1
|
Han KI, Yeo Y, Jo HJ, Jo MJ, Park Y, Park TS, Jung SJ, Bae JH, Jang SH, Choi J, Park DW, Kim TH. Abnormal Brain Functional Connectivity in Patients with Chronic Obstructive Pulmonary Disease and Correlations with Clinical and Cognitive Parameters. Int J Chron Obstruct Pulmon Dis 2025; 20:971-985. [PMID: 40207024 PMCID: PMC11980928 DOI: 10.2147/copd.s505271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Background Cognitive impairment is a major comorbidity of chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are not fully understood. In this study, we used resting-state functional magnetic resonance imaging to investigate brain functional connectivity (FC) abnormalities in patients with COPD and explored the correlation between abnormal FC and COPD-related clinical parameters. Methods Forty-one patients with COPD, without a definite diagnosis of cognitive impairment or depression, and 30 age- and sex-matched controls were recruited. A total of 184 resting-state functional connectivity (RSFC) maps were generated for all seed points. Welch's t-test was used to assess differences in RSFC between the COPD and control groups, and the correlation coefficients between RSFC and clinical parameters were calculated. Results Patients with COPD had lower scores on the Mini-Mental State Exam (MMSE) and Korean version of the Montreal Cognitive Assessment and higher scores on the Beck Depression Inventory than the control group. Additionally, patients with COPD showed decreased RSFC in the left middle-posterior cingulate cortex, left posterior-dorsal cingulate cortex, and right superior occipital gyrus and increased RSFC in the left superior temporal sulcus, left posterior transverse collateral sulcus, right occipital pole, and right precentral gyrus. The regions showing differences in FC correlated with MMSE score, COPD symptom assessment scales, such as the COPD Assessment Test and modified Medical Research Council Dyspnea Scale, and pulmonary function parameters, including forced expiratory volume in one second and forced vital capacity. Conclusion Patients with COPD showed significant differences in FC within specific brain regions that correlated with symptoms, cognition, and lung function.
Collapse
Affiliation(s)
- Kyung-Il Han
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea
| | - Yoomi Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Hang Joon Jo
- Department of Physiology, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Engineering, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Min Ju Jo
- Department of Internal Medicine, Myongji St. Mary’s Hospital, Seoul, Korea
| | - Yeonkyung Park
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Tai Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Sung Jun Jung
- Department of Physiology, Hanyang University College of Medicine, Seoul, Korea
- Department of Biomedical Engineering, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jin Ho Bae
- Department of Biomedical Engineering, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sung-Ho Jang
- Department of Rehabilitation, College of Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Joonho Choi
- Department of Psychiatry, College of Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Dong Woo Park
- Department of Radiology, College of Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Tae-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
He M, Liu Y, Guan Z, Li C, Zhang Z. Neuroimaging insights into lung disease-related brain changes: from structure to function. Front Aging Neurosci 2025; 17:1550319. [PMID: 40051465 PMCID: PMC11882867 DOI: 10.3389/fnagi.2025.1550319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025] Open
Abstract
Lung diseases induce changes in brain structure and function, leading to a range of cognitive, emotional, and motor deficits. The concept of the lung-brain axis has been proposed through neuroanatomy, endocrine, and immune pathway, while a considerable number of studies also explored the existence of the lung-brain axis from a neuroimaging perspective. This survey summarizes studies exploring the relationship between lung disease and brain structure and function from neuroimaging perspective, particular in magnetic resonance imaging (MRI). We have collated existing lung diseases studies and categorized them into four types: chronic obstructive pulmonary disease (COPD), coronavirus disease 2019 (COVID-19), lung cancer and other lung diseases. The observed structural and functional changes in the brain and cognitive dysfunction induced by lung diseases are discussed. We also present distinct pattern of brain changes in various lung diseases. Neuroimaging changes in COPD are concentrated in the frontal lobes, including gray matter atrophy, white matter damage, and reduced perfusion. Patients with COVID-19 exhibit extensive microhemorrhages and neuroinflammation, brain regions functionally connected to the primary olfactory cortex show greater changes. For lung cancer patients, brain changes are mainly attributed to the neurotoxicity of radiotherapy and chemotherapy, with damage concentrated in subcortical structures, patients with cancer pain demonstrate hyperconnectivity in motor and visual networks. The survey also discusses the pathological mechanisms revealed in neuroimaging studies and clinical significance of current studies. Finally, we analyzed current limitations, mainly in terms of small sample size, non-standardized criteria, reliance on correlation analyses, lack of longitudinal studies, and absence of reliable biomarkers. We suggest future research directions should include leveraging artificial intelligence for biomarker development, conducting longitudinal and multicenter studies, and investigating the systemic effects of lung disease on the brain and neuromodulation strategies.
