1
|
QUAN JINGDAN, WAN ZIXIN, WU WEI, CAO XINYUAN, QIU JIAYUAN, LIU XIAOYE, ZHANG ZHIWEI. Classical biomarkers and non-coding RNAs associated with diagnosis and treatment in gastric cancer. Oncol Res 2025; 33:1069-1089. [PMID: 40296904 PMCID: PMC12034007 DOI: 10.32604/or.2025.063005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
One of the most prevalent malignant tumors worldwide, stomach cancer still has a high incidence and fatality rate in China, and the number of young people developing early-onset gastric cancer is steadily increasing. The 5-year survival rate of stomach cancer is typically 30%-35%, the prognosis is bad, the patients' quality of life is low, and the progression of advanced gastric cancer cannot be effectively managed despite the use of surgical surgery, chemotherapy, and other medicines. We urgently need molecular biomarkers with high specificity and sensitivity to increase the early gastric cancer detection rate, extend patient survival, and improve patient quality of life. The initial diagnosis of gastric cancer primarily depends on gastroscopy and biopsy, and invasive procedures cause significant discomfort to patients. Similar to this, treating advanced and metastatic stomach cancer is a pressing issue that requires attention. More and more immune checkpoint molecules have been discovered, and corresponding inhibitors are gradually being applied to clinical diagnosis and treatment. Recently, some non-coding RNAs have begun to be used as new targets for the treatment of gastric cancer. Some non-coding RNAs are highly present in the serum or urine of gastric cancer patients and can be used as diagnostic markers or prognostic indicators. Many clinical trials targeting non-coding RNAs have also shown good therapeutic effects. In general, targeting non-coding RNAs has shown good therapeutic effects. The biomarkers for gastric cancer detection and treatment are reviewed in this article, focusing on the new non-coding RNAs used in diagnosis, prognosis, and treatment. Patients with stomach cancer should have access to more precise and efficient diagnosis and treatment choices as a result of ongoing technological advancements and thorough research.
Collapse
Affiliation(s)
- JINGDAN QUAN
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - ZIXIN WAN
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - WEI WU
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - XINYUAN CAO
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - JIAYUAN QIU
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - XIAOYE LIU
- Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - ZHIWEI ZHANG
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Xu J, Ming X, Wu J, Liu W, Xiao Y. Circ_0035381 contributes to the progression of acute myeloid leukemia via regulating miR-186-5p/CDCA3 pathway. Expert Rev Hematol 2025; 18:425-434. [PMID: 40205799 DOI: 10.1080/17474086.2025.2484377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 01/10/2025] [Accepted: 02/13/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Circular RNAs (circRNAs) are involved in acute myeloid leukemia (AML) and may be useful for AML therapy. Herein, the project aimed to explore the functions and mechanisms of circ_0035381 in AML. RESEARCH DESIGN AND METHODS Circ_0035381, microRNA-186-5p (miR-186-5p), and cell division cycle associated 3 (CDCA3) expression were determined using quantitative real-time polymerase chain reaction (qRT-PCR) assay. Western blot assay was used to measure protein levels. 5'-ethynyl-2'-deoxyuridine (EdU) and flow cytometry were adopted to measure cell proliferation and apoptosis. Glucose consumption and lactate uptake were examined with commercial kits. The relationships between miR-186-5p and circ_0035381 or CDCA3 were validated using dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_0035381 was increased in the AML subject and AML cell line. Circ_0035381 deficiency hindered the proliferation and glycolysis level and promoted apoptosis in the AML cell line. Circ_0035381 sponged miR-186-5p and miR-186-5p inhibition reversed the effect of circ_0035381 knockdown on AML cell progression. CDCA3 was the target gene of miR-186-5p. CDCA3 overexpression reversed circ_0035381 knockdown-mediated AML cell proliferation and glycolysis inhibition and apoptosis promotion. CONCLUSIONS Circ_0035381 promoted AML progression by elevating CDCA3 through sponging miR-186-5p, providing some clues for the diagnosis and treatment of AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Cell Proliferation
- Disease Progression
- Gene Expression Regulation, Leukemic
- Cell Line, Tumor
- Apoptosis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Jiaying Wu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Wanying Liu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, China
| |
Collapse
|
3
|
Liu D, Huang Y, Shang Y. Sufentanil Suppresses Cell Carcinogenesis Via Targeting miR-186-5p/HMGB1 Axis and Wnt/β-Catenin Pathway in Non-Small-Cell Lung Cancer. Mol Biotechnol 2025; 67:1054-1064. [PMID: 38470557 DOI: 10.1007/s12033-024-01104-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Sufentanil is a common opioid anesthetic agent, which exerts anti-cancer properties in several cancer types. However, its action mechanisms in non-small cell lung cancer (NSCLC) are unclear. Therefore, the present study investigated the pharmacological effect of sufentanil on miRNAs in NSCLC treatment. In this study, after treatment with sufentanil, the proliferation, migration, invasion and apoptosis of A549 and H1299 NSCLC cell lines were measured by cell counting kit-8 (CCK-8) assay, colony formation assay, transwell assays and flow cytometry. Quantitative real time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of miR-186-5p and high mobility group box-1 (HMGB1), and their interaction was analyzed using luciferase reporter assay. The proteins of HMGB1, and apoptosis- and Wnt/β-catenin pathway-related factors were detected by western blot. It was demonstrated that sufentanil significantly upregulated miR‑186‑5p to restrict NSCLC cell proliferation, migration, invasion, and boost apoptosis in vitro. Mechanically, miR-186-5p interacted with HMGB1 and negatively regulated HMGB1 in NSCLC cells. Furthermore, rescue assay showed that sufentanil exerted antitumor activities by upregulating miR-186-5p, which targeted HMGB1 and restrained Wnt/β-catenin signal pathway in NSCLC cells. In conclusion, these results suggested that sufentanil disrupts the oncogenicity of NSCLC cells by regulating miR-186-5p/HMGB1/β-catenin axis, providing a promising implication for the anti-oncogenic effect of sufentanil.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China
| | - Ye Huang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - You Shang
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121001, Liaoning Province, China.
| |
Collapse
|
4
|
Li Y, Pan Y, Yang X, Wang Y, Liu B, Zhang Y, Gao X, Wang Y, Zhou H, Li F. Unveiling the enigmatic role of MYH9 in tumor biology: a comprehensive review. Cell Commun Signal 2024; 22:417. [PMID: 39192336 PMCID: PMC11351104 DOI: 10.1186/s12964-024-01781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Non-muscle myosin heavy chain IIA (MYH9), a member of the non-muscle myosin II (NM II) family, is widely expressed in cells. The interaction of MYH9 with actin in the cytoplasm can hydrolyze ATP, completing the conversion of chemical energy to mechanical motion. MYH9 participates in various cellular processes, such as cell adhesion, migration, movement, and even signal transduction. Mutations in MYH9 are often associated with autosomal dominant platelet disorders and kidney diseases. Over the past decade, tumor-related research has gradually revealed a close relationship between MYH9 and the occurrence and development of tumors. This article provides a review of the research progress on the role of MYH9 in cancer regulation. We also discussed the anti-cancer effects of MYH9 under special circumstances, as well as its regulation of T cell function. In addition, given the importance of MYH9 as a key hub in oncogenic signal transduction, we summarize the current therapeutic strategies targeting MYH9 as well as the ongoing challenges.
