1
|
Shehata TM, Aldhubiab B, Elsewedy HS. Virgin Coconut Oil-based Nanostructured Lipid Carrier Improves the Hypolipidemic Effect of Rosuvastatin. Int J Nanomedicine 2024; 19:7945-7961. [PMID: 39130688 PMCID: PMC11313597 DOI: 10.2147/ijn.s463750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Background Monitoring noncommunicable diseases is regarded as a critical concern that has to be managed in order to avoid a wide variety of complications such as increasing blood lipid levels known as dyslipidemia. Statin drugs, mostly, Rosuvastatin (RSV) was investigated for its effectiveness in treating dyslipidemia. However, reaching the most efficient treatment is essential and improving the effect of RSV is crucial. Therefore, a combination therapy was a good approach for achieving significant benefit. Although RSV is hydrophobic, which would affect its absorption and bioavailability following oral administration, overcoming this obstacle was important. Purpose To that end, the purpose of the present investigation was to incorporate RSV into certain lipid-based nanocarriers, namely, nanostructured lipid carrier (NLC) prepared with virgin coconut oil (CCO). Methods The optimized RSV-NLC formula was selected, characterized and examined for its in vitro, kinetic, and stability profiles. Eventually, the formula was investigated for its in vivo hypolipidemic action. Results The optimized NLC formulation showed a suitable particle size (279.3±5.03 nm) with PDI 0.237 and displayed good entrapment efficiency (75.6±1.9%). Regarding in vitro release, it was efficiently prolonged for 24 h providing 93.7±1.47%. The optimized formula was established to be stable after 3 months storage at two different conditions; 4°C and 25°C. Importantly, including CCO in the development of RSV-NLC could impressively enhance lowering total cholesterol level in obese rat models, which endorse the potential synergistic action between RSV and CCO. Conclusion The study could elucidate the impact of developing NLC using CCO for improving RSV anti-hyperlipidemic activity.
Collapse
Affiliation(s)
- Tamer M Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 36362, Saudi Arabia
| | - Heba S Elsewedy
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 11597, Saudi Arabia
| |
Collapse
|
2
|
Metwally MA, El-Zawahry EYI, Ali MA, Ibrahim DF, Sabry SA, Sarhan OM. Development and assessment of nano drug delivery systems for combined delivery of rosuvastatin and ezetimibe. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:275-284. [PMID: 38682175 PMCID: PMC11058542 DOI: 10.4196/kjpp.2024.28.3.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 05/01/2024]
Abstract
Worldwide, cardiovascular disease is the main cause of death, which accordingly increased by hyperlipidemia. Hyperlipidemia therapy can include lifestyle changes and medications to control cholesterol levels. Statins are the medications of the first choice for dealing with lipid abnormalities. Rosuvastatin founds to control high lipid levels by hindering liver production of cholesterol and to achieve the targeted levels of low-density lipoprotein cholesterol, another lipid lowering agents named ezetimibe may be used as an added therapy. Both rosuvastatin and ezetimibe have low bioavailability which will stand as barrier to decrease cholesterol levels, because of such depictions, formulations of this combined therapy in nanotechnology will be of a great assistance. Our study demonstrated preparations of nanoparticles of this combined therapy, showing their physical characterizations, and examined their behavior in laboratory conditions and vivo habitation. The mean particle size was uniform, polydispersity index and zeta potential of formulations were found to be in the ranges of (0.181-0.72) and (-13.4 to -6.24), respectively. Acceptable limits of entrapment efficiency were affirmed with appearance of spherical and uniform nanoparticles. In vitro testing showed a sustained release of drug exceeded 90% over 24 h. In vivo study revealed an enhanced dissolution and bioavailability from loaded nanoparticles, which was evidenced by calculated pharmacokinetic parameters using triton for hyperlipidemia induction. Stability studies were performed and assured that the formulations are kept the same up to one month. Therefore, nano formulations is a suitable transporter for combined therapy of rosuvastatin and ezetimibe with improvement in their dissolution and bioavailability.
