1
|
Xie X, Luo C, Wu S, Qiao W, Deng W, Jin L, Lu J, Bu L, Duffau H, Zhang J, Yao Y. Recursive partitioning analysis for survival stratification and early imaging prediction of molecular biomarker in glioma patients. BMC Cancer 2024; 24:818. [PMID: 38982347 PMCID: PMC11232293 DOI: 10.1186/s12885-024-12542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Glioma is the most common primary brain tumor with high mortality and disability rates. Recent studies have highlighted the significant prognostic consequences of subtyping molecular pathological markers using tumor samples, such as IDH, 1p/19q, and TERT. However, the relative importance of individual markers or marker combinations in affecting patient survival remains unclear. Moreover, the high cost and reliance on postoperative tumor samples hinder the widespread use of these molecular markers in clinical practice, particularly during the preoperative period. We aim to identify the most prominent molecular biomarker combination that affects patient survival and develop a preoperative MRI-based predictive model and clinical scoring system for this combination. METHODS A cohort dataset of 2,879 patients was compiled for survival risk stratification. In a subset of 238 patients, recursive partitioning analysis (RPA) was applied to create a survival subgroup framework based on molecular markers. We then collected MRI data and applied Visually Accessible Rembrandt Images (VASARI) features to construct predictive models and clinical scoring systems. RESULTS The RPA delineated four survival groups primarily defined by the status of IDH and TERT mutations. Predictive models incorporating VASARI features and clinical data achieved AUC values of 0.85 for IDH and 0.82 for TERT mutations. Nomogram-based scoring systems were also formulated to facilitate clinical application. CONCLUSIONS The combination of IDH-TERT mutation status alone can identify the most distinct survival differences in glioma patients. The predictive model based on preoperative MRI features, supported by clinical assessments, offers a reliable method for early molecular mutation prediction and constitutes a valuable scoring tool for clinicians in guiding treatment strategies.
Collapse
Affiliation(s)
- Xian Xie
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200052, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200052, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200052, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200052, China
| | - Wanyu Qiao
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Deng
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Jin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200052, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200052, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200052, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200052, China
| | - Linghao Bu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Agustin Fliche, Montpellier, 34295, France
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200052, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200052, China.
| | - Ye Yao
- Department of Biostatistics, School of Public Health & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Konovalov N, Timonin S, Asyutin D, Raevskiy M, Sorokin M, Buzdin A, Kaprovoy S. Transcriptomic Portraits and Molecular Pathway Activation Features of Adult Spinal Intramedullary Astrocytomas. Front Oncol 2022; 12:837570. [PMID: 35387112 PMCID: PMC8978956 DOI: 10.3389/fonc.2022.837570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we report 31 spinal intramedullary astrocytoma (SIA) RNA sequencing (RNA-seq) profiles for 25 adult patients with documented clinical annotations. To our knowledge, this is the first clinically annotated RNA-seq dataset of spinal astrocytomas derived from the intradural intramedullary compartment. We compared these tumor profiles with the previous healthy central nervous system (CNS) RNA-seq data for spinal cord and brain and identified SIA-specific gene sets and molecular pathways. Our findings suggest a trend for SIA-upregulated pathways governing interactions with the immune cells and downregulated pathways for the neuronal functioning in the context of normal CNS activity. In two patient tumor biosamples, we identified diagnostic KIAA1549-BRAF fusion oncogenes, and we also found 16 new SIA-associated fusion transcripts. In addition, we bioinformatically simulated activities of targeted cancer drugs in SIA samples and predicted that several tyrosine kinase inhibitory drugs and thalidomide analogs could be potentially effective as second-line treatment agents to aid in the prevention of SIA recurrence and progression.
