1
|
Lu R, Gregory A, Suryadevara R, Xu Z, Jain D, Morrow JD, Hobbs BD, Yun JH, Lichtblau N, Chase R, Curtis JL, Sauler M, Bartholmai BJ, Silverman EK, Hersh CP, Castaldi PJ, Boueiz A. Lung Transcriptomics Links Emphysema to Barrier Dysfunction and Macrophage Subpopulations. Am J Respir Crit Care Med 2024; 211:75-90. [PMID: 38935868 PMCID: PMC11755365 DOI: 10.1164/rccm.202305-0793oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
RATIONALE While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.
Collapse
Affiliation(s)
- Robin Lu
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Andrew Gregory
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Rahul Suryadevara
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Zhonghui Xu
- Brigham and Women's Hospital Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Dhawal Jain
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
- Bayer US LLC. Pharmaceuticals, Division of Pulmonary Drug Discovery Laboratory, Boston, Massachusetts, United States
| | - Jarrett D Morrow
- Brigham & Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Brian D Hobbs
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
- Massachusetts, United States
| | - Jeong H Yun
- Brigham and Women's Hospital Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Noah Lichtblau
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Robert Chase
- Brigham and Women's Hospital Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Jeffrey L Curtis
- Pulmonary & Critical Care Medicine Section, Ann Arbor, United States
| | - Maor Sauler
- Yale School of Medicine, Pulmonay, Critical Care and Sleep, New Haven, Connecticut, United States
| | | | | | - Craig P Hersh
- Brigham and Women's Hospital, Channing Laboratory, Boston, Massachusetts, United States
| | - Peter J Castaldi
- Brigham and Women's Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
| | - Adel Boueiz
- Brigham and Women\'s Hospital, Channing Division of Network Medicine, Boston, Massachusetts, United States
- Brigham and Women\'s Hospital, Pulmonary and Critical Care Medicine, Boston, Massachusetts, United States;
| |
Collapse
|
2
|
Suresh V, Mohanty V, Avula K, Ghosh A, Singh B, Reddy RK, Parida D, Suryawanshi AR, Raghav SK, Chattopadhyay S, Prasad P, Swain RK, Dash R, Parida A, Syed GH, Senapati S. Quantitative proteomics of hamster lung tissues infected with SARS-CoV-2 reveal host factors having implication in the disease pathogenesis and severity. FASEB J 2021; 35:e21713. [PMID: 34105201 PMCID: PMC8206718 DOI: 10.1096/fj.202100431r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS‐CoV‐2 isolate in a self‐limiting and non‐lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo. Analysis of clinical parameters and tissue samples show the pathophysiological manifestation of SARS‐CoV‐2 infection similar to that reported earlier in COVID‐19 patients and hamsters infected with other isolates. However, diffuse alveolar damage (DAD), a common histopathological feature of human COVID‐19 was only occasionally noticed. The lung‐associated pathological changes were very prominent on the 4th day post‐infection (dpi), mostly resolved by 14 dpi. Here, we carried out the quantitative proteomic analysis of the lung tissues from SARS‐CoV‐2‐infected hamsters on day 4 and day 14 post‐infection. This resulted in the identification of 1585 proteins of which 68 proteins were significantly altered between both the infected groups. Pathway analysis revealed complement and coagulation cascade, platelet activation, ferroptosis, and focal adhesion as the top enriched pathways. In addition, we also identified altered expression of two pulmonary surfactant‐associated proteins (Sftpd and Sftpb), known for their protective role in lung function. Together, these findings will aid in understanding the mechanism(s) involved in SARS‐CoV‐2 pathogenesis and progression of the disease.