Collapse
Affiliation(s)
- Yunkuo Li
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yujie Pan
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiangzhe Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yuxiong Wang
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Xin Gao
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China
| | - Faping Li
- Department of Urology Il, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Gou Z, Zhang D, Cao H, Li Y, Li Y, Zhao Z, Wang Y, Wang Y, Zhou H. Exploring the nexus between MYH9 and tumors: novel insights and new therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421763. [PMID: 39149512 PMCID: PMC11325155 DOI: 10.3389/fcell.2024.1421763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
The myosin heavy chain 9 (MYH9) gene, located on human chromosome 22, encodes non-muscle myosin heavy chain IIA (NM IIA). This protein is essential to various cellular events, such as generating intracellular chemomechanical force and facilitating the movement of the actin cytoskeleton. Mutations associated with thrombocytopenia in autosomal dominant diseases first highlighted the significance of the MYH9 gene. In recent years, numerous studies have demonstrated the pivotal roles of MYH9 in various cancers. However, its effects on cancer are intricate and not fully comprehended. Furthermore, the elevated expression of MYH9 in certain malignancies suggests its potential as a target for tumor therapy. Nonetheless, there is a paucity of literature summarizing MYH9's role in tumors and the therapeutic strategies centered on it, necessitating a systematic analysis. This paper comprehensively reviews and analyzes the pertinent literature in this domain, elucidating the fundamental structural characteristics, biological functions, and the nexus between MYH9 and tumors. The mechanisms through which MYH9 contributes to tumor development and its multifaceted roles in the tumorigenic process are also explored. Additionally, we discuss the relationship between MYH9-related diseases (MYH9-RD) and tumors and also summarize tumor therapeutic approaches targeting MYH9. The potential clinical applications of studying the MYH9 gene include improving early diagnosis, clinical staging, and prognosis of tumors. This paper is anticipated to provide novel insights for tumor therapy.
Collapse
Affiliation(s)
- Zixuan Gou
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zijian Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Ye Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Dai Q, Liu Y, Ding F, Guo R, Cheng G, Wang H. CircRNAs: A promising target for intervention regarding glycolysis in gastric cancer. Heliyon 2024; 10:e34658. [PMID: 39816354 PMCID: PMC11734058 DOI: 10.1016/j.heliyon.2024.e34658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer is characterized by a high incidence and mortality rate, with therapeutic efficacy currently constrained by substantial limitations. Aerobic glycolysis in cancer constitutes a pivotal aspect of the reprogramming of energy metabolism in tumor cells and profoundly influences the malignant progression of cancer. CircRNAs, serving as stable endogenous RNA, have been shown to regulate downstream targets by sponging miRNAs, which in turn are involved in the regulation of multiple malignant behaviors in a variety of cancers through the CircRNA-miRNA axis, suggesting that CircRNAs could be used as potential therapeutic targets for cancer. In recent years, it has been shown that some CircRNAs can be involved in the regulation of GC glycolysis, therefore, this paper summarizes the notable roles of some important CircRNAs in the regulation of GC glycolysis in recent years, which may be useful for our understanding of GC progression and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Qian Dai
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| | - Yulin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Fanghui Ding
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| | - Rong Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Gang Cheng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China, 730000
| | - Hua Wang
- The First Hospital of Lanzhou University, Lanzhou, China, 730000
| |
Collapse
|
7
|
Botwe G, Fang X, Mukhtar YM, Zhou Y, Tang H, Wang M, Zhang J, Fu M, Jiang P, Gu J, Zhang X. Circular RNAs as biomarkers and therapeutic targets for gastrointestinal cancers. J Gastroenterol Hepatol 2024; 39:1230-1246. [PMID: 38504413 DOI: 10.1111/jgh.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/03/2024] [Accepted: 02/24/2024] [Indexed: 03/21/2024]
Abstract
Circular RNAs are a class of noncoding RNAs with covalently linked 5' and 3' ends that arise from backsplicing events. The absence of a 5' cap and a 3' poly(A) tail makes circular RNAs relatively more stable than their linear counterparts. They are evolutionary conserved and tissue-specific, and some show disease-specific expression patterns. Although their biological functions remain largely unknown, circular RNAs have been shown to play regulatory roles by acting as microRNA sponges, regulators of RNA-binding proteins, alternative splicing, and parental gene expression, and they could even encode proteins. Over the past few decades, circular RNAs have attracted wide attention in oncology owing to their implications in various tumors. Many circular RNAs have been characterized as key players in gastrointestinal cancers and influence cancer growth, progression, metastasis, and therapeutic resistance. Accumulating evidence reveals that their unique characteristics, coupled with their critical roles in tumorigenesis, make circular RNAs promising non-invasive clinical biomarkers for gastrointestinal cancers. In the present review, we summarized the biological roles of the emerging circular RNAs and their potential as biomarkers and therapeutic targets, which may help better understand their clinical significance in the management of gastrointestinal cancers.
