1
|
Guo L, Zhang P, Zhang M, Liang P, Zhou S. LncRNA AGAP2-AS1 stabilizes ATG9A to promote autophagy in endothelial cells - Implications for burn wound healing. Exp Cell Res 2024; 443:114310. [PMID: 39481796 DOI: 10.1016/j.yexcr.2024.114310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Deep second- or mixed-degree burn lesions are difficult to heal due to the impaired dermis supporting of epidermis renewal and nutrition delivery. Early dermis debridement and preservation speed healing and enhance results, emphasizing the need of knowing processes that promote burn-denatured dermis recovery, notably endothelial cell angiogenesis and autophagy. Integrative bioinformatics investigations identified AGAP2-AS1 as a highly elevated lncRNA in burn tissues. Pearson's correlation study connected AGAP2-AS1 to 112 differently co-expressed protein-coding genes involved in burn healing processes such cell cycle and TGF-beta receptor signaling. Experimental validation showed that heat damage elevated AGAP2-AS1 in HUVECs and HDMECs. Functionally, AGAP2-AS1 overexpression in heat-denatured HUVECs and HDMECs increased cell survival, migration, invasion, and angiogenesis. In addition, AGAP2-AS1 overexpression increased endothelial cell autophagy. Additional investigation showed AGAP2-AS1's association with ATG9A, stabilizing it. Post-heat damage, ATG9A knockdown drastically reduced HUVEC and HDMEC survival, migration, invasion, angiogenesis, and autophagy. More notably, ATG9A knockdown drastically reduced the benefits of AGAP2-AS1 overexpression on endothelial cell functions and autophagy. The positive association between AGAP2-AS1 and ATG9A expression in burn tissue samples highlights their crucial roles in endothelial cell response to heat injury, indicating that targeting this axis may aid burn wound healing. The research found that lncRNA AGAP2-AS1 stabilizes ATG9A and promotes autophagy in endothelial cells. These results imply that targeting the AGAP2-AS1/ATG9A axis may improve angiogenesis and tissue regeneration in burn injuries, revealing burn wound healing molecular pathways.
Collapse
Affiliation(s)
- Le Guo
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pihong Zhang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Minghua Zhang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pengfei Liang
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Situo Zhou
- Department of Burns and Reconstructive Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Ma F, Zhang B, Wang Y, Lou C. Long Non-Coding RNA AGAP2-AS1: A Comprehensive Overview on Its Biological Functions and Clinical Significances in Human Cancers. Molecules 2024; 29:3461. [PMID: 39124865 PMCID: PMC11314102 DOI: 10.3390/molecules29153461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are well known for their oncogenic or anti-oncogenic roles in cancer development. AGAP2-AS1, a new lncRNA, has been extensively demonstrated as an oncogenic lncRNA in various cancers. Abundant experimental results have proved the aberrantly high level of AGAP2-AS1 in a great number of malignancies, such as glioma, colorectal, lung, ovarian, prostate, breast, cholangiocarcinoma, bladder, colon and pancreatic cancers. Importantly, the biological functions of AGAP2-AS1 have been extensively demonstrated. It could promote the proliferation, migration and invasion of cancer cells. Simultaneously, the clinical significances of AGAP2-AS1 were also illustrated. AGAP2-AS1 was exceptionally overexpressed in various cancer tissues. Clinical studies disclosed that the abnormal overexpression of AGAP2-AS1 was tightly connected with overall survival (OS), lymph nodes metastasis (LNM), clinical stage, tumor infiltration, high histological grade (HG), serous subtype and PFI times. However, to date, the biological actions and clinical significances of AGAP2-AS1 have not been systematically reviewed in human cancers. In the present review, the authors overviewed the biological actions, potential mechanisms and clinical features of AGAP2-AS1 according to the previous studies. In summary, AGAP2-AS1, as a vital oncogenic gene, is a promising biomarker and potential target for carcinoma prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Yiqi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (F.M.); (B.Z.)
| | - Chenghua Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (F.M.); (B.Z.)
