1
|
Wei S, Zhao Z, Zhu G, Lu C, Jiao D, Ye L, Song Y, Jin M, Wang J, Cai H. The Predictive Value of Baseline Spirometry, Age, and Gender for Airway Hyper-Responsiveness in Adults With Suspected Asthma. Respir Care 2025. [PMID: 40028868 DOI: 10.1089/respcare.12039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background: Bronchial provocation test (BPT) plays a crucial role in diagnosing airway hyper-responsiveness (AHR) among patients with asthma-like symptoms. Given that BPT may induce severe bronchospasm, baseline spirometric parameters are expected to help predict a positive outcome, guiding the decision of referring a patient to BPT. Methods: Baseline spirometry and BPT conducted on suspected asthmatics between July 2011 and 2013 at Department of Pulmonary Medicine, Zhongshan Hospital, were retrospectively collected. Baseline characteristics from positive and negative BPT groups were compared. The predictive accuracy of single parameter for AHR was evaluated by plotting receiver operating characteristic curve, and a composite model was developed to improve the accuracy by the logistic regression. The relationships of FEV1/FVC, FEV1 %predicted, and forced expiratory flow at 50% of FVC exhaled (FEF50 %predicted) with the provocation dose causing a 20% fall in FEV1 (PD20-FEV1) were examined. Results: The positive BPT group exhibited reduced FEV1 %predicted, FEV1/FVC, and small airway function parameters compared with the negative group. Among these parameters, FEF50 %predicted, forced expiratory flow at 75% of FVC exhaled (FEF75 %predicted), and forced expiratory flow between 25% and 75% (FEF25-75 %predicted) demonstrated significant accuracy. Notably, females and younger subjects were more prone to a positive outcome. A predictive model that combined FEV1 %predicted (cutoff 98.65%, area under the curve 0.714, sensitivity 39.10%, specificity 88.10%), FEV1/FVC (cutoff 79.22%, area under the curve 0.690, sensitivity 32.80%, specificity 90.50%), and FEF50 %predicted (cutoff 74.45%, area under the curve 0.761, sensitivity 50.50%, specificity 84.60%) with age and gender was found to enhance the accuracy for a positive BPT (area under the curve 0.786, 95% CI 0.758-0.814, sensitivity 52.27%, specificity 86.14%). Moreover, FEV1/FVC, FEF50 %predicted, and FEF25-75 %predicted showed differences among groups with varying AHR levels. The significant correlations between these 3 parameters and PD20-FEV1 were exclusively demonstrated in the severe AHR group. Conclusions: This study revealed that FEV1 %predicted, FEV1/FVC, and FEF50 %predicted along with age and gender were predictors of AHR in subjects with suspected asthma. Their combination improved the predictive accuracy over using FEF50 %predicted alone, thus offering a complement for clinical decision-making regarding referrals to BPT.
Collapse
Affiliation(s)
- Sulan Wei
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhao
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiping Zhu
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chong Lu
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Daozhen Jiao
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ling Ye
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Drs. Ye and Jin are affiliated with Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanlin Song
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiling Jin
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Drs. Ye and Jin are affiliated with Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hui Cai
- Drs. Wei, Zhu, Ye, Song, Jin, Wang, Cai, Mr. Zhao, Lu, and Jiao are affiliated with Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Parwanto E, Tjahyadi D, Sisca S, Amalia H, Hairunisa N, Edy HJ, Oladimeji AV, Djebli N. Low Doses of Kretek Cigarette Smoke Altered Rat Lung Histometric, and Overexpression of the p53 Gene. Open Respir Med J 2024; 18:e18743064285619. [PMID: 39130649 PMCID: PMC11311747 DOI: 10.2174/0118743064285619240327055359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 08/13/2024] Open
Abstract