Collapse
Affiliation(s)
- Godwin Botwe
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinjian Fang
- Department of Oncology, Gaochun Hospital Affiliated to Jiangsu University, Nanjing, Jiangsu, China
| | - Yusif Mohammed Mukhtar
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yue Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haozhou Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Fu
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Pengcheng Jiang
- Institute of Digestive Diseases, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
8
|
Yang Y, Wang H, Wei Q, Li C. Agrimonolide inhibits glycolysis in ovarian cancer cells by regulating HIF1A. Mutat Res 2024; 829:111884. [PMID: 39353336 DOI: 10.1016/j.mrfmmm.2024.111884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Ovarian cancer is one of the most common tumors affecting females, significantly disrupting their quality of life. Agrimonolide, an extract derived from Agrimony (Agrimonia pilosa Ledeb.), has been shown to exert various regulatory effects on several diseases. Notably, recent studies indicate that Agrimonolide may attenuate the progression of ovarian cancer. However, the detailed regulatory mechanisms of Agrimonolide in this context require further investigation. PURPOSE To determine the significance of HIF1A as a key target in ovarian cancer and its potential underlying signaling pathway. METHODS Cell viability and proliferation were assessed using CCK-8 and colony formation assays. Glucose uptake and lactate production were measured using commercial kits, and the extracellular acidification rate (ECAR) was evaluated. Protein expression levels were analyzed through western blotting. RESULTS Our network pharmacology analysis identified HIF1A as a crucial target and signaling pathway in ovarian cancer. Furthermore, treatment with Agrimonolide (20 μM and 40 μM) inhibited the growth of ovarian cancer cells. Agrimonolide also reduced glycolytic activity in these cells. Additionally, Agrimonolide treatment led to decreased expression levels of HIF1A, HK2, and LDHA in ovarian cancer cells. Rescue assays revealed that glucose uptake and lactate production were diminished following Agrimonolide treatment; however, these effects were reversed upon overexpression of HIF1A. CONCLUSION This study showed that Agrimonolide can suppress glycolysis in ovarian cancer cells by modulating HIF1A, supporting Agrimonolide as a promising therapeutic agent for ovarian cancer treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Gynecology and Obstetrics, Tongren Hospital of WuHan University (Wuhan Third Hospital), Wuhan, Hubei 430014, China
| | - Huimin Wang
- Department of Gynecology and Obstetrics, Tongren Hospital of WuHan University (Wuhan Third Hospital), Wuhan, Hubei 430014, China
| | - Qiong Wei
- Department of Gynecology and Obstetrics, Tongren Hospital of WuHan University (Wuhan Third Hospital), Wuhan, Hubei 430014, China
| | - Chun Li
- Department of Gynecology and Obstetrics, Tongren Hospital of WuHan University (Wuhan Third Hospital), Wuhan, Hubei 430014, China.
| |
Collapse
|
9
|
Watanabe F, Sato S, Hirose T, Endo M, Endo A, Ito H, Ohba K, Mori T, Takahashi K. NRIP1 regulates cell proliferation in lung adenocarcinoma cells. J Biochem 2024; 175:323-333. [PMID: 38102728 DOI: 10.1093/jb/mvad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Nuclear receptor interacting protein 1 (NRIP1) is a transcription cofactor that regulates the activity of nuclear receptors and transcription factors. Functional expression of NRIP1 has been identified in multiple cancers. However, the expression and function of NRIP1 in lung adenocarcinoma have remained unclear. Thus, we aimed to clarify the NRIP1 expression and its functions in lung adenocarcinoma cells. NRIP1 and Ki-67 were immunostained in the tissue microarray section consisting of 64 lung adenocarcinoma cases, and the association of NRIP1 immunoreactivity with clinical phenotypes was examined. Survival analysis was performed in lung adenocarcinoma data from The Cancer Genome Atlas (TCGA). Human A549 lung adenocarcinoma cell line with an NRIP1-silencing technique was used in vitro study. Forty-three of 64 cases were immunostained with NRIP1. Ki-67-positive cases were more frequent in NRIP1-positive cases as opposed to NRIP1-negative cases. Higher NRIP1 mRNA expression was associated with poor prognosis in the TCGA lung adenocarcinoma data. NRIP1 was mainly located in the nucleus of A549 cells. NRIP1 silencing significantly reduced the number of living cells, suppressed cell proliferation, and induced apoptosis. These results suggest that NRIP1 participates in the progression and development of lung adenocarcinoma. Targeting NRIP1 may be a possible therapeutic strategy against lung adenocarcinoma.
Collapse
Affiliation(s)
- Fumihiko Watanabe
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima, 960-1295 Fukushima, Japan
| | - Shigemitsu Sato
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Takuo Hirose
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Moe Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
| | - Akari Endo
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Hiroki Ito
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
| | - Takefumi Mori
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino, 983-8536 Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1, Seiryo, Aoba, 980-8575 Sendai, Japan
| |
Collapse
|
10
|
Liu J, Bai X, Zhang M, Wu S, Xiao J, Zeng X, Li Y, Zhang Z. Energy metabolism: a new target for gastric cancer treatment. Clin Transl Oncol 2024; 26:338-351. [PMID: 37477784 DOI: 10.1007/s12094-023-03278-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Gastric cancer is the fifth most common malignancy worldwide having the fourth highest mortality rate. Energy metabolism is key and closely linked to tumour development. Most important in the reprogramming of cancer metabolism is the Warburg effect, which suggests that tumour cells will utilise glycolysis even with normal oxygen levels. Various molecules exert their effects by acting on enzymes in the glycolytic pathway, integral to glycolysis. Second, mitochondrial abnormalities in the reprogramming of energy metabolism, with consequences for glutamine metabolism, the tricarboxylic acid cycle and oxidative phosphorylation, abnormal fatty acid oxidation and plasma lipoprotein metabolism are important components of tumour metabolism. Third, inflammation-induced oxidative stress is a danger signal for cancer. Fourth, patterns of signalling pathways involve all aspects of metabolic transduction, and many clinical drugs exert their anticancer effects through energy metabolic signalling. This review summarises research on energy metabolism genes, enzymes and proteins and transduction pathways associated with gastric cancer, and discusses the mechanisms affecting their effects on postoperative treatment resistance and prognoses of gastric cancer. We believe that an in-depth understanding of energy metabolism reprogramming will aid the diagnosis and subsequent treatment of gastric cancer.
