained proliferation and active metastasis are hallmarks of cancer, and they pose major challenges to the development of treatments and a cure for hepatocellular carcinoma (HCC). Thus, the mechanisms of proliferation, migration, and invasion of cancer cells need to be investigated. Many studies indicate that dysregulation of microRNA plays important roles in the progression of HCC, but the role of placenta-specific microRNA (miR-512-3p) in HCC has not been systematically investigated. Purpose In the current study, the expression, biological function, and mechanisms of miR-512-3p involvement in HCC were investigated. Methods Real-time quantitative polymerase chain reaction assays were conducted to determine miR-512-3p levels in HCC tissues and cell lines. The StarBase V3.0 online platform was used to compare miR-512-3p levels in HCC tissues with TCGA data and to identify potential miR-512-3p target genes. Associations between miR-512-3p and clinicopathological characteristics were analyzed statistically. MTT, ethynyl deoxyuridine, and transwell assays were performed to assess cell viability, proliferation, migration, and invasion. The luciferase reporter gene assay was used to verify target genes. Recuse assays were performed to confirm whether large tumor suppressor kinase 2 (LATS2) participated in the regulatory effects of miR-512-3p on HCC cell proliferation and motility, and whether miR-512-3p mediated the tumor-promoting effects of hypoxia. Results miR-512-3p was upregulated in HCC and it was associated with worse survival and unfavorable clinicopathological characteristics. Functional assays indicated that miR-512-3p contributed to HCC cell proliferation, migration, and invasion. Mechanistically, LATS2—a downstream target of miR-512-3p—mediated the tumor-promoting effects of miR-512-3p in HCC. Hypoxia could elevate miR-512-3p levels in HCC cells, and miR-512-3p partially mediated the tumor-promoting effects of hypoxia. Conclusion Hypoxia-induced miR-512-3p contributes to HCC cell proliferation, migration, and invasion by targeting LATS2 and inhibiting the Hippo/yes-associated protein 1 pathways.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Clinical Medicine, Queen Mary Institute, Nanchang University, Nanchang, Jiangxi Province 330000, People's Republic of China
| | - Liang Huang
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Jiangbo Tu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Tianming Wu
- Emergency Department, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| |
Collapse
|