Background The components of kretek cigarettes include tobacco as the main part, clove, and sauce. Filtered kretek cigarettes are kretek cigarettes that have one end filtered. Cigarette smoke contributes to the disruption of the respiratory system, so it is necessary to know the effect of low doses of cigarette smoke on changes in the histometric of the respiratory system, and whether it affects p53 gene expression. This study aims to determine changes in the histometric of the respiratory system and p53 gene expression. Methods In this study, we used Sprague-Dawley rats. Group I of rats breathing normal air, were not exposed to filtered kretek cigarette smoke (as a control). Group II of rats, as a treatment group, were exposed to filtered kretek cigarette smoke 1 stick/day for 3 months. The results of lung histometry measurements and p53 gene expression between groups were analyzed using the Independent Sample T-test. The difference between groups is significant if the test results show P < 0.05. Results Bronchioles length, width, area, and perimeter in group I were 40.55±1.57 μm, 14.82±0.41 μm, 494.61±5.62 μm2, and 233.87±4.51 μm, respectively. Bronchioles length, width, area, and perimeter in group II were 30.76±0.78 μm, 9.28±0.40 μm, 297.32±2.53 μm2, and 177.84±5.15 μm, respectively. The area and perimeter of respiratory bronchioles in group I were 17.68±0.49 μm2, and 26.60±0.52 μm respectively, while those in group II were 19.28±0.35 μm2, and 29.28±0.35 μm, respectively. Mucus was found in the bronchioles and respiratory bronchioles in group II, however, there was no visible mucus observed in group I. In addition, it was also concluded that exposure to low doses of filtered kretek cigarette smoke, 1 cigarette/day for 3 months, increased the expression of the p53 gene in the lungs of rats. Conclusion The size of bronchioles in rats decreased after being exposed to filtered kretek cigarette smoke 1 stick/day for 3 months, while the size of respiratory bronchioles increased. In addition, exposure to filtered kretek cigarette smoke increased the expression of the p53 gene in the rat lungs.
Collapse
Affiliation(s)
- Edy Parwanto
- Department of Biology, Faculty of Medicine, Universitas Trisakti, Jl. Kyai Tapa, Kampus B, No.260 Grogol 11440, Jakarta, Indonesia
| | - David Tjahyadi
- Department of Histology, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Sisca Sisca
- Department of Biology, Faculty of Medicine, Universitas Trisakti, Jl. Kyai Tapa, Kampus B, No.260 Grogol 11440, Jakarta, Indonesia
| | - Husnun Amalia
- Department of Ophthalmology, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
| | - Nany Hairunisa
- Department of Occupational Medicine, Faculty of Medicine,Universitas Trisakti, Jakarta, Indonesia
| | - Hosea Jaya Edy
- Study Program of Pharmacy, Faculty of Math, and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia
| | | | - Noureddine Djebli
- Department of Biologie, Faculty of Natural and Life Sciences, Abdelhamid Ibn Badis University, Mostaganem, Algeria
| |
Collapse
|
3
|
Martin C, Burgel PR, Roche N. Inhaled Dual Phosphodiesterase 3/4 Inhibitors for the Treatment of Patients with COPD: A Short Review. Int J Chron Obstruct Pulmon Dis 2021; 16:2363-2373. [PMID: 34429594 PMCID: PMC8378910 DOI: 10.2147/copd.s226688] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current pharmacological treatments for chronic obstructive pulmonary disease (COPD) are mostly limited to inhaled bronchodilators and corticosteroids. Azithromycin can contribute to exacerbation prevention. Roflumilast, a phosphodiesterase (PDE) 4 inhibitor administered orally, also prevents exacerbations in selected patients with chronic bronchitis, recurrent exacerbations, severe airflow limitation and concomitant therapy with long-acting inhaled bronchodilators. This outcome likely results from anti-inflammatory effects since PDE4 is expressed by all inflammatory cell types involved in COPD. The use of this agent is, however, limited by side-effects, particularly nausea and diarrhea. To address remaining unmet needs and enrich therapeutic options for patients with COPD, inhaled dual PDE3/4 inhibitors have been developed, with the aim of enhancing bronchodilation through PDE3 inhibition and modulating inflammation and mucus production though PDE4 inhibition, thus producing a potentially synergistic effect on airway calibre. Experimental preclinical data confirmed these effects in vitro and in animal models. At present, RPL554/ensifentrine is the only agent of this family in clinical development. It decreases sputum markers of both neutrophilic and eosinophilic inflammation in patients with COPD. Clinical Phase II trials confirmed its bronchodilator effect and demonstrated clinically meaningful symptom relief and quality of life improvements in these patients. The safety profile appears satisfactory, with less effects on heart rate and blood pressure than salbutamol and no other side effect. Altogether, these data suggest that ensifentrine could have a role in COPD management, especially in addition to inhaled long-acting bronchodilators with or without corticosteroids since experimental studies suggest potentiation of ensifentrine effects by these agents. However, results from ongoing and future Phase III studies are needed to confirm both beneficial effects and favourable safety profile on a larger scale and assess other outcomes including exacerbations, lung function decline, comorbidities and mortality.