Collapse
Affiliation(s)
- Mohamed Ali Metwally
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | | | - Maher Amer Ali
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Diaa Farrag Ibrahim
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Shereen Ahmed Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Omnia Mohamed Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| |
Collapse
|
3
|
Ibrahim MS, Elsayyad NME, Salama A, Noshi SH. Utilization of response surface design for development and optimization of rosuvastatin calcium-loaded nano-squarticles for hair growth stimulating VEGF and IGF production: in-vitro and in-vivo evaluation. Drug Dev Ind Pharm 2023; 49:580-589. [PMID: 37725083 DOI: 10.1080/03639045.2023.2259993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Countless individuals experience negative emotions as hair loss pattern affects their self-esteem and well-being. Rosuvastatin calcium (Ca-RUV) was reported to stimulate the growth of the hair in the applied area, hence, it was selected as a potential hair loss treatment drug. SIGNIFICANCE This study aims to develop and optimize (Ca-RUV) loaded squarticles (SQRs) and assess their ability to deliver and release Ca-RUV in the hair follicle for the promotion of hair growth. METHODS A response surface design was utilized to study the effect of varying Pluronic® F68 (PF68) and the percentage of liquid lipids within the core of the SQRs and the effects of particle size, entrapment efficiency, and drug released percentage after 24 h (%Q24) were assessed. The optimized formula was subjected to DSC, XRD, and in-vivo evaluation in rats. RESULTS SQRs stabilized by 0.8% PF68 and contained 37.5% liquid lipids showed an acceptable particle size (250 nm), drug entrapment efficiency (75%), and %Q24 (100%). The in-vivo studies illustrated the ability of the formula to regrow hair in animals after 10 days due to the elevation of the vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) to their normal values and by 9% and 54%, respectively, relative to standard therapy minoxidil (5%). CONCLUSION Thus, it can be concluded that the optimized formula of Ca-RUV loaded SQRs showed superior in-vivo results in the promotion of hair growth in a shorter period relative to the marketed product. Therefore, the formula can offer a viable option for the treatment of hair loss.
Collapse
Affiliation(s)
- Mervat Shafik Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Nihal Mohamed Elmahdy Elsayyad
- Department of Pharmaceutics and Industrial Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Shereen H Noshi
- Department of Pharmaceutics and Industrial Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
4
|
Sherif AY, Harisa GI, Alanazi FK, Nasr FA, Alqahtani AS. Engineered Nanoscale Lipid-Based Formulation as Potential Enhancer of Gefitinib Lymphatic Delivery: Cytotoxicity and Apoptotic Studies Against the A549 Cell Line. AAPS PharmSciTech 2022; 23:183. [PMID: 35773422 PMCID: PMC9247939 DOI: 10.1208/s12249-022-02332-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The present study aimed to engineer a nanoscale lipid-based lymphatic drug delivery system with D-α-Tocopherol polyethylene glycol 1000 succinate to combat the lymphatic metastasis of lung cancer. The nanoscale lipid-based systems including GEF-SLN, GEF-NLC, and GEF-LE were prepared and pharmaceutically characterized. In addition, the most stable formulation (GEF-NLC) was subjected to an in vitro release study. Afterward, the optimized GEF-NLC was engineered with TPGS (GEF-TPGS-NLC) and subjected to in vitro cytotoxicity, and apoptotic studies using the A549 cells line as a surrogate model for lung cancer. The present results revealed that particle size and polydispersity index of freshly prepared formulations were ranging from 198 to 280 nm and 0.106 to 0.240, respectively, with negative zeta potential ranging from − 14 to − 27.6.mV. An in vitro release study showed that sustained drug release was attained from GEF-NLC containing a high concentration of lipid. In addition, GEF-NLC and GEF-TPGS-NLC showed remarkable entrapment efficiency above 89% and exhibited sustained release profiles. Cytotoxicity showed that IC50 of pure GEF was 11.15 μg/ml which decreased to 7.05 μg/ml for GEF-TPGS-NLC. The apoptotic study revealed that GEF-TPGS-NLC significantly decreased the number of living cells from 67 to 58% when compared with pure GEF. The present results revealed that the nanoscale and lipid composition of the fabricated SLN, NLC, and LE could mediate the lymphatic uptake of GEF to combat the lymphatic tumor metastasis. Particularly, GEF-TPGS-NLC is a promising LDDS to increase the therapeutic outcomes of GEF during the treatment of metastatic lung cancer.