Collapse
Affiliation(s)
- Miao He
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yubo Liu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhongtian Guan
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhixi Zhang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Yorita A, Kawayama T, Inoue M, Kinoshita T, Oda H, Tokunaga Y, Tateishi T, Shoji Y, Uchimura N, Abe T, Hoshino T, Taniwaki T. Altered Functional Connectivity during Mild Transient Respiratory Impairment Induced by a Resistive Load. J Clin Med 2024; 13:2556. [PMID: 38731091 PMCID: PMC11084533 DOI: 10.3390/jcm13092556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Previous neuroimaging studies have identified brain regions related to respiratory motor control and perception. However, little is known about the resting-state functional connectivity (FC) associated with respiratory impairment. We aimed to determine the FC involved in mild respiratory impairment without altering transcutaneous oxygen saturation. Methods: We obtained resting-state functional magnetic resonance imaging data from 36 healthy volunteers during normal respiration and mild respiratory impairment induced by resistive load (effort breathing). ROI-to-ROI and seed-to-voxel analyses were performed using Statistical Parametric Mapping 12 and the CONN toolbox. Results: Compared to normal respiration, effort breathing activated FCs within and between the sensory perceptual area (postcentral gyrus, anterior insular cortex (AInsula), and anterior cingulate cortex) and visual cortex (the visual occipital, occipital pole (OP), and occipital fusiform gyrus). Graph theoretical analysis showed strong centrality in the visual cortex. A significant positive correlation was observed between the dyspnoea score (modified Borg scale) and FC between the left AInsula and right OP. Conclusions: These results suggested that the FCs within the respiratory sensory area via the network hub may be neural mechanisms underlying effort breathing and modified Borg scale scores. These findings may provide new insights into the visual networks that contribute to mild respiratory impairments.
Collapse
Affiliation(s)
- Akiko Yorita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Tomotaka Kawayama
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Masayuki Inoue
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Takashi Kinoshita
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Hanako Oda
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Tokunaga
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Yoshihisa Shoji
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Naohisa Uchimura
- Cognitive and Molecular Research Institute of Brain Disease, Kurume University, Kurume 830-0011, Japan; (M.I.); (Y.S.); (N.U.)
| | - Toshi Abe
- Department of Radiology, Kurume University School of Medicine, Kurume 830-0011, Japan;
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| | - Takayuki Taniwaki
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; (A.Y.); (T.K.); (T.K.); (H.O.); (Y.T.); (T.T.); (T.H.)
| |
Collapse
|
4
|
Wang M, Wang Y, Wang Z, Ren Q. The Abnormal Alternations of Brain Imaging in Patients with Chronic Obstructive Pulmonary Disease: A Systematic Review. J Alzheimers Dis Rep 2023; 7:901-919. [PMID: 37662615 PMCID: PMC10473125 DOI: 10.3233/adr-220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Cognitive impairment (CI) is an important extrapulmonary complication in patients with chronic obstructive pulmonary disease (COPD). Multimodal Neuroimaging Examination can display changes in brain structure and functions in patients with COPD. Objective The purpose of this systematic review is to provide an overview of the variations in brain imaging in patients with COPD and their potential relationship with CI. Furthermore, we aim to provide new ideas and directions for future research. Methods Literature searches were performed using the electronic databases PubMed, Scopus, and ScienceDirect. All articles published between January 2000 and November 2021 that met the eligibility criteria were included. Results Twenty of the 23 studies focused on changes in brain structure and function. Alterations in the brain's macrostructure are manifested in the bilateral frontal lobe, hippocampus, right temporal lobe, motor cortex, and supplementary motor area. The white matter microstructural changes initially appear in the bilateral frontal subcortical region. Regarding brain function, patients with COPD exhibited reduced frontal cerebral perfusion and abnormal alterations in intrinsic brain activity in the bilateral posterior cingulate cortex, precuneus, right lingual gyrus, and left anterior central gyrus. Currently, there is limited research related to brain networks. Conclusion CI in patients with COPD may present as a type of dementia different from Alzheimer's disease, which tends to manifest as frontal cognitive decline early in the disease. Further studies are required to clarify the neurobiological pathways of CI in patients with COPD from the perspective of brain connectomics based on the whole-brain system in the future.