Collapse
Affiliation(s)
- Clémence Martin
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Pierre-Régis Burgel
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Nicolas Roche
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| |
Collapse
|
4
|
Bennet TJ, Randhawa A, Hua J, Cheung KC. Airway-On-A-Chip: Designs and Applications for Lung Repair and Disease. Cells 2021; 10:1602. [PMID: 34206722 PMCID: PMC8304815 DOI: 10.3390/cells10071602] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
The lungs are affected by illnesses including asthma, chronic obstructive pulmonary disease, and infections such as influenza and SARS-CoV-2. Physiologically relevant models for respiratory conditions will be essential for new drug development. The composition and structure of the lung extracellular matrix (ECM) plays a major role in the function of the lung tissue and cells. Lung-on-chip models have been developed to address some of the limitations of current two-dimensional in vitro models. In this review, we describe various ECM substitutes utilized for modeling the respiratory system. We explore the application of lung-on-chip models to the study of cigarette smoke and electronic cigarette vapor. We discuss the challenges and opportunities related to model characterization with an emphasis on in situ characterization methods, both established and emerging. We discuss how further advancements in the field, through the incorporation of interstitial cells and ECM, have the potential to provide an effective tool for interrogating lung biology and disease, especially the mechanisms that involve the interstitial elements.
Collapse
Affiliation(s)
- Tanya J. Bennet
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Avineet Randhawa
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jessica Hua
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen C. Cheung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (T.J.B.); (A.R.); (J.H.)
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Electrical & Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
5
|
Barjaktarevic IZ, Milstone AP. Nebulized Therapies in COPD: Past, Present, and the Future. Int J Chron Obstruct Pulmon Dis 2020; 15:1665-1677. [PMID: 32764912 PMCID: PMC7367939 DOI: 10.2147/copd.s252435] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Current guidelines recommend inhalation therapy as the preferred route of drug administration for treating patients with chronic obstructive pulmonary disease (COPD). Inhalation devices consist of nebulizers and handheld inhalers, such as dry-powder inhalers (DPIs), pressurized metered-dose inhalers (pMDIs), and soft mist inhalers (SMIs). Although pMDIs, DPIs and SMIs may be appropriate for most patients with COPD, certain patient populations may have challenges with these devices. Patients who have cognitive, neuromuscular, or ventilatory impairments (and receive limited assistance from caregivers), as well as those with suboptimal peak inspiratory flow may not derive the full benefit from handheld inhalers. A considerable number of patients are not capable of producing a peak inspiratory flow rate to overcome the internal resistance of DPIs. Furthermore, patients may have difficulty coordinating inhalation with device actuation, which is required for pMDIs and SMIs. However, inhalation devices such as spacers and valved holding chambers can be used with pMDIs to increase the efficiency of aerosol delivery. Nebulized treatment provides patients with COPD an alternative administration route that avoids the need for inspiratory flow, manual dexterity, or complex hand-breath coordination. The recent approval of two nebulized long-acting muscarinic antagonists has added to the extensive range of nebulized therapies in COPD. Furthermore, with the availability of quieter and more portable nebulizer devices, nebulization may be a useful treatment option in the management of certain patient populations with COPD. The aim of this narrative review was to highlight recent updates and the treatment landscape in nebulized therapy and COPD. We first discuss the pathophysiology of patients with COPD and inhalation device considerations. Second, we review the updates on recently approved and newly marketed nebulized treatments, nebulized treatments currently in development, and technological advances in nebulizer devices. Finally, we discuss the current applications of nebulized therapy in patients with COPD.