Collapse
Affiliation(s)
| | | | | | - Mikhail Raevskiy
- Omicsway Corp., Walnut, CA, United States
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maxim Sorokin
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton Buzdin
- Omicsway Corp., Walnut, CA, United States
- Moscow Institute of Physics and Technology, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Oncobox Ltd., Moscow, Russia
| | | |
Collapse
|
3
|
Gao M, Lin Y, Liu X, Zhao Z, Zhu Z, Zhang H, Ban Y, Bie Y, He X, Sun X, Zhang S. TERT Mutation Is Accompanied by Neutrophil Infiltration and Contributes to Poor Survival in Isocitrate Dehydrogenase Wild-Type Glioma. Front Cell Dev Biol 2021; 9:654407. [PMID: 33996815 PMCID: PMC8119999 DOI: 10.3389/fcell.2021.654407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Mutation of the telomerase reverse transcriptase (TERT) promoter has been demonstrated as an unfavorable prognostic marker in patients with isocitrate dehydrogenase wild-type (IDHwt) glioma. This study aimed to investigate the immune role of TERT promoter mutation status which could improve prognostic prediction in IDHwt. TERT mutation status, IDH mutation, and 1p-19q codeletion status data were obtained from 614 glioma cases from the Cancer Genome Atlas, and 325 cases from the Chinese Glioma Genome Atlas. The same information was obtained from 49 clinical glioma tissues. TERT mutation is preferentially present in glioblastoma and IDH-wt gliomas and is associated with poor prognosis. Moreover, TERT mutation was associated with infiltration of neutrophils and expression of neutrophil chemokines. which might partially contribute to the poor outcome in IDH-wt glioma. Furthermore, patients with IDH-wt glioma did not harbor increased peripheral neutrophils, implying that the infiltrated neutrophil in the tumor environment might due to cytokine chemotaxis. In this study, we hereby propose that TERT mutation might be a molecular driver of the dysfunctional immune microenvironment in IDH-wt glioma. TERT mutation may be a potential immune therapeutic target for optimizing treatment combinations and patient selection for glioma immunotherapy.
Collapse
Affiliation(s)
- Mengqi Gao
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yi Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Chinese Glioma Genome Atlas Network, Beijing, China
| | - Zheng Zhao
- Chinese Glioma Genome Atlas Network, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiyuan Zhu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Division of Neurosurgery, Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongbo Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yunchao Ban
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yanan Bie
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaozheng He
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Functional Neurosurgery, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Musashi-1 Regulates MIF1-Mediated M2 Macrophage Polarization in Promoting Glioblastoma Progression. Cancers (Basel) 2021; 13:cancers13081799. [PMID: 33918794 PMCID: PMC8069545 DOI: 10.3390/cancers13081799] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most lethal type of brain cancer. It is well known that the malignancy of cancers is dependent not only on the oncogenic properties of the tumor cells, but also on the composition of the tumor microenvironment, which includes macrophages of the immune system. The prevalence of M2 type macrophages usually promotes tumor progression as opposed to tumor-suppressing function of M1 type macrophages. In our previous studies, we identified Musashi-1 (MSI1) RNA-binding protein as a principal oncogenic factor in GBM. In this study, in a pursuit of finding secreted factors that may alter tumor microenvironment in GBM, we identified MIF1 cytokine to be positively regulated by MSI1. Moreover, we found that MSI1-mediated MIF1 secretion promotes differentiation of macrophages into pro-oncogenic M2 phenotype. The oncogenic role of MSI1/MIF1/M2 macrophage regulatory axis was also confirmed in GBM mouse models, which makes it a promising target for novel drug discovery. Abstract Glioblastoma (GBM) is the most malignant brain tumor which is characterized by high proliferation and migration capacity. The poor survival rate has been attributed to limitations of the current standard therapies. The search for novel biological targets that can effectively hamper tumor progression remains extremely challenging. Previous studies indicated that tumor-associated macrophages (TAMs) are the abundant elements in the tumor microenvironment that are closely implicated in glioma progression and tumor pathogenesis. M2 type TAMs are immunosuppressive and promote GBM proliferation. RNA-binding protein Musashi-1 (MSI1) has recently been identified as a marker of neural stem/progenitor cells, and its high expression has been shown to correlate with the growth of GBM. Nevertheless, the relationship between MSI1 and TAMs in GBM is still unknown. Thus, in our present study, we aimed to investigate the molecular interplay between MSI1 and TAMs in contributing to GBM tumorigenesis. Our data revealed that the secretion of macrophage inhibitory factor 1 (MIF1) is significantly upregulated by MSI1 overexpression in vitro. Importantly, M2 surface markers of THP-1-derived macrophages were induced by recombinant MIF1 and reduced by using MIF1 inhibitor (S,R)-3-(4-hHydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1). Furthermore, GBM tumor model data suggested that the tumor growth, MIF1 expression and M2 macrophage population were significantly downregulated when MSI1 expression was silenced in vivo. Collectively, our findings identified a novel role of MSI1 in the secretion of MIF1 and the consequent polarization of macrophages into the M2 phenotype in promoting GBM tumor progression.