Collapse
Affiliation(s)
- Mengxue Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, China
| |
Collapse
|
5
|
Peng Z, Zhang HT, Wang G, Zhang J, Qian S, Zhao Y, Zhang R, Wang W. Cerebral neurovascular alterations in stable chronic obstructive pulmonary disease: a preliminary fMRI study. PeerJ 2022; 10:e14249. [PMID: 36405017 PMCID: PMC9671032 DOI: 10.7717/peerj.14249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Cognitive impairment (CI) is very common in patients with chronic obstructive pulmonary disease (COPD). Cerebral structural and functional abnormalities have been reported in cognitively impaired patients with COPD, and the neurovascular coupling changes are rarely investigated. To address this issue, arterial spin labeling (ASL) and resting-state blood oxygenation level dependent (BOLD) fMRI techniques were used to determine whether any neurovascular changes in COPD patients. Methods Forty-five stable COPD patients and forty gender- and age-matched healthy controls were recruited. Furthermore, resting-state BOLD fMRI and ASL were acquired to calculate degree centrality (DC) and cerebral blood flow (CBF) respectively. The CBF-DC coupling and CBF/DC ratio were compared between the two groups. Results COPD patients showed abnormal CBF, DC and CBF/DC ratio in several regions. Moreover, lower CBF/DC ratio in the left lingual gyrus negatively correlated with naming scores, lower CBF/DC ratio in medial frontal cortex/temporal gyrus positively correlated with the Montreal Cognitive Assessment (MoCA), visuospatial/executive and delayed recall scores. Conclusion These findings may provide new potential insights into neuropathogenesis of cognition decline in stable COPD patients.
Collapse
Affiliation(s)
- Zhaohui Peng
- Department of Nuclear Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China,Department of Medical Imaging, Changzheng Hospital, Shanghai, China
| | - Hong Tao Zhang
- Institute of Ophthalmology, Third Medical Center of PLA General Hospital, Beijing, China
| | - Gang Wang
- The Second Community Healthcare Service Center of Zhengzhou Road, Luoyang, Henan, China
| | - Juntao Zhang
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Shaowen Qian
- Department of Medical Imaging, Jinan Military General Hospital, Jinan, China
| | - Yajun Zhao
- Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| | - Ruijie Zhang
- Department of Radiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong Province, China
| | - Wei Wang
- Department of Medical Imaging, Changzheng Hospital, Shanghai, China,Department of Medical Imaging, 71282 Hospital, Baoding, Hebei province, China
| |
Collapse
|
6
|
Choi SI, Kim JB. Altered Brain Networks in Chronic Obstructive Pulmonary Disease: An Electroencephalography Analysis. Clin EEG Neurosci 2022; 53:160-164. [PMID: 34319193 DOI: 10.1177/15500594211035942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Limited data are available regarding brain networks in patients with chronic obstructive pulmonary disease (COPD). Here, we investigated brain networks in COPD using graph theoretical analysis of electroencephalography data. Methods. Thirty-eight patients with COPD and 38 healthy controls underwent scalp electroencephalography. We calculated graph measures including average degree, characteristic path length, global efficiency, local efficiency, clustering coefficient, and modularity and compared them between patients and controls. Results. Average degree, global efficiency, local efficiency, and clustering coefficients were lower, while characteristic path length and modularity were higher in patients with COPD than in controls in the alpha band (P < .05). Significant differences in node degree and global node efficiency between controls and patients were mainly prominent in the medial parieto-central regions in the alpha band. Local efficiency and node clustering coefficients mainly differed in the occipito-parietal regions in the alpha band. We observed no differences in nodal measures in the delta, theta, beta, and gamma bands and no relationships between pulmonary function test parameters and global measures in any frequency bands. Conclusions. The thalamus generates alpha activity and is responsible for controlling respiratory activities to maintain oxygen delivery to tissues in response to chronic hypoxia. We thus speculate that our findings might be related to exposure to chronic hypoxia, implicated in the pathophysiological mechanisms underlying cognitive deficits in patients with COPD. Graph theoretical analysis of resting-state electroencephalography could be considered as a quantitative framework to understand functional networks in COPD.