Collapse
Affiliation(s)
- Voddu Suresh
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | | | - Kiran Avula
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Arup Ghosh
- Institute of Life Sciences, Bhubaneswar, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Bharati Singh
- Institute of Life Sciences, Bhubaneswar, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | | - Deepti Parida
- Institute of Life Sciences, Bhubaneswar, India.,Regional Centre for Biotechnology, Faridabad, India
| | | | | | | | | | | | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, India
| | - Ajay Parida
- Institute of Life Sciences, Bhubaneswar, India
| | | | | |
Collapse
|
3
|
The Role of Lung Colonization in Connective Tissue Disease-Associated Interstitial Lung Disease. Microorganisms 2021; 9:microorganisms9050932. [PMID: 33925354 PMCID: PMC8146539 DOI: 10.3390/microorganisms9050932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Connective tissue diseases (CTDs) may frequently manifest with interstitial lung disease (ILD), which may severely impair quality and expectation of life. CTD-ILD generally has a chronic clinical course, with possible acute exacerbations. Although several lines of evidence indicate a relevant role of infections in the acute exacerbations of CTD-ILD, little information is available regarding the prevalence of infections in chronic CTD-ILD and their possible role in the clinical course. The aim of the present retrospective study was the identification of lung microbial colonization in broncho-alveolar lavage from patients affected by stable CTD-ILD with radiologically defined lung involvement. We demonstrated that 22.7% of patients with CTD-ILD display microbial colonization by Pseudomonas aeruginosa, Haemophilus influenzae, and non-tuberculous mycobacteria. Moreover, these patients display a major radiologic lung involvement, with higher impairment in lung function tests confirmed in a multivariate logistic regression analysis. Overall, the present study provides new information on lung colonization during CTD-ILD and its possible relationship with lung disease progression and severity.
Collapse
|
4
|
Xu M, Yang W, Wang X, Nayak DK. Lung Secretoglobin Scgb1a1 Influences Alveolar Macrophage-Mediated Inflammation and Immunity. Front Immunol 2020; 11:584310. [PMID: 33117399 PMCID: PMC7558713 DOI: 10.3389/fimmu.2020.584310] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 01/23/2023] Open
Abstract
Alveolar macrophage (AM) is a mononuclear phagocyte key to the defense against respiratory infections. To understand AM’s role in airway disease development, we examined the influence of Secretoglobin family 1a member 1 (SCGB1A1), a pulmonary surfactant protein, on AM development and function. In a murine model, high-throughput RNA-sequencing and gene expression analyses were performed on purified AMs isolated from mice lacking in Scgb1a1 gene and were compared with that from mice expressing the wild type Scgb1a1 at weaning (4 week), puberty (8 week), early adult (12 week), and middle age (40 week). AMs from early adult mice under Scgb1a1 sufficiency demonstrated a total of 37 up-regulated biological pathways compared to that at weaning, from which 30 were directly involved with antigen presentation, anti-viral immunity and inflammation. Importantly, these pathways under Scgb1a1 deficiency were significantly down-regulated compared to that in the age-matched Scgb1a1-sufficient counterparts. Furthermore, AMs from Scgb1a1-deficient mice showed an early activation of inflammatory pathways compared with that from Scgb1a1-sufficient mice. Our in vitro experiments with AM culture established that exogenous supplementation of SCGB1a1 protein significantly reduced AM responses to microbial stimuli where SCGB1a1 was effective in blunting the release of cytokines and chemokines (including IL-1b, IL-6, IL-8, MIP-1a, TNF-a, and MCP-1). Taken together, these findings suggest an important role for Scgb1a1 in shaping the AM-mediated inflammation and immune responses, and in mitigating cytokine surges in the lungs.