Collapse
Affiliation(s)
- Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Shihua Wu
- Department of Pathology, The Second Affiliated Hospital, Shaoyang College, Shaoyang, 422000, Hunan, People's Republic of China
| | - Juan Xiao
- Department of Head and Neck Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yuwei Li
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Zhan J, Li Z, Lin C, Wang D, Yu L, Xiao X. The role of circRNAs in regulation of drug resistance in ovarian cancer. Front Genet 2023; 14:1320185. [PMID: 38152652 PMCID: PMC10751324 DOI: 10.3389/fgene.2023.1320185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Ovarian cancer is one of the female reproductive system tumors. Chemotherapy is used for advanced ovarian cancer patients; however, drug resistance is a pivotal cause of chemotherapeutic failure. Hence, it is critical to explore the molecular mechanisms of drug resistance of ovarian cancer cells and to ameliorate chemoresistance. Noncoding RNAs (ncRNAs) have been identified to critically participate in drug sensitivity in a variety of human cancers, including ovarian cancer. Among ncRNAs, circRNAs sponge miRNAs and prevent miRNAs from regulation of their target mRNAs. CircRNAs can interact with DNA or proteins to modulate gene expression. In this review, we briefly describe the biological functions of circRNAs in the development and progression of ovarian cancer. Moreover, we discuss the underneath regulatory molecular mechanisms of circRNAs on governing drug resistance in ovarian cancer. Furthermore, we mention the novel strategies to overcome drug resistance via targeting circRNAs in ovarian cancer. Due to that circRNAs play a key role in modulation of drug resistance in ovarian cancer, targeting circRNAs could be a novel approach for attenuation of chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyi Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Changsheng Lin
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Dingding Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Lei Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Xue Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Gao X, Yu S, Liu S, Zhang S, Sha X, Sun D, Jiang X. Circular RNA nuclear receptor interacting protein 1 promoted biliary tract cancer epithelial-mesenchymal transition and stemness by regulating the miR-515-5p/AKT2 axis and PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2632-2644. [PMID: 37466171 DOI: 10.1002/tox.23898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023]
Abstract
Biliary tract cancer (BTC) is a devastating malignancy that is notoriously difficult to diagnose and is associated with high mortality. Circular RNA (circRNA) is a class of endogenous non-coding RNA which has been regarded as the key regulator of tumor initiation and progression, including BTC. Circular RNA nuclear receptor interacting protein 1 (circ_NRIP1), as a circular RNA, is abnormally expressed in many human tumors and exhibits diverse functions in cancer progression. However, its biological significance in BTC has not been thoroughly investigated. In this research, we elucidated that circ_NRIP1 was notably overexpressed in both BTC tissues and cells. We further established a correlation between circ_NRIP1 expression and clinicopathological features in BTC patients, highlighting its clinical relevance. Through functional assays, we observed that knockdown of circ_NRIP1 significantly inhibited tumor cell proliferation, invasion, stemness maintenance, and epithelial-mesenchymal transition, indicating its active involvement in promoting BTC progression. Additionally, it attenuated growth of xenograft and metastasis models. Mechanically, we revealed that circ_NRIP1 served as the competing endogenous RNA to sequester miR-515-5p through complementary base pairing mechanism, thereby upregulated AKT2 expression and indirectly activated PI3K/AKT/mTOR signaling pathway. Generally, targeting the circ_NRIP1/miR-515-5p/AKT2 axis and aberrant activation of the PI3K/AKT/mTOR pathway may hold promising therapeutic strategies for BTC. Our research contributes to a better understanding of the underlying biological basis of BTC and paves the way for the development of innovative treatment approaches.
Collapse
Affiliation(s)
- Xin Gao
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shaobo Yu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sidi Liu
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Siyuan Zhang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangjun Sha
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongsheng Sun
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingming Jiang
- Department of General Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Luo T, Guan H, Liu J, Wang J, Zhang Y. Curcumin inhibits esophageal squamous cell carcinoma progression through down-regulating the circNRIP1/miR-532-3p/AKT pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2705-2716. [PMID: 37471645 DOI: 10.1002/tox.23905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Curcumin shows an anti-cancer role in many kinds of tumors. However, the mechanism of its anti-tumor function in esophageal squamous cell carcinoma (ESCC) remains largely unknown. Herein, we explored the therapeutic potential of curcumin for esophageal cancer. Curcumin could time- and dose-dependently inhibit ESCC cells activity. Additionally, ESCC cells exposed to 20 μM of curcumin exhibited significantly decreased proliferative and invasive capacities, as well as enhanced cell apoptosis. ESCC tissues and cells exhibited significantly increased circNRIP1 expression when compared to their counterparts. circNRIP1 knockdown markedly impaired cell proliferation, clone formation, cell migration and invasion but promoted apoptosis. Exposure to 10-20 μM of curcumin inhibited circNRIP1 expression, however, overexpression of circNRIP1 could significantly restored the biological characteristics that were inhibited by curcumin exposure in vivo and in vitro. circNRIP1 promoted the malignancy of ESCC by combining miR-532-3p, and downstream AKT3. Curcumin inhibited AKT phosphorylation by up-regulating miR-532-3p expression, thereby inhibiting the activation of the AKT pathway. In summary, curcumin is a potent inhibitor of ESCC growth, which can be achieved through the regulation of the circNRIP1/miR-532-3p/AKT pathway. This research may provide new mechanisms for curcumin to inhibit the malignant development of ESCC.
Collapse
Affiliation(s)
- Tianxia Luo
- Department of Physiology, School of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongya Guan
- Trauma Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jia Liu
- Translational Medical Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jiang Wang
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Gao X, Yu Y, Wang H, Liu G, Sun X, Wang Z, Jiang X. Emerging roles of circ_NRIP1 in tumor development and cancer therapy (Review). Oncol Lett 2023; 26:321. [PMID: 37332333 PMCID: PMC10272956 DOI: 10.3892/ol.2023.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Circular RNA (circRNA) is a class of endogenous non-coding RNA, a type of single-stranded covalently closed RNA molecule formed by alternative splicing of exons or introns. Previous studies have demonstrated that circRNA participates in modulating biological processes such as cell proliferation, differentiation and apoptosis, and plays key roles in tumor occurrence and development. CircRNA nuclear receptor interacting protein 1 (circ_NRIP1), a form of circRNA, is abnormally expressed in certain human tumor types. It is present at a higher abundance compared with cognate linear transcripts and can regulate malignant biological behaviors such as tumor proliferation, invasion and migration, revealing a currently unexplored frontier in cancer progression. The present review presents a pattern of circ_NRIP1 expression in various malignant tumor types and highlights its significance in cancer development, in addition to its potential as a disease indicator or future therapeutic agent.
Collapse
Affiliation(s)
- Xin Gao
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yongbo Yu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haicun Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guanglin Liu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinyu Sun
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhidong Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xingming Jiang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
15
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
16
|
CircNRIP1: An emerging star in multiple cancers. Pathol Res Pract 2023; 241:154281. [PMID: 36586310 DOI: 10.1016/j.prp.2022.154281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are a new class of non-coding RNAs (ncRNAs) with a closed-loop structure that is highly stable and widely present in the eukaryotic cytoplasm. In recent years, circRNA has played a non-negligible role in the occurrence and development of a variety of diseases, which has attracted the research attention of many scholars. Circular RNA nuclear receptor interacting protein 1 (circNRIP1), a newly discovered circRNA, has been confirmed to be closely associated with cervical carcinoma (CC), colorectal cancer (CRC), esophageal squamous cell carcinoma (ESCC), gastric cancer (GC), nasopharyngeal carcinoma (NPC), non-small cell lung cancer (NSCLC), osteosarcoma (OS), ovarian cancer (OC) and papillary thyroid carcinoma (PTC). CircNRIP1 can regulate the activity of ERK1/2, PI3K/AKT, and AKT/mTOR signaling pathways. In this review, the author summarizes the biological functions and target molecular mechanisms in carcinogenesis, to point out the potential clinical values and applications of circNRIP1 in diagnosing and treating cancer.