Collapse
|
5
|
Caponegro MD, Oh K, Madeira MM, Radin D, Sterge N, Tayyab M, Moffitt RA, Tsirka SE. A distinct microglial subset at the tumor-stroma interface of glioma. Glia 2021; 69:1767-1781. [PMID: 33704822 DOI: 10.1002/glia.23991] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
The characterization of the tumor microenvironment (TME) in high grade gliomas (HGG) has generated significant interest in an effort to understand how neoplastic lesions in the central nervous system (CNS) are supported and to devise novel therapeutic targets. The TME of the CNS contains unique and specialized cells, including the resident myeloid cells, microglia. Myeloid involvement in HGG, such as glioblastoma, is associated with poor outcomes. Glioma-associated microglia and infiltrating monocytes/macrophages (GAM) accumulate within the neoplastic lesion where they facilitate tumor growth and drive immunosuppression. However, it has been difficult to differentiate whether microglia and macrophages have similar or distinct roles in pathology, and if the spatial organization of these cells informs outcomes. Here, we characterize the tumor-stroma border and identify peritumoral GAM (PGAM) as a unique subpopulation of GAM. Using data mining and analyses of samples derived from both murine and human sources we show that PGAM exhibit a pro-inflammatory and chemotactic phenotype that is associated with peripheral monocyte recruitment, and decreased overall survival. PGAM act as a unique subset of GAM at the tumor-stroma interface. We define a novel gene signature to identify these cells and suggest that PGAM constitute a cellular target of the TME.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ki Oh
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Daniel Radin
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Sterge
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Maryam Tayyab
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Richard A Moffitt
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Caponegro MD, Moffitt RA, Tsirka SE. Expression of neuropilin-1 is linked to glioma associated microglia and macrophages and correlates with unfavorable prognosis in high grade gliomas. Oncotarget 2018; 9:35655-35665. [PMID: 30479695 PMCID: PMC6235016 DOI: 10.18632/oncotarget.26273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/16/2018] [Indexed: 01/10/2023] Open
Abstract
High grade gliomas, including glioblastoma (GB), are devastating malignancies with very poor prognosis. Over the course of the last decade, there has been a failure to develop new treatments for GB. Reasons for this failure include the lack of validation of novel molecular targets, which are often characterized in animal models and directly transposed to human trials. Here we build on our previous findings, which describe how the multi-functional co-receptor Neuropilin-1 (NRP1) signals through glioma associated microglia/macrophages (GAMS) to promote murine glioma, and investigate NRP1 expression in human glioma. Clinical and gene expression data were obtained via The Cancer Genome Atlas (TCGA), and analyzed using R statistical software. Additionally, CIBERSORT in silico deconvolution was used to determine fractions of immune cell sub-populations within the gene expression datasets. We find that NRP1 expression is correlated with poor prognosis, glioma grade, and associates with the mesenchymal GB subtype. In human GB, NRP1 expression is highly correlated with markers of monocytes/macrophages, as well as genes that contribute to the pro-tumorigenic phenotype of these cells.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Richard A Moffitt
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Coleman N, Ameratunga M, Lopez J. Development of Molecularly Targeted Agents and Immunotherapies in Glioblastoma: A Personalized Approach. Clin Med Insights Oncol 2018; 12:1179554918759079. [PMID: 29511362 PMCID: PMC5833160 DOI: 10.1177/1179554918759079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, precision cancer medicine has driven major advances in the management of advanced solid tumours with the identification and targeting of putative driver aberrations transforming the clinical outcomes across multiple cancer types. Despite pivotal advances in the characterization of genomic landscape of glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. Immunotherapy strategies similarly have had limited success. Multiple deficiencies still exist in our knowledge of this complex disease, and further research is urgently required to overcome these critical issues. This review traces the path undertaken by the different therapeutics assessed in glioblastoma and the impact of precision medicine in this disease. We highlight challenges for precision medicine in glioblastoma, focusing on the issues of tumour heterogeneity, pharmacokinetic-pharmacodynamic optimization and outline the modern hypothesis-testing strategies being undertaken to address these key challenges.
