1
|
Zhou H, Zhang Q, Liu C, Fan J, Huang W, Li N, Yang M, Wang H, Xie W, Kong H. NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis. Int J Mol Med 2024; 53:25. [PMID: 38240085 PMCID: PMC10836498 DOI: 10.3892/ijmm.2024.5349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenyang Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiahao Fan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
2
|
Mižíková I, Lesage F, Cyr-Depauw C, Cook DP, Hurskainen M, Hänninen SM, Vadivel A, Bardin P, Zhong S, Carpén O, Vanderhyden BC, Thébaud B. Single-Cell RNA Sequencing-Based Characterization of Resident Lung Mesenchymal Stromal Cells in Bronchopulmonary Dysplasia. Stem Cells 2022; 40:479-492. [PMID: 35445270 PMCID: PMC9199848 DOI: 10.1093/stmcls/sxab023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023]
Abstract
Late lung development is a period of alveolar and microvascular formation, which is pivotal in ensuring sufficient and effective gas exchange. Defects in late lung development manifest in premature infants as a chronic lung disease named bronchopulmonary dysplasia (BPD). Numerous studies demonstrated the therapeutic properties of exogenous bone marrow and umbilical cord-derived mesenchymal stromal cells (MSCs) in experimental BPD. However, very little is known regarding the regenerative capacity of resident lung MSCs (L-MSCs) during normal development and in BPD. In this study we aimed to characterize the L-MSC population in homeostasis and upon injury. We used single-cell RNA sequencing (scRNA-seq) to profile in situ Ly6a+ L-MSCs in the lungs of normal and O2-exposed neonatal mice (a well-established model to mimic BPD) at 3 developmental timepoints (postnatal days 3, 7, and 14). Hyperoxia exposure increased the number and altered the expression profile of L-MSCs, particularly by increasing the expression of multiple pro-inflammatory, pro-fibrotic, and anti-angiogenic genes. In order to identify potential changes induced in the L-MSCs transcriptome by storage and culture, we profiled 15 000 Ly6a+ L-MSCs after in vitro culture. We observed great differences in expression profiles of in situ and cultured L-MSCs, particularly those derived from healthy lungs. Additionally, we have identified the location of Ly6a+/Col14a1+ L-MSCs in the developing lung and propose Serpinf1 as a novel, culture-stable marker of L-MSCs. Finally, cell communication analysis suggests inflammatory signals from immune and endothelial cells as main drivers of hyperoxia-induced changes in L-MSCs transcriptome.
Collapse
Affiliation(s)
- Ivana Mižíková
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Flore Lesage
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chanele Cyr-Depauw
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Maria Hurskainen
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Division of Pediatric Cardiology, New Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland,Pediatric Research Center, New Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Satu M Hänninen
- Precision Cancer Pathology, Department of Pathology and Research Program in Systems Oncology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Arul Vadivel
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pauline Bardin
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Shumei Zhong
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Olli Carpén
- Precision Cancer Pathology, Department of Pathology and Research Program in Systems Oncology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, ON, Canada
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Department of Pediatrics, Children’s Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada,Corresponding author: Bernard Thébaud, Ottawa Hospital Research Institute, 501 Smyth Box 511, Ottawa, ON K1H 8L6.
| |
Collapse
|
3
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
4
|
Li A, Liu Y, Zhu X, Sun X, Feng X, Li D, Zhang J, Zhu M, Zhao Z. Methylallyl sulfone attenuates inflammation, oxidative stress and lung injury induced by cigarette smoke extract in mice and RAW264.7 cells. Int Immunopharmacol 2018; 59:369-374. [PMID: 29689496 DOI: 10.1016/j.intimp.2018.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/13/2018] [Indexed: 12/28/2022]
Abstract
In this study, we revealed that methylallyl sulfone (AMSO2), the metabolite of active organosulfur compounds, had anti-inflammatory and antioxidant effect in a cigarette smoke extract (CSE)-induced lung injury model. Firstly, histological analysis showed that the CSE group exhibited lung injury compared with the control, which was alleviated by AMSO2. Secondly, we estimated its anti-inflammatory capacity. The results indicated that pretreatment with AMSO2 significantly decreased CSE-elevated tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in serum. Thirdly, AMSO2 also showed antioxidant properties through enhancing activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) as well as reducing the level of malondialdehyde (MDA) and myeloperoxidase (MPO). Finally, we elucidated that AMSO2 alleviated inflammation and oxidative stress probably via suppressing ERK/p38 MAPK and inhibiting NF-κB expressions. In conclusion, we proposed that AMSO2 protected against the development of CSE-induced lung injury by reducing inflammatory cytokine levels and augmenting antioxidant activity via ERK/p38 MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Ang Li
- Institute of Pharmaceutics, Medicine School, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China
| | - Yan Liu
- Institute of Pharmaceutics, Medicine School, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China
| | - Xiaosong Zhu
- Institute of Pharmaceutics, Medicine School, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China
| | - Xiao Sun
- Institute of Pharmaceutics, Medicine School, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China
| | - Xiuli Feng
- Institute of Pharmaceutics, Medicine School, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China
| | - Dawei Li
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Freda Pharmaceutical Group Co., Ltd., 888 Xinluo Street, Jinan 250101, Shandong, China
| | - Jiangqiang Zhang
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Freda Pharmaceutical Group Co., Ltd., 888 Xinluo Street, Jinan 250101, Shandong, China
| | - Meihua Zhu
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Freda Pharmaceutical Group Co., Ltd., 888 Xinluo Street, Jinan 250101, Shandong, China
| | - Zhongxi Zhao
- Institute of Pharmaceutics, Medicine School, Shandong University, 44 West Wenhua Road, Jinan 250012, Shandong, China; Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, Shandong, China; Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Freda Pharmaceutical Group Co., Ltd., 888 Xinluo Street, Jinan 250101, Shandong, China.