Collapse
Affiliation(s)
- Min Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Deepak Kumar Nayak
- Interdisciplinary Oncology, University of Arizona College of Medicine, Phoenix, AZ, United States
| |
Collapse
|
5
|
Capron T, Bourdin A, Perez T, Chanez P. COPD beyond proximal bronchial obstruction: phenotyping and related tools at the bedside. Eur Respir Rev 2019; 28:28/152/190010. [PMID: 31285287 DOI: 10.1183/16000617.0010-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/04/2019] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by nonreversible proximal bronchial obstruction leading to major respiratory disability. However, patient phenotypes better capture the heterogeneously reported complaints and symptoms of COPD. Recent studies provided evidence that classical bronchial obstruction does not properly reflect respiratory disability, and symptoms now form the new paradigm for assessment of disease severity and guidance of therapeutic strategies. The aim of this review was to explore pathways addressing COPD pathogenesis beyond proximal bronchial obstruction and to highlight innovative and promising tools for phenotyping and bedside assessment. Distal small airways imaging allows quantitative characterisation of emphysema and functional air trapping. Micro-computed tomography and parametric response mapping suggest small airways disease precedes emphysema destruction. Small airways can be assessed functionally using nitrogen washout, probing ventilation at conductive or acinar levels, and forced oscillation technique. These tests may better correlate with respiratory symptoms and may well capture bronchodilation effects beyond proximal obstruction.Knowledge of inflammation-based processes has not provided well-identified targets so far, and eosinophils probably play a minor role. Adaptative immunity or specific small airways secretory protein may provide new therapeutic targets. Pulmonary vasculature is involved in emphysema through capillary loss, microvascular lesions or hypoxia-induced remodelling, thereby impacting respiratory disability.
Collapse
Affiliation(s)
- Thibaut Capron
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France
| | - Arnaud Bourdin
- Université de Montpellier, PhyMedExp, INSERM, CNRS, CHU de Montpellier, Dept of Respiratory Diseases, Montpellier, France
| | - Thierry Perez
- Dept of Respiratory Diseases, CHU Lille, Center for Infection and Immunity of Lille, INSERM U1019 - CNRS UMR 8204, Université Lille Nord de France, Lille, France
| | - Pascal Chanez
- Clinique des Bronches, Allergies et Sommeil, Hôpital Nord, Assistance Publique des Hôpitaux de Marseille, Aix Marseille Université, Marseille, France .,Aix Marseille Université, INSERM, INRA, CV2N, Marseille, France
| |
Collapse
|
6
|
Zhai J, Insel M, Addison KJ, Stern DA, Pederson W, Dy A, Rojas-Quintero J, Owen CA, Sherrill DL, Morgan W, Wright AL, Halonen M, Martinez FD, Kraft M, Guerra S, Ledford JG. Club Cell Secretory Protein Deficiency Leads to Altered Lung Function. Am J Respir Crit Care Med 2019; 199:302-312. [PMID: 30543455 PMCID: PMC6363971 DOI: 10.1164/rccm.201807-1345oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/07/2018] [Indexed: 01/27/2023] Open
Abstract
RATIONALE CC16 (club cell secretory protein-16), a member of the secretoglobin family, is one of the most abundant proteins in normal airway secretions and has been described as a serum biomarker for obstructive lung diseases. OBJECTIVES To determine whether low CC16 is a marker for airway pathology or is implicated in the pathophysiology of progressive airway damage in these conditions. METHODS Using human data from the birth cohort of the Tucson Children's Respiratory Study, we examined the relation of circulating CC16 levels with pulmonary function and responses to bronchial methacholine challenge from childhood up to age 32 years. In wild-type and CC16-/- mice, we set out to comprehensively examine pulmonary physiology, inflammation, and remodeling in the naive airway. MEASUREMENTS AND MAIN RESULTS We observed that Tucson Children's Respiratory Study participants in the lowest tertile of serum CC16 had significant deficits in their lung function and enhanced airway hyperresponsiveness to methacholine challenge from 11 years throughout young adult life. Similarly, CC16-/- mice had significant deficits in lung function and enhanced airway hyperresponsiveness to methacholine as compared with wild-type mice, which were independent of inflammation and mucin production. As compared with wild-type mice, CC16-/- mice had significantly elevated gene expression of procollagen type I, procollagen type III, and α-smooth muscle actin, areas of pronounced collagen deposition and significantly enhanced smooth muscle thickness. CONCLUSIONS Our findings support clinical observations by providing evidence that lack of CC16 in the lung results in dramatically altered pulmonary function and structural alterations consistent with enhanced remodeling.