Collapse
Affiliation(s)
- Niamh Coleman
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| | | | - Juanita Lopez
- Drug Development Unit, The Royal Marsden Hospital, London, UK
| |
Collapse
|
8
|
Rahman M, Kresak J, Yang C, Huang J, Hiser W, Kubilis P, Mitchell D. Analysis of immunobiologic markers in primary and recurrent glioblastoma. J Neurooncol 2018; 137:249-257. [PMID: 29302887 DOI: 10.1007/s11060-017-2732-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/26/2017] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) generates a varied immune response and understanding the immune microenvironment may lead to novel immunotherapy treatments modalities. The goal of this study was to evaluate the expression of immunologic markers of potential clinical significance in primary versus recurrent GBM and assess the relationship between these markers and molecular characteristics of GBM. Human GBM samples were evaluated and analyzed with immunohistochemistry for multiple immunobiologic markers (CD3, CD8, FoxP3, CD68, CD163, PD1, PDL1, CTLA4, CD70). Immunoreactivity was analyzed using Aperio software. Degree of strong positive immunoreactivity within the tumor was compared to patient and tumor characteristics including age, gender, MGMT promoter methylation status, and ATRX, p53, and IDH1 mutation status. Additionally, the TCGA database was used to perform similar analysis of these factors in GBM using RNA-seq by expectation-maximization. Using odds ratios, IDH1 mutated GBM had statistically significant decreased expression of CD163 and CD70 and a trend for decreased PD1, CTLA4, and Foxp3. ATRX-mutated GBMs exhibited statistically significant increased CD3 immunoreactivity, while those with p53 mutations were found to have significantly increased CTLA4 immunoreactivity. The odds of having strong CD8 and CD68 reactivity was significantly less in MGMT methylated tumors. No significant difference was identified in any immune marker between the primary and recurrent GBM, nor was a significant change in immunoreactivity identified among age intervals. TCGA analysis corroborated findings related to the differential immune profile of IDH1 mutant, p53 mutant, and MGMT unmethylated tumors. Immunobiologic markers have greater association with the molecular characteristics of the tumor than with primary/recurrent status or age.
Collapse
Affiliation(s)
- Maryam Rahman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA. .,University of Florida Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA.
| | - Jesse Kresak
- Department of Pathology, University of Florida, Gainesville, FL, USA.,University of Florida Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,University of Florida Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,University of Florida Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Wesley Hiser
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Paul Kubilis
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,University of Florida Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Duane Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA.,University of Florida Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Caponegro MD, Miyauchi JT, Tsirka SE. Contributions of immune cell populations in the maintenance, progression, and therapeutic modalities of glioma. AIMS ALLERGY AND IMMUNOLOGY 2018; 2:24-44. [PMID: 32914058 PMCID: PMC7480949 DOI: 10.3934/allergy.2018.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunotherapies are becoming a promising strategy for malignant disease. Selectively directing host immune responses to target cancerous tissue is a milestone of human health care. The roles of the innate and adaptive immune systems in both cancer progression and elimination are now being realized. Defining the immune cell environment and identifying the contributions of each sub-population of these cells has lead to an understanding of the immunotherapeutic processes, and demonstrated the potential of the immune system to drive cancer shrinkage and sustained immunity against disease. Poorly treated diseases, such as high-grade glioma, suffer from lack of therapeutic efficacy and rapid progression. Immunotherapeutic success in other solid malignancies, such as melanoma, now provides the principals for which this treatment paradigm can be adapted for primary brain cancers. The central nervous system is complex, and relative contributions of immune sub-populations to high grade glioma progression are not fully characterized. Here, we summarize recent research in both animal and humans which add to the knowledge base of how innate and adaptive immune cells contribute to glioma progression, and outline work which has demonstrated their potential to elicit anti-tumorigenic responses. Additionally, we highlight Neuropilin 1, a cell surface receptor protein, describe its signaling functions in the context of immunity, and point to its potential to slow glioma progression.
