1
|
Solyev PN, Isakova EB, Olsufyeva EN. Antibacterial Conjugates of Kanamycin A with Vancomycin and Eremomycin: Biological Activity and a New MS-Fragmentation Pattern of Cbz-Protected Amines. Antibiotics (Basel) 2023; 12:antibiotics12050894. [PMID: 37237799 DOI: 10.3390/antibiotics12050894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
A significant increase of microbial resistance to glycopeptides (especially vancomycin-resistant enterococci and Staphylococcus aureus) prompted researchers to design new semisynthetic glycopeptide derivatives, such as dual-action antibiotics that contain a glycopeptide molecule and an antibacterial agent of a different class. We synthesized novel dimeric conjugates of kanamycin A with glycopeptide antibiotics, vancomycin and eremomycin. Using tandem mass spectrometry fragmentation, UV, IR, and NMR spectral data, it was unequivocally proven that the glycopeptide is attached to the kanamycin A molecule at the position 1 of 2-deoxy-D-streptamine. New MS fragmentation patterns for N-Cbz-protected aminoglycosides were discovered. It was found that the resulting conjugates are active against Gram-positive bacteria, and some are active against vancomycin-resistant strains. Conjugates of two different classes can serve as dual-target antimicrobial candidates for further investigation and improvement.
Collapse
Affiliation(s)
- Pavel N Solyev
- Engelhardt Institute of Molecular Biology, 32 Vavilov St., 119991 Moscow, Russia
| | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya St., 119021 Moscow, Russia
| | - Evgenia N Olsufyeva
- Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya St., 119021 Moscow, Russia
| |
Collapse
|
2
|
van Groesen E, Innocenti P, Martin NI. Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022. ACS Infect Dis 2022; 8:1381-1407. [PMID: 35895325 PMCID: PMC9379927 DOI: 10.1021/acsinfecdis.2c00253] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accelerated appearance of drug-resistant bacteria poses an ever-growing threat to modern medicine's capacity to fight infectious diseases. Gram-positive species such as methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus pneumoniae continue to contribute significantly to the global burden of antimicrobial resistance. For decades, the treatment of serious Gram-positive infections relied upon the glycopeptide family of antibiotics, typified by vancomycin, as a last line of defense. With the emergence of vancomycin resistance, the semisynthetic glycopeptides telavancin, dalbavancin, and oritavancin were developed. The clinical use of these compounds is somewhat limited due to toxicity concerns and their unusual pharmacokinetics, highlighting the importance of developing next-generation semisynthetic glycopeptides with enhanced antibacterial activities and improved safety profiles. This Review provides an updated overview of recent advancements made in the development of novel semisynthetic glycopeptides, spanning the period from 2014 to today. A wide range of approaches are covered, encompassing innovative strategies that have delivered semisynthetic glycopeptides with potent activities against Gram-positive bacteria, including drug-resistant strains. We also address recent efforts aimed at developing targeted therapies and advances made in extending the activity of the glycopeptides toward Gram-negative organisms.
Collapse
Affiliation(s)
- Emma van Groesen
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Paolo Innocenti
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology Leiden, Leiden University 2333 BE Leiden, The Netherlands
| |
Collapse
|
3
|
Evaluation of Toxic Properties of New Glycopeptide Flavancin on Rats. Pharmaceuticals (Basel) 2022; 15:ph15060661. [PMID: 35745578 PMCID: PMC9228439 DOI: 10.3390/ph15060661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Glycopeptide antibiotics have side effects that limit their clinical use. In view of this, the development of glycopeptides with improved chemotherapeutic properties remains the main direction in the search for new antibacterial drugs. The objective of this study was to evaluate the toxicological characteristics of new semi-synthetic glycopeptide flavancin. Acute and chronic toxicity of antibiotic was evaluated in Wistar rats. The medium lethal dose (LD50) and the maximum tolerated doses (MTD) were calculated by the method of Litchfield and Wilcoxon. In the chronic toxicity study, the treatment regimen consisted of 15 daily intraperitoneal injections using two dosage levels: 6 and 10 mg/kg/day. Total doses were equivalent to MTD or LD50 of flavancin, respectively. The study included assessment of the body weight, hematological parameters, blood biochemical parameters, urinalysis, and pathomorphological evaluation of the internal organs. The results of the study demonstrated that no clinical-laboratory signs of toxicity were found after 15 daily injections of flavancin at a total dose close to the MTD or LD50. The pathomorphological study did not reveal any lesions on the organ structure of animals after low-dose administration of flavancin. Thus, flavancin favorably differs in terms of toxicological properties from the glycopeptides currently used in the clinic.