Collapse
Affiliation(s)
- Jing Zhai
- Asthma and Airway Disease Research Center
| | | | | | | | | | | | | | - Caroline A. Owen
- Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | - Monica Kraft
- Asthma and Airway Disease Research Center
- Department of Medicine, and
| | - Stefano Guerra
- Asthma and Airway Disease Research Center
- Department of Medicine, and
- ISGlobal, Barcelona, Spain
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center
- Department of Medicine, and
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Das T, Das MC, Das A, Bhowmik S, Sandhu P, Akhter Y, Bhattacharjee S, De UC. Modulation of S. aureus and P. aeruginosa biofilm: an in vitro study with new coumarin derivatives. World J Microbiol Biotechnol 2018; 34:170. [PMID: 30406882 DOI: 10.1007/s11274-018-2545-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/20/2018] [Indexed: 02/07/2023]
Abstract
Coumarin is an important heterocyclic molecular framework of bioactive molecules against broad spectrum pathological manifestations. In the present study 18 new coumarin derivatives (CDs) were synthesized and characterized for antibiofilm activity against two model bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. It was observed that all the CDs executed significant effect in moderating activities against both planktonic and biofilm forms of these selected bacteria. Hence, to interpret the underlying probable reason of such antibiofilm effect, in-silico binding study of CDs with biofilm and motility associated proteins of these organisms were performed. All CDs have shown their propensity for occupying the native substrate binding pocket of each protein with moderate to strong binding affinities. One of the CDs such as CAMN1 showed highest binding affinity with these proteins. Interestingly, the findings of in-silico studies coincides the experimental results of antibiofilm and motility affect of CDs against both S. aureus and P. aeruginosa. Moreover, in-silico studies suggested that the antibiofilm activity of test CDs may be due to the interference of biofilm and motility associated proteins of the selected model organisms (PilT from P. aeruginosa and TarK, TarO from S. aureus). The detailed synthesis, characterization, methodology and results of biological screening along with computational studies have been reported. This study could be of greater interest in the context of the development of new anti-bacterial agent in the future.
Collapse
Affiliation(s)
- Tapas Das
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Manash C Das
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Antu Das
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Sukhen Bhowmik
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Padmani Sandhu
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| | - Yusuf Akhter
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Shahpur, District-Kangra, Himachal Pradesh, 176206, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India.
| | - Utpal Ch De
- Department of Chemistry, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
8
|
Antibacterial Effects of Leaf Extract of Nandina domestica and the Underlined Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8298151. [PMID: 29576801 PMCID: PMC5822912 DOI: 10.1155/2018/8298151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
Aim The study was conducted to investigate the antibacterial and antiasthmatic effects of Nandina domestica leaf extract, to find out its active components, and to assess its safety issue. Methods (1) Solid-phase agar dilution method was used for antibacterial activity test of nandina leaf extract and the change of bacterial morphology after treatment was observed under the transmission microscope; (2) guinea pig model of asthma was used to test the asthma prevention effect of nandina leaf extract; (3) alkaloids and flavones were separated from nandina leaf extract and were further analyzed with HPLC-MS; (4) mice model was used to assessment of the safety issue of nandina leaf extract. Results (1) Nandina leaf extract inhibited the growth of bacteria and destroyed bacterial membrane; (2) nandina leaf extract alleviated animal allergy and asthma; (3) the components reextracted by ethyl acetate were active, in which alkaloids inhibited Gram-positive bacteria and prevented asthma and flavones inhibited Gram-negative bacteria; (4) nandina leaf extract had no toxic effect on mice. Conclusion Nandina leaves inhibit bacterial growth and prevent asthma through alkaloids and flavones, which had integrated function against chronic bronchitis. This study provided theoretical basement for producing new Chinese medicine against chronic bronchitis.
Collapse
|
9
|
Advanced Role of Neutrophils in Common Respiratory Diseases. J Immunol Res 2017; 2017:6710278. [PMID: 28589151 PMCID: PMC5447318 DOI: 10.1155/2017/6710278] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD), pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis) in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.
Collapse
|