Collapse
Affiliation(s)
- Michael D Caponegro
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jeremy Tetsuo Miyauchi
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, BioMedical Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
10
|
Mu L, Yang C, Gao Q, Long Y, Ge H, DeLeon G, Jin L, Chang YE, Sayour EJ, Ji J, Jiang J, Kubilis PS, Qi J, Gu Y, Wang J, Song Y, Mitchell DA, Lin Z, Huang J. CD4+ and Perivascular Foxp3+ T Cells in Glioma Correlate with Angiogenesis and Tumor Progression. Front Immunol 2017; 8:1451. [PMID: 29163521 PMCID: PMC5673996 DOI: 10.3389/fimmu.2017.01451] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Background Angiogenesis and immune cell infiltration are key features of gliomas and their manipulation of the microenvironment, but their prognostic significance remains indeterminate. We evaluate the interconnection between tumor-infiltrating lymphocyte (TIL) and tumor blood-vasculatures in the context of glioma progression. Methods Paired tumor tissues of 44 patients from three tumor-recurrent groups: diffuse astrocytomas (DA) recurred as DA, DA recurred as glioblastomas (GBM), and GBM recurred as GBM were evaluated by genetic analysis, immunohistochemistry for tumor blood vessel density, TIL subsets, and clinical outcomes. These cells were geographically divided into perivascular and intratumoral TILs. Associations were examined between these TILs, CD34+ tumor blood vessels, and clinical outcomes. To determine key changes in TIL subsets, microarray data of 15-paired tumors from patients who failed antiangiogenic therapy- bevacizumab, and 16-paired tumors from chemo-naïve recurrent GBM were also evaluated and compared. Results Upon recurrence in primary gliomas, similar kinetic changes were found between tumor blood vessels and each TIL subset in all groups, but only CD4+ including Foxp3+ TILs, positively correlated with the density of tumor blood vessels. CD4 was the predominant T cell population based on the expression of gene-transcripts in primary GBMs, and increased activated CD4+ T cells were revealed in Bevacizumab-resistant recurrent tumors (not in chemo-naïve recurrent tumors). Among these TILs, 2/3 of them were found in the perivascular niche; Foxp3+ T cells in these niches not only correlated with the tumor vessels but were also an independent predictor of shortened recurrence-free survival (RFS) (HR = 4.199, 95% CI 1.522–11.584, p = 0.006). Conclusion The minimal intratumoral T cell infiltration and low detection of CD8 transcripts expression in primary GBMs can potentially limit antitumor response. CD4+ and perivascular Foxp3+ TILs associate with tumor angiogenesis and tumor progression in glioma patients. Our results suggest that combining antiangiogenic agents with immunotherapeutic approaches may help improve the antitumor efficacy for patients with malignant gliomas.
Collapse
Affiliation(s)
- Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.,The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Qiang Gao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Long
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Haitao Ge
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Gabriel DeLeon
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Linchun Jin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Yifan Emily Chang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Jingjing Ji
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Jiang
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Paul S Kubilis
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Jiping Qi
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yunhe Gu
- Department of Pathology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jiabin Wang
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Zhiguo Lin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|
12
|
Prognostic role of tumour-infiltrating inflammatory cells in brain tumours: literature review. Curr Opin Neurol 2016; 28:647-58. [PMID: 26402405 DOI: 10.1097/wco.0000000000000251] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Both primary and metastatic brain tumours pose a significant and unmet clinical need. Immune cells infiltrating the tumour have been shown to affect the clinical course of various extracranial tumour types, but there is little knowledge on the role of tumour-infiltrating immune cells in brain tumours. Thus, the aim of this review was to recapitulate the reports on immune infiltrates in brain tumours and their prognostic significance. RECENT FINDINGS Immune infiltrates composed of various lymphocyte subsets and microglia/macrophages are frequently observed in brain tumours; however, their density and prognostic role seem to differ between tumour types. Central nervous system (CNS) metastases, particularly of melanoma, lung cancer and renal cell cancer, commonly show high amounts of tumour-infiltrating lymphocytes and tumour-infiltrating lymphocytes density strongly correlate with patient's overall survival times in patients with CNS metastases. In gliomas and primary CNS lymphomas, some studies also suggest a prognostic role of immune cell infiltration; however, methodological issues such as low sample size and retrospective study designs with heterogeneous patient populations preclude definite conclusions. Meningiomas typically harbour inflammatory infiltrates, but their correlation with the clinical course is unclear because of the lack of studies correlating immune cell infiltrates with outcome parameters. SUMMARY The available literature suggests a relevant role of immune infiltrates in the clinical course of some brain tumour types; however, further studies are required to better understand the interaction of the immune system and CNS neoplasms and to explore therapeutic opportunities with immunotherapies such as vaccines or immune checkpoint modulators.