Collapse
Affiliation(s)
- Sue In Choi
- 1Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Jung Bin Kim
- Department of Neurology, Korea University College of Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| |
Collapse
|
7
|
Recent insights into respiratory modulation of brain activity offer new perspectives on cognition and emotion. Biol Psychol 2022; 170:108316. [PMID: 35292337 PMCID: PMC10155500 DOI: 10.1016/j.biopsycho.2022.108316] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/28/2022]
Abstract
Over the past six years, a rapidly growing number of studies have shown that respiration exerts a significant influence on sensory, affective, and cognitive processes. At the same time, an increasing amount of experimental evidence indicates that this influence occurs via modulation of neural oscillations and their synchronization between brain areas. In this article, we review the relevant findings and discuss whether they might inform our understanding of a variety of disorders that have been associated with abnormal patterns of respiration. We review literature on the role of respiration in chronic obstructive pulmonary disease (COPD), anxiety (panic attacks), and autism spectrum disorder (ASD), and we conclude that the new insights into respiratory modulation of neuronal activity may help understand the relationship between respiratory abnormalities and cognitive and affective deficits.
Collapse
|
8
|
Yu J, Wang W, Peng D, Luo J, Xin H, Yu H, Zhang J, Li L, Li H. Intrinsic low-frequency oscillation changes in multiple-frequency bands in stable patients with chronic obstructive pulmonary disease. Brain Imaging Behav 2020; 15:1922-1933. [PMID: 32880076 DOI: 10.1007/s11682-020-00385-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abnormal local spontaneous brain activity during the resting state has been observed in chronic obstructive pulmonary disease (COPD). However, it is still largely unclear whether the abnormalities are related to specific frequency bands. Our purpose was to explore intrinsic neural activity changes in different frequency bands by using the amplitude of low-frequency fluctuation (ALFF) method in stable COPD patients. Nineteen stable COPD patients and twenty gender-, age- and education-matched normal controls (NCs) underwent functional magnetic resonance imaging scans, cognitive function tests and lung function tests. Two different frequency bands (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz) were calculated and analyzed for frequency-dependent intrinsic neural activity by using the ALFF method. A two-way analysis of variance test was used to compare the main effects of the groups and the frequency bands in the ALFF method. Further post-hoc t-tests were used to compare the differences between COPD patients and NCs in terms of the different frequency bands. A Pearson's correlation analysis was performed to explore the relationship between the altered ALFF brain areas in the different frequency bands and the clinical evaluations in the COPD patients. There were main effects of the groups including significantly higher ALFF values in the right superior temporal gyrus (STG), the bilateral cerebellum posterior lobe (CPL), the right lingual gyrus (LG) and the right brainstem, and as well as significantly decreased ALFF values in the right inferior parietal lobule (IPL) and the angular. The main effect of frequency was demonstrated in the CPL, the STG, the prefrontal cortex and the middle cingulate gyrus. Furthermore, COPD patients exhibited more widespread alterations in intrinsic brain activity in the slow-5 band than in the slow-4 band. Moreover, the abnormal intrinsic brain activity in the slow-4 and slow-5 bands were associated with PaCO2 in COPD patients. These current results indicated that COPD patients showed abnormal intrinsic brain activity in two different frequency bands, and abnormal intrinsic neuronal activity in different brain regions could be better detected by slow-5 band. These observations may provide a neoteric view into understanding the local neural psychopathology in stable COPD patients.