Collapse
|
17
|
Vosoughi F, Makuku R, Tantuoyir MM, Yousefi F, Shobeiri P, Karimi A, Alilou S, LaPorte R, Tilves C, Nabian MH, Yekaninejad MS. A systematic review and meta-analysis of the epidemiological characteristics of COVID-19 in children. BMC Pediatr 2022; 22:613. [PMID: 36273121 PMCID: PMC9587668 DOI: 10.1186/s12887-022-03624-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several individual studies from specific countries have reported rising numbers of pediatric COVID-19 cases with inconsistent reports on the clinical symptoms including respiratory and gastrointestinal symptoms as well as diverse reports on the mean age and household exposure in children. The epidemiological characteristics of COVID-19 in children are not fully understood, hence, comprehensive meta-analyses are needed to provide a better understanding of these characteristics. METHODS This review was conducted in Medline, Scopus, Cochrane library, Embase, Web of Science, and published reports on COVID-19 in children. Data were extracted by two independent researchers and a third researcher resolved disputes. STATA software and the random-effect model were used in the synthesis of our data. For each model, the heterogeneity between studies was estimated using the Q Cochrane test. Heterogeneity and publication bias were calculated using the I2 statistic and Egger's/Begg's tests. RESULTS The qualitative systematic review was performed on 32 articles. Furthermore, the meta-analysis estimated an overall rate of involvement at 12% (95% CI: 9-15%) among children, with an I2 of 98.36%. The proportion of household exposure was calculated to be 50.99% (95% CI: 20.80%-80.80%) and the proportion of admitted cases was calculated to be 45% (95% CI: 24%-67%). Additionally, the prevalence of cough, fatigue, fever and dyspnea was calculated to be 25% (95% CI: 0.16-0.36), 9% (95% CI: 0.03-0.18), 33% (95% CI: 0.21-0.47) and 9% (95% CI: 0.04-0.15), respectively. It is estimated that 4% (95% CI: 1-8%) of cases required intensive care unit admission. CONCLUSIONS The pediatric clinical picture of COVID-19 is not simply a classic respiratory infection, but unusual presentations have been reported. Given the high incidence of household transmission and atypical clinical presentation in children, we strongly recommend their inclusion in research and population-based preventive measures like vaccination as well as clinical trials to ensure efficacy, safety, and tolerability in this age group.
Collapse
Affiliation(s)
- Fardis Vosoughi
- Department of Orthopedics and Trauma Surgery, Shariati Hospital, and, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
| | - Rangarirai Makuku
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran
| | - Marcarious M Tantuoyir
- Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran. .,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana.
| | - Farbod Yousefi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanam Alilou
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronald LaPorte
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Curtis Tilves
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohammad Hossein Nabian
- Department of Orthopedics and Trauma Surgery, Shariati Hospital, and, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Center for Orthopedic Trans-Disciplinary Applied Research (COTAR), Tehran University of Medical Sciences, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Poursina Avenue, Tehran, Iran.
| |
Collapse
|
18
|
Shen X, Zhu X, Hu P, Ji T, Qin Y, Zhu J. Knockdown circZNF131 Inhibits Cell Progression and Glycolysis in Gastric Cancer Through miR-186-5p/PFKFB2 Axis. Biochem Genet 2022; 60:1567-1584. [PMID: 35059934 DOI: 10.1007/s10528-021-10165-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Gastric cancer (GC) is a prevalent and heterogeneous malignancy in the digestive system. Increasing studies have suggested that circular RNAs are implicated in GC pathogenesis. This study aimed to explore the biological role and underlying mechanism of circRNA zinc finger protein 131 (circZNF131) in GC. The expression pattern of circZNF131, microRNA-186-5p (miR-186-5p), and 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) mRNA in GC tissues and cells was detected by quantitative real-time polymerase chain reaction. The stability of circZNF131 was verified using ribonuclease R assay. Functional experiments were performed by colony formation assay for cloning ability analysis, transwell assay and wounding healing assay for cell metastasis, and flow cytometry for cell apoptosis. Glycolysis metabolism was investigated by determining the levels of glucose uptake and lactate production. The protein detection of apoptosis- or glycolysis-associated markers, PFKFB2, and Ki-67 was implemented by western blot or immunohistochemistry. Dual-luciferase reporter assay was conducted to identify the interaction between miR-186-5p and circZNF131 or PFKFB2. The role of circZNF131 on tumor growth in nude mice was investigated via xenograft tumor assay. Expression analysis indicated that circZNF131 was upregulated in GC tissues and cells in a stable structure. Functional analyses showed that circZNF131 knockdown suppressed GC cell colony formation ability, migration, invasion and glycolysis metabolism, and induced cell apoptosis. Mechanically, miR-186-5p was a target of circZNF131, and miR-186-5p could bind to PFKFB2. Rescue experiments presented that miR-186-5p inhibition reversed the effects of circZNF131 knockdown on GC cell growth and glycolysis, and PFKFB2 overexpression abolished the impacts of miR-186-5p restoration on GC cell progression. Moreover, circZNF131 could positively modulate PFKFB2 expression via sponging miR-186-5p. In vivo, circZNF131 knockdown hindered GC tumor growth by regulating the miR-186-5p/PFKFB2 axis. circZNF131 could exert an oncogenic role in GC malignant development through the miR-186-5p/PFKFB2 axis, which might provide novel targets for GC treatment.
Collapse
Affiliation(s)
- Xingjie Shen
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China.