Collapse
|
13
|
Salacz ME, Kast RE, Saki N, Brüning A, Karpel-Massler G, Halatsch ME. Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen. Onco Targets Ther 2016; 9:2535-45. [PMID: 27175087 PMCID: PMC4854261 DOI: 10.2147/ott.s100407] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs) (monocyte, macrophage, microglia, dendritic cells) that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%-30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic - minocycline, an antihypertensive drug - telmisartan, and a bisphosphonate - zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid - the MTZ Regimen - have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low drug cost. Four core observations support this approach: 1) malignant glioblastoma cells require a reciprocal trophic relationship with nonmalignant macrophages or microglia to thrive; 2) glioblastoma cells secrete MCP-1 to start the cycle, attracting MLCs, which subsequently also secrete MCP-1 perpetuating the recruitment cycle; 3) increasing cytokine levels in the tumor environment generate further immunosuppression and tumor growth; and 4) MTZ regimen may impede MCP-1-driven processes, thereby interfering with glioblastoma growth.
Collapse
Affiliation(s)
- Michael E Salacz
- Department of Internal Medicine, University of Kansas, Kansas City, KS, USA; Department of Neurosurgery, University of Kansas, Kansas City, KS, USA
| | | | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ansgar Brüning
- Molecular Biology Laboratory, University Hospital Munich, Munich, Germany
| | | | | |
Collapse
|
14
|
Eosinophil Infiltrates in Pilocytic Astrocytomas of Children and Young Adults. Can J Neurol Sci 2014; 41:632-7. [DOI: 10.1017/cjn.2014.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractObjectiveEosinophils may affect each stage of tumour development. Many studies have suggested that tumour-associated tissue eosinophilia (TATE) is associated with favourable prognosis in some malignant tumours. However, only a few studies exist on TATE in central nervous system (CNS) tumours. Our recent study exhibited eosinophils in atypical teratoid/rhabdoid tumours (AT/RTs), pediatric malignant CNS tumours with divergent differentiation. This study examines eosinophils in pilocytic astrocytomas (PAs).MethodsThe study included 44 consecutive cases of patients with PAs and no concurrent CNS inflammatory disease.ResultsWe found eosinophils in 19 (43%) of 44 PAs (patient age range, 0.5-72 years). Eosinophils were intratumoural and clearly distinguishable. The density of eosinophils was rare to focally scattered. PAs containing eosinophils were located throughout the CNS. Furthermore, eosinophilic infiltration was identified in 18 (62%) of 29 pediatric (age range, 0.5-18 years) PAs but only 1 (7%) of 15 (p<0.001, significantly less) adult (age range, 20-72 years) PAs. Eosinophilic infiltration showed no significant differences between PAs with and without MRI cystic formation, surgical procedures, or PAs with and without leptomeningeal infiltration. In comparison, eosinophils were absent in 10 pediatric (age range, 0.5-15 years) ependymomas (or anaplastic ependymomas).ConclusionsThese results suggest that eosinophils are common in pediatric PAs but rare in adult PAs. This difference is probably related to the developing immune system and different tumour-specific antigens in children. TATE may play a functional role in the development of pediatric PAs, as well as some other pediatric CNS tumours such as AT/RTs.
Collapse
|