Collapse
Affiliation(s)
- Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
6
|
Long ME, Manicone AM. Loss of C/EBPα in Chronic Cigarette Smoke Exposure: A SAD Day for Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2020; 63:9-10. [PMID: 32176852 PMCID: PMC7328248 DOI: 10.1165/rcmb.2020-0069ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Matthew E Long
- Division of Pulmonary, Critical Care, and Sleep Medicine University of WashingtonSeattle, Washington
| | - Anne M Manicone
- Division of Pulmonary, Critical Care, and Sleep Medicine University of WashingtonSeattle, Washington
| |
Collapse
|
7
|
Li J, Li Y, Lu X, Wang H, Wang Y, Li H, Wu Z. Dynamic Characteristics of Sequential Acute Exacerbations and Risk Windows in AECOPD Rats Induced by Cigarette-Smoke and Exposure to Klebsiella pneumoniae. Biol Pharm Bull 2018; 41:1543-1553. [PMID: 30058599 DOI: 10.1248/bpb.b18-00148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The risk-window (RW) of chronic obstructive pulmonary disease (COPD) is a period after an acute exacerbation (AE) but before the following stable phase, in which exacerbations are easy to relapse. We established a sequential COPD-AE-RW rat model by cigarette-smoke and bacterial exposures in the first 8 weeks, and was challenged with Klebsiella pneumonia to mimic an AE on Day 1 of week 9, and found that body temperature, white blood cell, neutrophils, serum amyloid A (SAA) and C-reactive protein (CRP) increased in AECOPD rats 24 h after challenge, and declined in 3-6 d, while lung function declined in 48 h, and recovered in 7-16 d. When sacrificed, pulmonary forced expiratory volume (FEV)100 and FEV300 decreased, while elevated bronchoalveolar lavage fluid (BALF) neutrophils and marked airway inflammation, remodeling and emphysema were observed. Sequential COPD-AE-RW rat model was established successfully and AE phase lasts for approximately 5-7 d, followed by a 10-d around risk-window.
Collapse
Affiliation(s)
- Jiansheng Li
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM).,Institute for Geriatrics, Henan University of Traditional Chinese Medicine (TCM).,Institute for Respiratory Diseases and the Level Three Laboratory of Respiration Pharmacology of TCM, the First Affiliated Hospital, Henan University of TCM
| | - Ya Li
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM).,Institute for Respiratory Diseases and the Level Three Laboratory of Respiration Pharmacology of TCM, the First Affiliated Hospital, Henan University of TCM.,Central Laboratory, the First Affiliated Hospital, Henan University of TCM
| | - Xiaofan Lu
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM).,Respiratory Department, the Second Clinical Medical College, Henan University of Chinese Medicine
| | - Haifeng Wang
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM).,Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of TCM
| | - Yang Wang
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM).,Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of TCM
| | - Hangjie Li
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM).,Department of Respiratory Diseases, the Chinese Medicine Hospital of Xuchang
| | - Zhaohuan Wu
- Collaborative Innovation Center for Respiratory Diseases Diagnostics, Treatment and New Drug Research and Development of Henan University of Traditional Chinese Medicine (TCM)
| |
Collapse
|
8
|
Calzetta L, Matera MG, Facciolo F, Cazzola M, Rogliani P. Beclomethasone dipropionate and formoterol fumarate synergistically interact in hyperresponsive medium bronchi and small airways. Respir Res 2018; 19:65. [PMID: 29650006 PMCID: PMC5897944 DOI: 10.1186/s12931-018-0770-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/02/2018] [Indexed: 12/15/2022] Open
Abstract
Background Corticosteroids increase the expression of β2-adrenoceptors (β2-ARs) and protect them against down-regulation. Conversely, β2-AR agonists improve the anti-inflammatory action of corticosteroids. Nevertheless, it is still uncertain whether adding a long-acting β2-AR agonist (LABA) to an inhaled corticosteroid (ICS) results in an additive effect, or there is true synergy. Therefore, the aim of this study was to pharmacologically characterize the interaction between the ICS beclomethasone diproprionate (BDP) and the LABA formoterol fumarate (FF) in a validated human ex vivo model of bronchial asthma. Methods Human medium and small airways were stimulated by histamine and treated with different concentrations of BDP and FF, administered alone and in combination at concentration-ratio reproducing ex vivo that of the currently available fixed-dose combination (FDC; BDP/FF 100:6 combination-ratio). Experiments were performed in non-sensitized (NS) and passively sensitized (PS) airways. The pharmacological interaction was assessed by using Bliss Independence and