| | - Xiaoyan Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Peixin Hu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Tingting Ji
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Ying Qin
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan City, 250013, Shandong Province, China
| |
Collapse
|
19
|
Zhang J, Peng Y, Jiang S, Li J. Hsa_circRNA_0001971 contributes to oral squamous cell carcinoma progression via miR‐186‐5p/Fibronectin type III domain containing 3B axis. J Clin Lab Anal 2022; 36:e24245. [PMID: 35060189 PMCID: PMC8906042 DOI: 10.1002/jcla.24245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) are closely associated with the progression of oral squamous cell carcinoma (OSCC). circRNA_0001971 has been proved to accelerate the OSCC development. Here, we aim to identify the new molecular mechanism of hsa_circRNA_0001971 (circRNA_0001971) in OSCC. Methods The levels of circRNA_0001971, miR‐186‐5p, and fibronectin type III domain containing 3B (FNDC3B) in tissues and cells were verified by qRT‐PCR or Western blotting. The interaction between circRNA_0001971, miR‐186‐5p, and FNDC3B was identified by bioinformatics analysis, luciferase assay, and RIP assay. The effect of circRNA_0001971/miR‐186‐5p/FNDC3B axis on OSCC cell proliferation, migration, and invasion by cell functional experiments including CCK8, wound healing, and transwell assays. Results Our study displayed that circRNA_0001971 and FNDC3B were elevated in OSCC, whereas miR‐186‐5p was declined in OSCC. Silencing circRNA_0001971 attenuated the malignancy of OSCC cells by suppressing proliferation, migration, and invasion. In OSCC cells, circRNA_0001971 sponged miR‐186‐5p to enhance FNDC3B. Due to the interaction between circRNA_0001971, miR‐186‐5p, and FNDC3B, FNDC3B overexpression relieved the negative function of silencing circRNA_0001971 in OSCC cells. Conclusion Overall, our study discovered that circRNA_0001971 was a tumor promoter in OSCC progression by targeting miR‐186‐5p/FNDC3B axis.
Collapse
Affiliation(s)
- Jiehua Zhang
- Department of Stomatology Renmin Hospital of Wuhan University Wuhan China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration Wuhan China
| | - Youjian Peng
- Department of Stomatology Renmin Hospital of Wuhan University Wuhan China
| | - Shengjun Jiang
- Department of Stomatology Renmin Hospital of Wuhan University Wuhan China
| | - Jun Li
- Department of Stomatology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
20
|
CircRNAs as Potential Blood Biomarkers and Key Elements in Regulatory Networks in Gastric Cancer. Int J Mol Sci 2022; 23:ijms23020650. [PMID: 35054834 PMCID: PMC8776217 DOI: 10.3390/ijms23020650] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common type of cancer and the third leading cause of cancer death in the world. It is a disease that encompasses a variety of molecular alterations, including in non-coding RNAs such as circular RNAs (circRNAs). In the present study, we investigated hsa_circ_0000211, hsa_circ_0000284, hsa_circ_0000524, hsa_circ_0001136 and hsa_circ_0004771 expression profiles using RT-qPCR in 71 gastric tissue samples from GC patients (tumor and tumor-adjacent samples) and volunteers without cancer. In order to investigate the suitability of circRNAs as minimally invasive biomarkers, we also evaluated their expression profile through RT-qPCR in peripheral blood samples from patients with and without GC (n = 41). We also investigated the predicted interactions between circRNA-miRNA-mRNA and circRNA-RBP using the KEGG and Reactome databases. Overall, our results showed that hsa_circ_0000211, hsa_circ_0000284 and hsa_circ_0004771 presented equivalent expression profiles when analyzed by different methods (RNA-Seq and RT-qPCR) and different types of samples (tissue and blood). Further, functional enrichment results identified important signaling pathways related to GC. Thus, our data support the consideration of circRNAs as new, minimally invasive biomarkers capable of aiding in the diagnosis of GC and with great potential to be applied in clinical practice.
Collapse
|
21
|
Lakiotaki E, Kanakoglou DS, Pampalou A, Karatrasoglou EA, Piperi C, Korkolopoulou P. Dissecting the Role of Circular RNAs in Sarcomas with Emphasis on Osteosarcomas. Biomedicines 2021; 9:1642. [PMID: 34829872 PMCID: PMC8615931 DOI: 10.3390/biomedicines9111642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNAs generated from exons back-splicing from a single pre-mRNA, forming covalently closed loop structures which lack 5'-3'-polarity or polyadenylated tail. Ongoing research depicts that circRNAs play a pivotal role in tumorigenesis, tumor progression, metastatic potential and chemoresistance by regulating transcription, microRNA (miRNA) sponging, RNA-binding protein interactions, alternative splicing and to a lesser degree, protein coding. Sarcomas are rare malignant tumors stemming from mesenchymal cells. Due to their clinically insidious onset, they often present at advanced stage and their treatment may require aggressive chemotherapeutic or surgical options. This review is mainly focused on the regulatory functions of circRNAs on osteosarcoma progression and their potential role as biomarkers, an area which has prompted lately extensive research. The attributed oncogenic role of circRNAs on other mesenchymal tumors such as Kaposi Sarcoma (KS), Rhabdomyosarcoma (RMS) or Gastrointestinal Stromal Tumors (GISTs) is also described. The involvement of circRNAs on sarcoma oncogenesis and relevant emerging diagnostic, prognostic and therapeutic applications are expected to gain more research interest in the future.
Collapse
Affiliation(s)
- Eleftheria Lakiotaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Dimitrios S. Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Andromachi Pampalou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Eleni A. Karatrasoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (D.S.K.); (A.P.); (E.A.K.); (P.K.)