Collapse
Affiliation(s)
- Abdelrahman Y Sherif
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. .,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry and Molecular Biology, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Fars K Alanazi
- Kayyali Chair for Pharmaceutical Industry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Ghadge D, Nangare S, Jadhav N. Formulation, optimization, and in vitro evaluation of anastrozole-loaded nanostructured lipid carriers for improved anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Ahmed TA, Elimam H, Alrifai AO, Nadhrah HM, Masoudi LY, Sairafi WO, El-Say KM. Rosuvastatin lyophilized tablets loaded with flexible chitosomes for improved drug bioavailability, anti-hyperlipidemic and anti-oxidant activity. Int J Pharm 2020; 588:119791. [PMID: 32827673 DOI: 10.1016/j.ijpharm.2020.119791] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022]
Abstract
Rosuvastatin is a hypolipidemic drug of limited oral bioavailability. The aim was to develop rosuvastatin flexible chitosomes and loading into a pullulan-based tablet to improve the bioavailability and maximize the antihyperlipidemic and antioxidant activities. Chitosomes nanoparticles were developed and characterized. Pullulan-based lyophilized fast dissolving tablets were developed and evaluated. The tablets' outer and inner structures were morphologically investigated. In vivo disintegration of the prepared tablets was studied in healthy human volunteers. The pharmacokinetics, antihyperlipidemic, antioxidant, and biochemical markers activities were conducted after administration of the tablets into male Wister rats. Liver histopathology was also investigated. The prepared chitosomes illustrated an average particle size of 342.22 ± 2.90 nm, a zeta potential value of +28.87 ± 1.39 mV and a drug entrapment efficiency of 94.59 ± 1.62%. The developed tablets showed an acceptable quality control characteristics and in vivo disintegration time of 1.48 ± 0.439 min. Scanning electron microscopy revealed distinct porous surface and sponge-like inner structure. The chitosomes based tablets demonstrated higher relative bioavailability by more than 30% and 36% when compared with the corresponding pure rosuvastatin and the marketed drug tablets, respectively. Moreover, the chitosomes based tablets showed a significant improvement in the hepatic serum biomarkers and a dramatic decrease in the serum antioxidants in response to Poloxamer 407 intoxication. The prepared tablets did not exhibit marked histopathological changes in the hepatic tissues. Accordingly, the pullan-based lyophilized fast-dissolving tablets loaded with chitosomes nanoparticles could be considered as a promising drug formulation for enhancing rosuvastatin bioavailability and pharmacodynamics activity.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz, University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt; Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Alyaa O Alrifai
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz, University, Jeddah, Saudi Arabia
| | - Hebah M Nadhrah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz, University, Jeddah, Saudi Arabia
| | - Lujain Y Masoudi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz, University, Jeddah, Saudi Arabia
| | - Wed O Sairafi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz, University, Jeddah, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz, University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Ahmed TA, Mussari MA, Abdel-Hady SES, El-Say KM. An Optimized Surfactant-Based PEG-PLCL In Situ Gel Formulation For Enhanced Activity Of Rosuvastatin In Poloxamer-Induced Hyperlipidemic Rats. Drug Des Devel Ther 2019; 13:4035-4051. [PMID: 31839704 PMCID: PMC6904902 DOI: 10.2147/dddt.s224442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Injectable in situ gel (ISG) systems suffer from high initial drug release that may result in toxic effects. OBJECTIVE This work aimed to develop an injectable sustained release rosuvastatin (RSV) ISG formulation with minimum initial drug burst and improved hyperlipidemic efficacy. METHODS Six formulation factors that affect RSV release after 0.5, 2 and 24 hrs have been screened and the significant ones were optimized utilizing an experimental design tool. The optimum ISG formulation components were physicochemically characterized. Kinetic treatment, dissolution efficiency and mean dissolution time were investigated for the developed ISG formulations. Pharmacodynamic effects of the optimized ISG formulation were studied and compared to ISG formulation loaded with free RSV and to a marketed oral drug product. RESULTS The concentration polylactide-co-ε-caprolactone (25: 75), the surfactant hydrophilic lipophilic balance (HLB) and the ratio of surfactant to polyethylene glycol 400 were significantly affecting the release of RSV during the first 24 h. Physicochemical characterization demonstrated complete dispersion of RSV in the polymeric matrix with slight changes in the drug crystalline structure. The optimized formulation demonstrated acceptable syringeability, good flow rate and was able to extend the in vitro drug release for 34 days. The ISG formulations complied with Weibull model. Pharmacodynamic study revealed a sustained reduction in the lipid profile that lasted for 21 days with a marked decrease in the lipid level during the first 24 hrs from the ISG system loaded with free RSV. CONCLUSION The optimized RSV ISG formulation could be considered a promising strategy due to a reduction in dosing frequency and enhancement in hypolipidemic efficacy.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Al-Azhar University, Cairo11651, Egypt