| |
Collapse
|
5
|
Guo Y, Shi G, Wan H, Zhou M. Hedgehog signaling regulates the expression levels of inflammatory mediators in cigarette‑induced airway inflammation. Mol Med Rep 2018; 17:8557-8563. [PMID: 29658573 DOI: 10.3892/mmr.2018.8861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/27/2018] [Indexed: 11/05/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a persistent airway inflammation influenced by cigarette smoke. Previous studies have reported that Hedgehog (Hh) signaling is aberrantly activated by cigarette smoke and dysregulated in COPD. The present study explored the role of the Hh signaling pathway on the expression levels of certain inflammatory mediators in cigarette‑induced airway inflammation. Herein, a total of three A549 cell populations were generated: The A0 group as control cells, the A1 group cells treated with nicotine at a concentration of 10 µM for 12, 24 and 48 h, and the A2 group cultured simultaneously with nicotine and cyclopamine for the same duration. The total concentrations of the inflammatory mediators interleukin‑6 (IL‑6), IL‑8 and tumor necrosis factor (TNF)‑α, and an anti‑inflammatory cytokine, IL‑10, were assessed in all of the cells by ELISA and western blotting. The protein levels of sonic hedgehog (Shh), glioma‑associated oncoprotein 1 (Gli1) and Smoothened (Smo) in nicotine‑induced Hh signaling were also detected. The results indicated that A549 had increased levels of IL‑6, IL‑8 and TNF‑α when cultured with nicotine when compared with the control cells. By contrast, the expression levels of these inflammatory mediators decreased with varying degrees when treated with cyclopamine that blocked the Hh signaling pathway. The IL‑10 expression levels exhibited the reverse. The expressions of the Shh, Gli1 and Smo proteins were higher in the A1 group when compared with the control and decreased with cyclpoamine treatment. In conclusion, the Hh signaling pathway may partly have an impact on cigarette‑induced airway inflammation via the regulation of inflammatory mediators. Thus, blocking Hh signaling and diminishing the airway inflammation reaction may serve as a potential therapy for COPD.
Collapse
Affiliation(s)
- Yi Guo
- Department of Pulmonary and Critical Care Medicine, Shanghai Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Huanying Wan
- Department of Pulmonary and Critical Care Medicine, Shanghai Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
6
|
Liu Y, Li A, Feng X, Sun X, Zhu X, Zhao Z. Pharmacological Investigation of the Anti-Inflammation and Anti-Oxidation Activities of Diallyl Disulfide in a Rat Emphysema Model Induced by Cigarette Smoke Extract. Nutrients 2018; 10:E79. [PMID: 29329251 PMCID: PMC5793307 DOI: 10.3390/nu10010079] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/15/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
Diallyl disulfide (DADS) is the main organosulfur ingredient in garlic, with known antioxidant and anti-inflammatory activities. The aim of the present study was to investigate the effect of DADS on reducing the inflammation and redox imbalance in a rat emphysema model that was induced by intraperitoneal injection of cigarette smoke extract (CSE). Briefly, DADS exerted an anti-inflammation effect on emphysema rats through decreasing cell influx in the bronchoalveolar lavage fluid (BALF) and suppressing pro-inflammation cytokine production including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) via inhibiting the NF-κB pathway. In addition, levels of oxidative stress markers including malondialdehyde (MDA) and myeloperoxidase (MPO) were reduced, while the activities of glutathione (GSH), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) were markedly enhanced by DADS. Moreover, MMP-9 and TIMP-1 expression were down-regulated by DADS. Furthermore, the regulation effects of DADS on CD4⁺ and CD8⁺ T cells were observed. In conclusion, these encouraging findings suggest that DADS could be considered as a promising anti-inflammation and antioxidative agent for the treatment of emphysema.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Ang Li
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiuli Feng
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiao Sun
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, China.
- Shandong Engineering & Technology Research Center for Jujube Food and Drug, 44 West Wenhua Road, Jinan 250012, China.
- Shandong Provincial Key Laboratory of Mucosal and Transdermal Drug Delivery Technologies, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Jinan 250101, China.
| |
Collapse
|
7
|
Liu Y, Li A, Feng X, Jiang X, Sun X, Huang W, Zhu X, Zhao Z. l-Menthol alleviates cigarette smoke extract induced lung injury in rats by inhibiting oxidative stress and inflammation via nuclear factor kappa B, p38 MAPK and Nrf2 signalling pathways. RSC Adv 2018; 8:9353-9363. [PMID: 35541889 PMCID: PMC9078689 DOI: 10.1039/c8ra00160j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 02/27/2018] [Indexed: 11/21/2022] Open
Abstract
l-Menthol is the main ingredient of peppermint which affects various pharmacological effects such as anti-inflammation and anti-oxidative activity.
Collapse
Affiliation(s)
- Yan Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Ang Li
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Xiuli Feng
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Xiaoyan Jiang
- Department of Clinical Pharmacy
- Qilu Hospital
- Shandong University
- Jinan
- China
| | - Xiao Sun
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Weizhen Huang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Xiaosong Zhu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- China
- Shandong Engineering & Technology Research Center for Jujube Food and Drug
| |
Collapse
|