| |
Collapse
|
22
|
Shi Z, Wang K, Xing Y, Yang X. CircNRIP1 Encapsulated by Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Aggravates Osteosarcoma by Modulating the miR-532-3p/AKT3/PI3K/AKT Axis. Front Oncol 2021; 11:658139. [PMID: 34660257 PMCID: PMC8511523 DOI: 10.3389/fonc.2021.658139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence indicates that extracellular vesicle (EV)-encapsulated circRNAs have the potential diagnostic and prognostic values for malignancies. However, the role of circNRIP1 in osteosarcoma remains unclear. We herein investigated the therapeutic potential of circNRIP1 delivered by bone marrow mesenchymal stem cell–derived EVs (BMSC-EVs) in osteosarcoma. The expression of circNRIP1 was examined in the clinical tissue samples of osteosarcoma patients, after which the downstream genes of circNRIP1 were bioinformatically predicted. Gain- and loss-of function assays were then performed in osteosarcoma cells with manipulation of circNRIP1 and miR-532-3p expression. EVs isolated from BMSCs were characterized and co-cultured with osteosarcoma cells to examine their effects on cell phenotypes, as reflected by CCK-8 and Transwell assays. Further, a mouse model of tumor xenografts was established for in vivo substantiation. circNRIP1 was upregulated in osteosarcoma tissues and cells. Overexpression of circNRIP1 promoted the proliferative, migratory, and invasive potential of osteosarcoma cells. Co-culture data showed that BMSC-EVs could transfer circNRIP1 into osteosarcoma cells where it competitively bound to miR-532-3p and weakened miR-532-3p’s binding ability to AKT3. By this mechanism, the PI3K/AKT signaling pathway was activated and the malignant characteristics of osteosarcoma cells were stimulated. In vivo experimental results unveiled that circNRIP1-overexpressing BMSC-EVs in nude mice resulted in enhanced tumor growth. In conclusion, the BMSC-EV-enclosed circNRIP1 revealed a new molecular mechanism in the pathogenesis of osteosarcoma, which might provide a novel therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Zuowei Shi
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Kaifu Wang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Yufei Xing
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| | - Xuefeng Yang
- Department of Orthopaedics, First Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
D’Ambrosi S, Visser A, Antunes-Ferreira M, Poutsma A, Giannoukakos S, Sol N, Sabrkhany S, Bahce I, Kuijpers MJE, Oude Egbrink MGA, Griffioen AW, Best MG, Koppers-Lalic D, Oudejans C, Würdinger T. The Analysis of Platelet-Derived circRNA Repertoire as Potential Diagnostic Biomarker for Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:4644. [PMID: 34572871 PMCID: PMC8468408 DOI: 10.3390/cancers13184644] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor-educated Platelets (TEPs) have emerged as rich biosources of cancer-related RNA profiles in liquid biopsies applicable for cancer detection. Although human blood platelets have been found to be enriched in circular RNA (circRNA), no studies have investigated the potential of circRNA as platelet-derived biomarkers for cancer. In this proof-of-concept study, we examine whether the circRNA signature of blood platelets can be used as a liquid biopsy biomarker for the detection of non-small cell lung cancer (NSCLC). We analyzed the total RNA, extracted from the platelet samples collected from NSCLC patients and asymptomatic individuals, using RNA sequencing (RNA-Seq). Identification and quantification of known and novel circRNAs were performed using the accurate CircRNA finder suite (ACFS), followed by the differential transcript expression analysis using a modified version of our thromboSeq software. Out of 4732 detected circRNAs, we identified 411 circRNAs that are significantly (p-value < 0.05) differentially expressed between asymptomatic individuals and NSCLC patients. Using the false discovery rate (FDR) of 0.05 as cutoff, we selected the nuclear receptor-interacting protein 1 (NRIP1) circRNA (circNRIP1) as a potential biomarker candidate for further validation by reverse transcription-quantitative PCR (RT-qPCR). This analysis was performed on an independent cohort of platelet samples. The RT-qPCR results confirmed the RNA-Seq data analysis, with significant downregulation of circNRIP1 in platelets derived from NSCLC patients. Our findings suggest that circRNAs found in blood platelets may hold diagnostic biomarkers potential for the detection of NSCLC using liquid biopsies.
Collapse
Affiliation(s)
- Silvia D’Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.D.); (M.A.-F.); (M.G.B.); (D.K.-L.)
| | - Allerdien Visser
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.V.); (A.P.); (C.O.)
| | - Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.D.); (M.A.-F.); (M.G.B.); (D.K.-L.)
| | - Ankie Poutsma
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.V.); (A.P.); (C.O.)
| | - Stavros Giannoukakos
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain;
- Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, 18100 Granada, Spain
| | - Nik Sol
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Department of Neurology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (S.S.); (M.G.A.O.E.)
| | - Idris Bahce
- Department of Pulmonary Diseases, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Mirjam G. A. Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands; (S.S.); (M.G.A.O.E.)
| | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Myron G. Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.D.); (M.A.-F.); (M.G.B.); (D.K.-L.)
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Danijela Koppers-Lalic
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.D.); (M.A.-F.); (M.G.B.); (D.K.-L.)
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Cees Oudejans
- Department of Clinical Chemistry, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.V.); (A.P.); (C.O.)
| | - Thomas Würdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (S.D.); (M.A.-F.); (M.G.B.); (D.K.-L.)
- Brain Tumor Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
24
|
Meng Y, Hao D, Huang Y, Jia S, Zhang J, He X, Liu D, Sun L. Circular RNA circNRIP1 plays oncogenic roles in the progression of osteosarcoma. Mamm Genome 2021; 32:448-456. [PMID: 34245327 DOI: 10.1007/s00335-021-09891-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents. Increasing evidence suggests that aberrant expression of circRNAs is associated with the occurrence and progression of many cancers. Here, we investigated the role of circNRIP1 in osteosarcoma and explored its possible underlying mechanisms. Three pairs of osteosarcoma tissues and adjacent normal tissues were applied to the detection of altered expression of circRNAs through circRNAs microarray. And the level of circNRIP1 expression was elevated in osteosarcoma tissues. Compared with that in adjacent normal tissue, circNRIP1 expression level was obviously elevated in 100 osteosarcoma tissues. Besides, circNRIP1 knockdown inhibited proliferation and migration, promoted apoptosis of osteosarcoma cells. Bioinformatic analysis demonstrated circNRIP1 contributed to FOXC2 expression by sponging miR-199a. Furthermore, METTL3 elevated circNRIP1 expression level via m6A modification. In short, METTL3-induced circNRIP1 exerted an oncogenic role in osteosarcoma by sponging miR-199a, which may provide new ideas for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yibin Meng
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - DingJun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - YunFei Huang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - ShuaiJun Jia
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - JiaNan Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - XiRui He
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Deyin Liu
- Department of Orthopaedic, Hong Hui Hospital, Xi'an Jiaotong University, No 555.Youyi East Road, Xi'an, 710054, China.
| | - Liang Sun
- Department of Orthopaedic, Hong Hui Hospital, Xi'an Jiaotong University, No 555.Youyi East Road, Xi'an, 710054, China.
| |
Collapse
|
25
|
Gao M, Liu L, Yang Y, Li M, Ma Q, Chang Z. LncRNA HCP5 Induces Gastric Cancer Cell Proliferation, Invasion, and EMT Processes Through the miR-186-5p/WNT5A Axis Under Hypoxia. Front Cell Dev Biol 2021; 9:663654. [PMID: 34178988 PMCID: PMC8226141 DOI: 10.3389/fcell.2021.663654] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Objective To experimentally determine the involvement and mechanism of long non-coding RNA (lncRNA) HCP5 in the development of gastric cancer (GC). Methods Detection of HCP5, miR-186-5p, and WNT5A expression in clinical GC tissues and adjacent healthy tissues was performed, followed by Pearson correlation analysis. BGC-823 and AGS cells, with interferences of HCP5, miR-186-5p, and WNT5A, were cultured under hypoxia. MTT, colony formation assay, Caspase-3 activity assay, and transwell assay were applied for the determination of cell proliferation, viability, apoptosis, and invasion, respectively. Expressions of WNT5A and protein markers of epithelial-mesenchymal transition (EMT) in cells were detected by western blotting. And the binding of HCP5 and WNT5A to miR-186-5p was validated using dual-luciferase reporter assay. Results In GC tissues, an increase in HCP5 and WNT5A expressions and a reduction in miR-186-5p expression were found, and the negative correlation between miR-186-5p and HCP5/WNT5A was proven. Subsequently, under hypoxia, an increase in HCP5 and WNT5A expressions and a decrease in miR-186-5p expression in GC cells were confirmed. In addition, in GC cells under hypoxia, the inhibition of HCP5 suppressed cell biological activity and EMT, while the inhibition of miR-186-5p or the overexpression of WNT5A led to the opposite changes. Conclusion An upregulation of WNT5A expression by HCP5 competitively binding to miR-186-5p promotes GC cell development.