Collapse
Affiliation(s)
- Jingjing Yu
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenjing Wang
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dechang Peng
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Luo
- Department of Respiratory, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huizhen Xin
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Honghui Yu
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Juan Zhang
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Lan Li
- Jiangxi Provincial Institute of Parasitic Diseases Control, No.239, Gaoxin two road, Qingshanhu District, Nanchang, 330096, Jiangxi Province, People's Republic of China.
| | - Haijun Li
- Department of Radiology, Jiangxi Province Medical Imaging Research Institute, the First Affiliated Hospital of Nanchang University, No.17, Yongwai Zheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
9
|
Li S, Lv P, He M, Zhang W, Liu J, Gong Y, Wang T, Gong Q, Ji Y, Lui S. Cerebral regional and network characteristics in asthma patients: a resting-state fMRI study. Front Med 2020; 14:792-801. [PMID: 32270434 DOI: 10.1007/s11684-020-0745-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023]
Abstract
Asthma is a serious health problem that involves not only the respiratory system but also the central nervous system. Previous studies identified either regional or network alterations in patients with asthma, but inconsistent results were obtained. A key question remains unclear: are the regional and neural network deficits related or are they two independent characteristics in asthma? Answering this question is the aim of this study. By collecting resting-state functional magnetic resonance imaging from 39 patients with asthma and 40 matched health controls, brain functional measures including regional activity (amplitude of low-frequency fluctuations) and neural network function (degree centrality (DC) and functional connectivity) were calculated to systematically characterize the functional alterations. Patients exhibited regional abnormities in the left angular gyrus, right precuneus, and inferior temporal gyrus within the default mode network. Network abnormalities involved both the sensorimotor network and visual network with key regions including the superior frontal gyrus and occipital lobes. Altered DC in the lingual gyrus was correlated with the degree of airway obstruction. This study elucidated different patterns of regional and network changes, thereby suggesting that the two parameters reflect different brain characteristics of asthma. These findings provide evidence for further understanding the potential cerebral alterations in the pathophysiology of asthma.
Collapse
Affiliation(s)
- Siyi Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Peilin Lv
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Min He
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jieke Liu
- Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Yao Gong
- Department of Geriatric Psychiatry, The Fourth People's Hospital of Chengdu, Chengdu, 610036, China
| | - Ting Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yulin Ji
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Alterations of grey matter volumes and network-level functions in patients with stable chronic obstructive pulmonary disease. Neurosci Lett 2020; 720:134748. [PMID: 31935432 DOI: 10.1016/j.neulet.2020.134748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate structural and functional alterations of the brain in the patients with stable chronic obstructive pulmonary disorder (COPD) and further investigate how these alterations correlated to parameters of pulmonary function test, cognitive function and disease duration in patients with COPD. METHOD Forty-five patients with stable COPD and forty age- and gender-matched healthy controls were enrolled into this study. Both resting-state fMRI and structural MRI were acquired for each participant. Voxel-based morphology was utilized to analyze alterations of the grey matter volume (GMV), and the seed-based resting-state functional connectivity (FC) was used to evaluate the network-level functional alterations. RESULTS Compared to healthy controls, patients with stable COPD showed decreased GMV in the left supramarginal gyrus/precentral gyrus (SMG/PreCG), bilateral posterior midcingulate cortex (pMCC), right middle occipital gyrus (MOG) and right SMG. Furthermore, COPD patients mainly showed decreased FC within the visual network, frontoparietal network and other brain regions. Subsequent correlational analyses revealed that the decreased FC within visual network, frontoparietal network were positively correlated with the Montreal Cognitive Assessment score, language-domain score, attention-domain score and disease duration in patients with COPD. CONCLUSION Our findings provided evidence that COPD patients showed decreased GMV and regional and network-level functional alterations within the visual network, frontoparietal network and other networks. We speculated that atrophic GMV and FC of visual network and frontoparietal network are involved in the neural mechanism of mild cognitive impairment in stable COPD patients.
Collapse
|