| | - Mohammed A Mussari
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Seham El-Sayed Abdel-Hady
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khalid M El-Say
- Department Of Pharmaceutics, Faculty Of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department Of Pharmaceutics And Industrial Pharmacy, Faculty Of Pharmacy, Al-Azhar University, Cairo11651, Egypt
| |
Collapse
|
9
|
Banerjee S, Pillai J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin Drug Metab Toxicol 2019; 15:499-515. [PMID: 31104522 DOI: 10.1080/17425255.2019.1621289] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Solid matrix mediated lipid nanoparticle formulations (LNFs) retain some of the best features of ideal drug carriers necessary for improving the oral absorption and bioavailability (BA) of both hydrophilic and hydrophobic drugs. LNFs with solid matrices may be typically categorized into three major types of formulations, viz., solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs) and lipid-drug conjugate nanoparticles (LDC-NPs). Solid matrix based LNFs are, potentially, the most appropriate delivery systems for poorly water soluble drugs in need of improved drug solubility, permeability, absorption, or increased oral BA. In addition, LNFs as matrices are able to encapsulate both hydrophobic and hydrophilic drugs in a single matrix based on their excellent ability to form cores and shells. Interestingly, LNFs also act as delivery devices to impart chemical stability to various orally administered drugs. Areas covered: Aim of the review is to forecast the presentation of pharmacokinetic characteristics of solid lipid matrix based nanocarriers which are typically biocompatible, biodegradable and non-toxic carrier systems for efficient oral delivery of various drugs. Efficient delivery is broadly mediated by the fact that lipophilic drugs are readily soluble in lipidic substrates that are capable of permeating across the gut epithelium following oral administration, subsequently delivering the moiety of interest more efficiently across the gut mucosal membrane. This enhances the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile. This article specifically focuses on the biopharmaceutical and pharmacokinetic aspects of such solid lipid matrix based nanoformulations and possible mechanisms for better drug absorption and improved BA following oral administration. It also briefly reviews methods to access the efficacy of LNFs for improving oral BA of drugs, regulatory aspects and some interesting lipid-derived commercial formulations, with a concluding remark. Expert opinion: LNFs enhance the overall BA of many drugs facing oral delivery challenges by improving their pharmacokinetic profile.
Collapse
Affiliation(s)
- Subham Banerjee
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education & Research (NIPER) , Guwahati , Assam , India.,b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| | - Jonathan Pillai
- b Centre for Bio-design (CBD) , Translational Health Science & Technology Institute (THSTI) , Faridabad , Haryana , India
| |
Collapse
|
10
|
Rizvi SZH, Shah FA, Khan N, Muhammad I, Ali KH, Ansari MM, Din FU, Qureshi OS, Kim KW, Choe YH, Kim JK, Zeb A. Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int J Pharm 2019; 560:136-143. [PMID: 30753932 DOI: 10.1016/j.ijpharm.2019.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
The objective of current study was to develop solid lipid nanoparticles-loaded with simvastatin (SIM-SLNs) and investigate their in vivo anti-hyperlipidemic activity in poloxamer-induced hyperlipidemia model. Nano-template engineering technique was used to prepare SIM-SLNs with palmityl alcohol as lipid core and a mixture of Tween 40/Span 40/Myrj 52 to stabilize the core. The prepared SIM-SLNs were evaluated for physicochemical parameters including particle diameter, surface charge, morphology, incorporation efficiency, thermal behaviour and crystallinity. In vitro release profile of SIM-SLNs in simulated gastric and intestinal fluids was evaluated by using dialysis bag technique and anti-hyperlipidemic activity was assessed in hyperlipidemia rat model. SIM-SLNs revealed uniform particle size with spherical morphology, zeta potential of -24.9 mV and high incorporation efficiency (∼85%). Thermal behaviour and crystallinity studies demonstrated successful incorporation of SIM in the lipid core and its conversion to amorphous form. SIM-SLNs demonstrated a sustained SIM release from the lipid core of nanoparticles. SIM-SLNs significantly reduced the elevated serum lipids as indicated by ∼3.9 and ∼1.5-times decreased total cholesterol compared to those of untreated control and SIM dispersion treated hyperlipidemic rats. In conclusion, SIM-SLNs showed a great promise for improving the therapeutic outcomes of SIM via its effective oral delivery.
Collapse
Affiliation(s)
- Syed Zaki Husain Rizvi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Namrah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Iftikhar Muhammad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Khan Hashim Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Mohsin Ansari
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fakhar Ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Kyoung-Won Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Yeong-Hwan Choe
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea
| | - Jin-Ki Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, Republic of Korea.
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| |
Collapse
|