Unified Theory equations. Results BDP/FF synergistically increased the overall bronchorelaxation in NS and PS airways (+ 15.15% ± 4.02%; P < 0.05 vs. additive effect). At low-to-medium concentrations the synergistic interaction was greater in PS than in NS bronchioles (+ 16.68% ± 3.02% and + 7.27% ± 3.05%, respectively). In PS small airways a very strong synergistic interaction (Combination Index: 0.08; + 20.04% ± 2.18% vs. additive effect) was detected for the total concentrations of BDP/FF combination corresponding to 10.6 ng/ml. Conclusion BDP/FF combination synergistically relaxed human bronchi; the extent of such an interaction was very strong at low-to-medium concentrations in PS small airways. Trial registration Not applicable. Electronic supplementary material The online version of this article (10.1186/s12931-018-0770-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luigino Calzetta
- Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Facciolo
- Thoracic Surgery Unit, "Regina Elena" National Cancer Institute, Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
9
|
Braido F, Scichilone N, Lavorini F, Usmani OS, Dubuske L, Boulet LP, Mosges R, Nunes C, Sánchez-Borges M, Ansotegui IJ, Ebisawa M, Levi-Schaffer F, Rosenwasser LJ, Bousquet J, Zuberbier T, Canonica GW. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA 2LEN). Asthma Res Pract 2016; 2:12. [PMID: 27965780 PMCID: PMC5142416 DOI: 10.1186/s40733-016-0027-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy. This article is being co-published in Asthma Research and Practice and the World Allergy Organization Journal.
Collapse
Affiliation(s)
- F Braido
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - N Scichilone
- Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - F Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - O S Usmani
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - L Dubuske
- Immunology Research Institute of New England, Harvard, USA
| | - L P Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - R Mosges
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Cologne, Germany
| | - C Nunes
- Centro de ImmunoAlergologia de Algarve, Porto, Portugal
| | - M Sánchez-Borges
- Centro Medico Docente La Trinidad, Caracas, Venezuela ; Clinica El Avila, Caracas, Venezuela
| | - I J Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Carretera Leioa-Inbe, Erandio, Bilbao, Spain
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergy & Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa Japan
| | - F Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L J Rosenwasser
- University of Missouri - Kansas City, School of Medicine, Kansas City, Missouri USA
| | - J Bousquet
- Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France
| | - T Zuberbier
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G Walter Canonica
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | | | | |
Collapse
|
10
|
Braido F, Scichilone N, Lavorini F, Usmani OS, Dubuske L, Boulet LP, Mosges R, Nunes C, Sanchez-Borges M, Ansotegui IJ, Ebisawa M, Levi-Schaffer F, Rosenwasser LJ, Bousquet J, Zuberbier T, Canonica GW, Cruz A, Yanez A, Yorgancioglu A, Deleanu D, Rodrigo G, Berstein J, Ohta K, Vichyanond P, Pawankar R, Gonzalez-Diaz SN, Nakajima S, Slavyanskaya T, Fink-Wagner A, Loyola CB, Ryan D, Passalacqua G, Celedon J, Ivancevich JC, Dobashi K, Zernotti M, Akdis M, Benjaponpitak S, Bonini S, Burks W, Caraballo L, El-Sayed ZA, Fineman S, Greenberger P, Hossny E, Ortega-Martell JA, Saito H, Tang M, Zhang L. Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an Interasma (Global Asthma Association - GAA) and World Allergy Organization (WAO) document endorsed by Allergic Rhinitis and its Impact on Asthma (ARIA) and Global Allergy and Asthma European Network (GA 2LEN). World Allergy Organ J 2016; 9:37. [PMID: 27800118 PMCID: PMC5084415 DOI: 10.1186/s40413-016-0123-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
Evidence that enables us to identify, assess, and access the small airways in asthma and chronic obstructive pulmonary disease (COPD) has led INTERASMA (Global Asthma Association) and WAO to take a position on the role of the small airways in these diseases. Starting from an extensive literature review, both organizations developed, discussed, and approved the manifesto, which was subsequently approved and endorsed by the chairs of ARIA and GA2LEN. The manifesto describes the evidence gathered to date and defines and proposes issues on small airway involvement and management in asthma and COPD with the aim of challenging assumptions, fostering commitment, and bringing about change. The small airways (defined as those with an internal diameter <2 mm) are involved in the pathogenesis of asthma and COPD and are the major determinant of airflow obstruction in these diseases. Various tests