Collapse
Affiliation(s)
- Ming Gao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liying Liu
- Department of Medical Record, The First People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yudan Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyi Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingqing Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Chen W, Li Y, Zhong J, Wen G. circ-PRKCI targets miR-1294 and miR-186-5p by downregulating FOXK1 expression to suppress glycolysis in hepatocellular carcinoma. Mol Med Rep 2021; 23:464. [PMID: 33880589 PMCID: PMC8097765 DOI: 10.3892/mmr.2021.12103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/17/2022] Open
Abstract
Numerous human circular RNAs (circRNAs/circ) have been functionally characterized. However, the potential role of circ-protein kinase C iota (PRKCI) in hepatocellular carcinoma (HCC) remains unknown. The effects of each transfection and expression levels of circ-PRKCI, microRNA (miR)-1294, miR-186-5p and forkhead box K1 (FOXK1) in HCC cells were analyzed using reverse transcription-quantitative PCR analysis. The interactions between circ-PRKCI and miR-1294 or miR-186-5p, and miR-1294 or miR-186-5p and FOXK1 were validated using dual luciferase reporter assays. The viability, invasion and migration of HCC cells were determined using Cell Counting Kit-8, Transwell and wound healing assays, respectively. The expression levels of FOXK1, hexokinase-2 (HK2), glucose transporter 1 (GLUT1) and lactate dehydrogenase A (LDHA) in HCC cells were analyzed using western blotting. The levels of glucose and lactic acid in the cultured supernatant were detected using commercially available kits. The results of the present study revealed that miR-1294 and miR-186-5p expression levels were downregulated in the HCC cell line, HCCLM3, and were subsequently downregulated by circ-PRKCI overexpression and upregulated by the knockdown of circ-PRKCI. circ-PRKCI overexpression promoted the viability, invasion and migration of HCCLM3 cells, which was also reversed by the overexpression of miR-1294 and miR-186-5p. In addition, the overexpression of circ-PRKCI upregulated FOXK1 expression levels, while the overexpression of miR-1294 and miR-186-5p downregulated FOXK1 expression levels. Conversely, the knockdown of circ-PRKCI expression downregulated FOXK1 expression levels, while the knockdown of miR-1294 and miR-186-5p upregulated FOXK1 expression levels. Furthermore, circ-PRKCI was identified to target miR-1294 and miR-186-5p, and miR-1294 and miR-186-5p were subsequently found to target FOXK1. The overexpression of circ-PRKCI also increased glucose and lactic acid levels, while the knockdown of FOXK1 decreased glucose and lactic acid levels. The knockdown of circ-PRKCI decreased glucose and lactic acid levels, which were reversed by FOXK1 overexpression. In conclusion, the findings of the present study suggested that circ-PRKCI may promote the viability, invasion and migration of HCC cells by sponging miR-1294 and miR-186-5p to upregulate FOXK1 expression levels.
Collapse
Affiliation(s)
- Wenqi Chen
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuehua Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jing Zhong
- Institute of Clinical Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Gebo Wen
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
27
|
Non-coding RNA in cancer. Essays Biochem 2021; 65:625-639. [PMID: 33860799 PMCID: PMC8564738 DOI: 10.1042/ebc20200032] [Citation(s) in RCA: 356] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
Majority of the human genome is transcribed to RNAs that do not encode proteins. These non-coding RNAs (ncRNAs) play crucial roles in regulating the initiation and progression of various cancers. Given the importance of the ncRNAs, the roles of ncRNAs in cancers have been reviewed elsewhere. Thus, in this review, we mainly focus on the recent studies of the function, regulatory mechanism and therapeutic potential of the ncRNAs including microRNA (miRNA), long ncRNA (lncRNA), circular RNA (circRNA) and PIWI interacting RNA (piRNA), in different type of cancers.
Collapse
|
28
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
29
|
Fang D, Lu G. Expression and role of nuclear receptor-interacting protein 1 (NRIP1) in stomach adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1293. [PMID: 33209873 PMCID: PMC7661897 DOI: 10.21037/atm-20-6197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Nuclear receptor-interacting protein 1 (NRIP1), also named NR140, has been observed differentially express in multiple cancers, but the expression levels and the prognostic role of NRIP1 in stomach adenocarcinoma (STAD) remain unclear. Methods We used the Gene Expression Profiling Interactive Analysis (GEPIA) to analyze the NRIP1 expression levels in STAD, subgroups analysis of expression of NRIP1 via the UALCAN dataset. Further, cBioPortal was used to investigate the aberration type, co-mutations status, and located mutation of NRIP1. Correlated genes, and kinases, microRNA (miRNA), and transcription factor (TF) targets were identified using LinkedOmics. The Kaplan-Meier (K-M) plotter was used to analyze the prognosis of NRIP1 and the significantly correlated genes in STAD. Then, the tumor immune estimation resource (Timer) was used to explore the relation between NRIP1 and the immune cell infiltration, and the role of immune cells in STAD. The Human Protein Atlas (HPA) was used to confirm the NRIP1 protein express in STAD stomach tissue and normal stomach tissue. Results NRIP1 significantly overexpress in STAD, and the NRIP1 expression levels were impacted by clinical features. Overexpression of NRIP1 indicated the poor prognosis of STAD. Functional enrichment analysis showed the NRIP1 mainly enriched in immune response-regulating signaling pathway, cell-substrate adhesion, mRNA processing, and pathway in cancer. Overexpression USP25, SNYJ1 indicated the poor outcome of STAD, but the overexpression of BACH1 indicated protective biomarker. MIR-331 and MIR-132 have important role in STAD. Further, NRIP1 had a significant relation with immune infiltrates and other defined genes that significantly impact immune infiltrates. Immunohistochemical showed NRIP1 protein was higher in STAD than normal sample. Conclusions In this study, we revealed that overexpression of NRIP1 in the STAD sample compared to normal samples, NRIP1 significantly associated with macrophage. The high expression levels of NRIP1 and more macrophage infiltration led to poor prognosis of STAD.
Collapse
Affiliation(s)
- Dalang Fang
- Department of Glandular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Guanming Lu
- Department of Glandular Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|