1
|
Ni T, Hao Y, Ding Z, Chi X, Xie F, Wang R, Bao J, Yan L, Li L, Wang T, Zhang D, Jiang Y. Discovery of a Novel Potent Tetrazole Antifungal Candidate with High Selectivity and Broad Spectrum. J Med Chem 2024; 67:6238-6252. [PMID: 38598688 DOI: 10.1021/acs.jmedchem.3c02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 μg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.
Collapse
Affiliation(s)
- Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
| | - Yumeng Hao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Zichao Ding
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
- Department of Pharmacy, 927th Hospital of Joint Logistics Support Force, 3 Yushui Road ,Puer 665000, China
| | - Xiaochen Chi
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Xie
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Ruina Wang
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Lan Yan
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
| | - Ting Wang
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Dazhi Zhang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
- School of Pharmacy, Naval Medical University, No. 325 Guohe Road, Shanghai 200433, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 1239 Siping Road ,Shanghai 200092, China
| |
Collapse
|
2
|
Bersani I, Piersigilli F, Goffredo BM, Santisi A, Cairoli S, Ronchetti MP, Auriti C. Antifungal Drugs for Invasive Candida Infections (ICI) in Neonates: Future Perspectives. Front Pediatr 2019; 7:375. [PMID: 31616647 PMCID: PMC6764087 DOI: 10.3389/fped.2019.00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal infections may complicate the neonatal clinical course, and the spectrum of therapies for their treatment in the perinatal period is limited. Polyenes, Azoles and Echinocandins represent the three classes of antifungal drugs commonly used in the neonatal period. The present review provides an overview about the most recent therapeutic strategies for the treatment of fungal infections in neonates.
Collapse
Affiliation(s)
- Iliana Bersani
- Neonatal Intensive Care Unit, Department of Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Fiammetta Piersigilli
- Neonatal Intensive Care Unit, Department of Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Bianca Maria Goffredo
- Biochemistry Laboratory, Department of Specialist Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Department of Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Sara Cairoli
- Biochemistry Laboratory, Department of Specialist Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Paola Ronchetti
- Neonatal Intensive Care Unit, Department of Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
3
|
Zumla A, Memish ZA, Maeurer M, Bates M, Mwaba P, Al-Tawfiq JA, Denning DW, Hayden FG, Hui DS. Emerging novel and antimicrobial-resistant respiratory tract infections: new drug development and therapeutic options. THE LANCET. INFECTIOUS DISEASES 2014; 14:1136-1149. [PMID: 25189352 PMCID: PMC7106460 DOI: 10.1016/s1473-3099(14)70828-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence and spread of antimicrobial-resistant bacterial, viral, and fungal pathogens for which diminishing treatment options are available is of major global concern. New viral respiratory tract infections with epidemic potential, such as severe acute respiratory syndrome, swine-origin influenza A H1N1, and Middle East respiratory syndrome coronavirus infection, require development of new antiviral agents. The substantial rise in the global numbers of patients with respiratory tract infections caused by pan-antibiotic-resistant Gram-positive and Gram-negative bacteria, multidrug-resistant Mycobacterium tuberculosis, and multiazole-resistant fungi has focused attention on investments into development of new drugs and treatment regimens. Successful treatment outcomes for patients with respiratory tract infections across all health-care settings will necessitate rapid, precise diagnosis and more effective and pathogen-specific therapies. This Series paper describes the development and use of new antimicrobial agents and immune-based and host-directed therapies for a range of conventional and emerging viral, bacterial, and fungal causes of respiratory tract infections.
Collapse
Affiliation(s)
- Alimuddin Zumla
- Division of Infection and Immunity, University College London, London, UK; NIHR Biomedical Research Centre, University College London Hospitals, London, UK; University of Zambia-University College London Research and Training Project, University Teaching Hospital, Lusaka, Zambia; Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Global Center for Mass Gatherings Medicine, Ministry of Health, Riyadh, Saudi Arabia; Al-Faisal University, Riyadh, Saudi Arabia
| | - Markus Maeurer
- Therapeutic Immunology, Departments of Laboratory Medicine and Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Matthew Bates
- Division of Infection and Immunity, University College London, London, UK; University of Zambia-University College London Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Peter Mwaba
- University of Zambia-University College London Research and Training Project, University Teaching Hospital, Lusaka, Zambia
| | - Jaffar A Al-Tawfiq
- Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia; Indiana University School of Medicine, Indianapolis, IN, USA
| | - David W Denning
- National Aspergillosis Centre, University Hospital South Manchester, University of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David S Hui
- Division of Respiratory Medicine and Stanley Ho Center for Emerging Infectious Diseases, Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong.
| |
Collapse
|
4
|
Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 2014; 74:891-909. [PMID: 24872147 PMCID: PMC4073603 DOI: 10.1007/s40265-014-0227-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Invasive fungal disease (IFD) remains life threatening in premature infants and immunocompromised children despite the recent development of new antifungal agents. Optimal dosing of antifungals is one of the few factors clinicians can control to improve outcomes of IFD. However, dosing in children cannot be extrapolated from adult data because IFD pathophysiology, immune response, and drug disposition differ from adults. We critically examined the literature on pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal agents and highlight recent developments in treating pediatric IFD. To match adult exposure in pediatric patients, dosing adjustment is necessary for almost all antifungals. In young infants, the maturation of renal and metabolic functions occurs rapidly and can significantly influence drug exposure. Fluconazole clearance doubles from birth to 28 days of life and, beyond the neonatal period, agents such as fluconazole, voriconazole, and micafungin require higher dosing than in adults because of faster clearance in children. As a result, dosing recommendations are specific to bracketed ranges of age. PD principles of antifungals mostly rely on in vitro and in vivo models but very few PD studies specifically address IFD in children. The exposure-response relationship may differ in younger children compared with adults, especially in infants with invasive candidiasis who are at higher risk of disseminated disease and meningoencephalitis, and by extension severe neurodevelopmental impairment. Micafungin is the only antifungal agent for which a specific target of exposure was proposed based on a neonatal hematogenous Candida meningoencephalitis animal model. In this review, we found that pediatric data on drug disposition of newer triazoles and echinocandins are lacking, dosing of older antifungals such as fluconazole and amphotericin B products still need optimization in young infants, and that target PK/PD indices need to be clinically validated for almost all antifungals in children. A better understanding of age-specific PK and PD of new antifungals in infants and children will help improve clinical outcomes of IFD by informing dosing and identifying future research areas.
Collapse
Affiliation(s)
- Julie Autmizguine
- Duke Clinical Research Institute, 2400 Pratt St, Durham, NC 27705, USA
| | | | | | | | - Edmund V. Capparelli
- Department of Pediatric Pharmacology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA
| |
Collapse
|