are available for the assessment of the small airways, and their results must be integrated to confirm a diagnosis of small airway dysfunction. In asthma and COPD, the small airways play a key role in attempts to achieve disease control and better outcomes. Small-particle inhaled formulations (defined as those that, owing to their size [usually <2 μm], ensure more extensive deposition in the lung periphery than large molecules) have proved beneficial in patients with asthma and COPD, especially those in whom small airway involvement is predominant. Functional and biological tools capable of accurately assessing the lung periphery and more intensive use of currently available tools are necessary. In patients with suspected COPD or asthma, small airway involvement must be assessed using currently available tools. In patients with subotpimal disease control and/or functional or biological signs of disease activity, the role of small airway involvement should be assessed and treatment tailored. Therefore, the choice between large- and small-particle inhaled formulations must reflect the physician’s considerations of disease features, phenotype, and response to previous therapy. This article is being co-published in Asthma Research and Practice and the World Allergy Organization Journal.
Collapse
Affiliation(s)
- F Braido
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - N Scichilone
- Dipartimento Biomedico di Medicina Interna e Specialistica, University of Palermo, Palermo, Italy
| | - F Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - O S Usmani
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, Royal Brompton Hospital, London, UK
| | - L Dubuske
- Immunology Research Institute of New England, Harvard, USA
| | - L P Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - R Mosges
- Institute of Medical Statistics, Informatics and Epidemiology, University Hospital of Cologne, Cologne, Germany
| | - C Nunes
- Centro de ImmunoAlergologia de Algarve, Porto, Portugal
| | - M Sanchez-Borges
- Centro Medico Docente La Trinidad, Caracas, Venezuela ; Clinica El Avila, Caracas, Venezuela
| | - I J Ansotegui
- Department of Allergy and Immunology, Hospital Quirón Bizkaia, Carretera Leioa-Inbe, Erandio, Bilbao Spain
| | - M Ebisawa
- Department of Allergy, Clinical Research Center for Allergy & Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa Japan
| | - F Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L J Rosenwasser
- University of Missouri - Kansas City, School of Medicine, Kansas City, Missouri USA
| | - J Bousquet
- Service des Maladies Respiratoires, Hopital Arnaud de Villeneuve, Montpellier, France
| | - T Zuberbier
- Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - G Walter Canonica
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Cruz
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Yanez
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Yorgancioglu
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - D Deleanu
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - G Rodrigo
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J Berstein
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - K Ohta
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - P Vichyanond
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - R Pawankar
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S N Gonzalez-Diaz
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Nakajima
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - T Slavyanskaya
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - A Fink-Wagner
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - C Baez Loyola
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - D Ryan
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - G Passalacqua
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J Celedon
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J C Ivancevich
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - K Dobashi
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - M Zernotti
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - M Akdis
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Benjaponpitak
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Bonini
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - W Burks
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - L Caraballo
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Z Awad El-Sayed
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - S Fineman
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - P Greenberger
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - E Hossny
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - J A Ortega-Martell
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - H Saito
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - M Tang