| |
Collapse
|
3
|
Lu Q, Liang Y, Meng X, Zhao Y, Fan H, Hou S. The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier. Biomolecules 2023; 13:1674. [PMID: 38002356 PMCID: PMC10669616 DOI: 10.3390/biom13111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
4
|
Bukhari I, Khan MR, Hussain MA, Thorne RF, Yu Y, Zhang B, Zheng P, Mi Y. PINTology: A short history of the lncRNA LINC-PINT in different diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1705. [PMID: 35019222 DOI: 10.1002/wrna.1705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
LINC-PINT is a p53-induced long intergenic noncoding transcript that plays a crucial role in many diseases, especially cancer. This long noncoding RNA (lncRNA) gene produces in total 102 (LNCipedia) alternatively spliced variants (LINC-PINT:1 to LINC-PINT:102). The functions of known variants include RNA transcripts, host transcripts for circular RNA (circRNA) generation and as sources for the translation of short peptides. In most human tumors, LINC-PINT is down-regulated where it serves as a tumor suppressor. However, the diversity of its functions in other maladies signifies its general clinical importance. Current LINC-PINT molecular functions include RNA-protein interactions, miRNA sponging and epigenetic modulation with these mechanisms operating in different cellular contexts to exert effects on biological processes ranging from DNA damage responses, cell cycle and growth arrest, senescence, cell migration and invasion, and apoptosis. Genetic polymorphisms in LINC-PINT have also been functionally associated with cancer and other pathologies including the autoimmune diseases pemphigus foliaceus and arthritis. Hence, LINC-PINT shows great potential as a clinical biomarker, especially for the diagnosis and prognosis of cancer. In this review, we explore the current knowledge highlighting the distinctive molecular functions of LINC-PINT in specific cancers and other disease states. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| | - Muhammad Riaz Khan
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie - Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mohammed Amir Hussain
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China.,School of Environmental & Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Yong Yu
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| | - Bingyong Zhang
- Department of Gastroenterology, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Pengyuan Zheng
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Henan Key Laboratory of Helicobacter pylori, Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Gastroenterology, Fifth Affiliated hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Shaheen S, Alshammari E, Mokhtar S, Alshanwani A, Toraih E, Ibrahiem A, Fawzy M, Maher S. PUNISHER rs12318065 C>A transversion: a putative somatic driver mutation for poor prognosis in colon cancer. Biosci Rep 2022; 42:BSR20220465. [PMID: 35670784 PMCID: PMC9245078 DOI: 10.1042/bsr20220465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Colon cancer (CC) remains one of the leading causes of cancer death worldwide. Several mutations/polymorphisms have been implicated in CC development and/or progression. The role of the recently identified variants related to the long non-coding RNAs (lncRNAs) family has not yet been fully uncovered. In this sense, we aimed to explore the association between the lncRNA PUNISHER rs12318065 variant and the CC risk and/or prognosis. METHODS A total of 408 CC (paired 204 cancer/non-cancer) tissues were genotyped using the TaqMan allelic discrimination assay. RESULTS "A" variant was associated with higher susceptibility to develop CC under heterozygote (A/C vs. C/C: OR = 1.39, 95%CI = 1.09-2.17, P=0.002), homozygote (A/A vs. C/C: OR = 2.63, 95%CI = 1.51-4.58, P=0.001), dominant (A/C-A/A vs. C/C: OR = 1.72, 95%CI = 1.15-02.57, P=0.008), and recessive (A/A vs. C/C-A/C: OR = 2.23, 95%CI = 1.34-3.72, P=0.001) models. Patients with metastasis were more likely to harbor A/A and A/C genotypes (16.7% and 14.1%) than 11% with the C/C genotype (P=0.027). Patients harboring C>A somatic mutation were more likely to develop relapse (52.6% vs. 26.5%, P=0.003), have poor survival (57.9% vs. 27.7%, P=0.001), and have shorter disease-free survival (43.2 ± 2.6 months vs. 56.8 ± 1.29 months, P<0.001) and overall survival (49.6 ± 2.4 months vs. 56.6 ± 0.99 months, P<0.001). Multivariate Cox regression analysis showed that patients with distal metastasis and C>A somatic mutation were three times more likely to die. CONCLUSIONS To our knowledge, the present study is the first to identify that the PUNISHER rs12318065 variant could be a novel putative driver of colon cancer and is associated with poor prognosis.
Collapse
Affiliation(s)
- Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Sara H. Mokhtar
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliah R. Alshanwani
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University, School of Medicine, New Orleans, Louisiana, U.S.A
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T. Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Shymaa Ahmed Maher
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
6
|
He T, Yuan C, Zhao C. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) as a novel prognosis indicator and therapeutic target in cancer. Biomed Pharmacother 2021; 143:112127. [PMID: 34474342 DOI: 10.1016/j.biopha.2021.112127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer involves complex etiology factors, multiple stages, and intricate gene mutations. Long non-coding RNAs (lncRNAs) are implicated as molecular mechanisms underlying human genomic activity in various physiologic and pathophysiologic conditions. However, the sophisticated modifications and regulatory processes linking lncRNAs to cancer initiation and progression have not yet been fully explored. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) is an lncRNA that functions as a tumor suppressor gene involved in various tumors and malignant activities. LINC-PINT is downregulated in nasopharyngeal cancer, renal carcinoma, non-small cell lung cancer, glioblastoma, thyroid cancer, retinoblastoma, ovarian cancer, breast cancer, esophageal squamous cell carcinoma, osteosarcoma, melanoma, and gastric cancer. Furthermore, decreased LINC-PINT expression predicts poor prognosis and advanced clinical tumor stages. Together, these studies indicate that LINC-PINT could serve as a diagnostic and prognostic indicator in cancer. The specific lncRNA regulatory mechanism of LINC-PINT may also be a novel target for cancer therapies.
Collapse
Affiliation(s)
- Tiefei He
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Chendong Yuan
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| | - Cansong Zhao
- Department of Vascular Surgery, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang 311800, China.
| |
Collapse
|