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | - L Zhang
- Allergy and Respiratory Diseases Department DIMI, University of Genoa, IRCCS AOU San Martino-IST, Genoa, Italy
| | | | | | | |
Collapse
|
11
|
Pizarro C, Ahmadzadehfar H, Essler M, Tuleta I, Fimmers R, Nickenig G, Skowasch D. Effect of endobronchial valve therapy on pulmonary perfusion and ventilation distribution. PLoS One 2015; 10:e0118976. [PMID: 25822624 PMCID: PMC4379022 DOI: 10.1371/journal.pone.0118976] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Endoscopic lung volume reduction (ELVR) is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonary scintigraphy. METHODS In this observational study, we enrolled 26 patients (64.9 ± 9.4 yrs, 57.7% male) with COPD heterogeneous emphysema undergoing ELVR with endobronchial valves (Zephyr, Pulmonx, Inc.). Mean baseline FEV1 and RV were 32.9% and 253.8% predicted, respectively. Lung scintigraphy was conducted prior to ELVR and eight weeks thereafter. Analyses of perfusion and ventilation shifts were performed and complemented by correlation analyses between paired zones. RESULTS After ELVR, target zone perfusion showed a mean relative reduction of 43.32% (p<0.001), which was associated with a significant decrease in target zone ventilation (p<0.001). Perfusion of the contralateral untreated zone and of the contralateral total lung exhibited significant increases post-ELVR (p = 0.002 and p = 0.005, respectively); both correlated significantly with the corresponding target zone perfusion adaptations. Likewise, changes in target zone ventilation correlated significantly with ventilatory changes in the contralateral untreated zone and the total contralateral lung (Pearson's r: -0.42, p = 0.04 and Pearson's r: -0.42, p = 0.03, respectively). These effects were observed in case of clinical responsiveness to ELVR, as assessed by changes in the six-minute walk test distance. DISCUSSION ELVR induces a relevant decrease in perfusion and ventilation of the treated zone with compensatory perfusional and ventilatory redistribution to the contralateral lung, primarily to the non-concordant, contralateral zone.
Collapse
Affiliation(s)
- Carmen Pizarro
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Izabela Tuleta
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Rolf Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, Cardiology, Pneumology and Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Oelsner EC, Hoffman EA, Folsom AR, Carr JJ, Enright PL, Kawut SM, Kronmal R, Lederer D, Lima JAC, Lovasi GS, Shea S, Barr RG. Association between emphysema-like lung on cardiac computed tomography and mortality in persons without airflow obstruction: a cohort study. Ann Intern Med 2014; 161:863-73. [PMID: 25506855 PMCID: PMC4347817 DOI: 10.7326/m13-2570] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Low lung function is known to predict mortality in the general population, but the prognostic significance of emphysema on computed tomography (CT) in persons without chronic obstructive pulmonary disease (COPD) is uncertain. OBJECTIVE To determine whether greater emphysema-like lung on CT is associated with all-cause mortality among persons in the general population without airflow obstruction or COPD. DESIGN Prospective cohort study. SETTING Population-based, multiethnic sample from 6 U.S. communities. PARTICIPANTS 2965 participants aged 45 to 84 years without airflow obstruction on spirometry. MEASUREMENTS Emphysema-like lung was defined as the number of lung voxels with attenuation less than -950 Hounsfield units on cardiac CT and was adjusted for the number of total imaged lung voxels. RESULTS Among 2965 participants, 50.9% of whom had never smoked, there were 186 deaths over a median of 6.2 years. Greater emphysema-like lung was independently associated with increased mortality (adjusted hazard ratio per one-half interquartile range, 1.14 [95% CI, 1.04 to 1.24]; P=0.004) after adjustment for potential confounders, including cardiovascular risk factors and FEV1. Generalized additive models supported a linear association between emphysema-like lung and mortality without evidence for a threshold. The association was of greatest magnitude among smokers, although multiplicative interaction terms did not support effect modification by smoking status. LIMITATIONS Cardiac CT scans did not include lung apices. The number of deaths was limited among subgroup analyses. CONCLUSION Emphysema-like lung on CT was associated with all-cause mortality among persons without airflow obstruction or COPD in a general population sample, particularly among smokers. Recognition of the independent prognostic significance of emphysema on CT among patients without COPD on spirometry is warranted. PRIMARY FUNDING SOURCE National Heart, Lung, and Blood Institute.
Collapse
|