Collapse
|
4
|
Ramírez-Rendon D, Passari AK, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S, Demain AL. Impact of novel microbial secondary metabolites on the pharma industry. Appl Microbiol Biotechnol 2022; 106:1855-1878. [PMID: 35188588 PMCID: PMC8860141 DOI: 10.1007/s00253-022-11821-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022]
Abstract
Microorganisms are remarkable producers of a wide diversity of natural products that significantly improve human health and well-being. Currently, these natural products comprise half of all the pharmaceuticals on the market. After the discovery of penicillin by Alexander Fleming 85 years ago, the search for and study of antibiotics began to gain relevance as drugs. Since then, antibiotics have played a valuable role in treating infectious diseases and have saved many human lives. New molecules with anticancer, hypocholesterolemic, and immunosuppressive activity have now been introduced to treat other relevant diseases. Smaller biotechnology companies and academic laboratories generate novel antibiotics and other secondary metabolites that big pharmaceutical companies no longer develop. The purpose of this review is to illustrate some of the recent developments and to show the potential that some modern technologies like metagenomics and genome mining offer for the discovery and development of new molecules, with different functions like therapeutic alternatives needed to overcome current severe problems, such as the SARS-CoV-2 pandemic, antibiotic resistance, and other emerging diseases. KEY POINTS: • Novel alternatives for the treatment of infections caused by bacteria, fungi, and viruses. • Second wave of efforts of microbial origin against SARS-CoV-2 and related variants. • Microbial drugs used in clinical practice as hypocholesterolemic agents, immunosuppressants, and anticancer therapy.
Collapse
Affiliation(s)
- Dulce Ramírez-Rendon
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Ajit Kumar Passari
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, CDMX, 04510, Mexico City, Mexico.
| | - Arnold L Demain
- Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ, 07940, USA
| |
Collapse
|
5
|
Moiseenko EI, Erdei R, Grammatikova NE, Mirchink EP, Isakova EB, Pereverzeva ER, Batta G, Shchekotikhin AE. Aminoalkylamides of Eremomycin Exhibit an Improved Antibacterial Activity. Pharmaceuticals (Basel) 2021; 14:379. [PMID: 33921612 PMCID: PMC8072890 DOI: 10.3390/ph14040379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
After decades, the glycopeptide vancomycin is still the preferred antibiotic against resistant strains of Gram-positive bacteria. Although its clinical use is strictly regulated, the gradual spread of vancomycin-resistant bacteria, such as glycopeptide-resistant and glycopeptide-intermediate Staphylococcus aureus and vancomycin-resistant Enterococcus spp., is a serious health problem. Based on the literature data and previous studies, our main goal was to assess the antimicrobial potential and to study the structure-activity relationship of new eremomycin aminoalkylamides. We designed and synthesized a series of new eremomycin amides in which eremomycin is conjugated with a hydrophobic arylalkyl group via an alkylenediamine spacer, and tested their antibacterial activities on a panel of Gram-positive strains that were sensitive and resistant to a "gold-standard" vancomycin. Based on the data obtained, the structure-activity relationships were investigated, and a lead compound was selected for in-depth testing. Research carried out using an in vivo model of staphylococcus sepsis, acute toxicity studies, and the estimated therapeutic index also showed the advantage of the selected eremomycin amide derivative in particular, as well as the chosen direction in general.
Collapse
Affiliation(s)
- Elena I. Moiseenko
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (E.I.M.); (N.E.G.); (E.P.M.); (E.B.I.); (E.R.P.)
| | - Réka Erdei
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (R.E.); (G.B.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (E.I.M.); (N.E.G.); (E.P.M.); (E.B.I.); (E.R.P.)
| | - Elena P. Mirchink
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (E.I.M.); (N.E.G.); (E.P.M.); (E.B.I.); (E.R.P.)
| | - Elena B. Isakova
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (E.I.M.); (N.E.G.); (E.P.M.); (E.B.I.); (E.R.P.)
| | - Eleonora R. Pereverzeva
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (E.I.M.); (N.E.G.); (E.P.M.); (E.B.I.); (E.R.P.)
| | - Gyula Batta
- Department of Organic Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (R.E.); (G.B.)
| | - Andrey E. Shchekotikhin
- Gause Institute of New Antibiotics, 119021 Moscow, Russia; (E.I.M.); (N.E.G.); (E.P.M.); (E.B.I.); (E.R.P.)
| |
Collapse
|
6
|
Yaroshenko DV, Grigoriev AV, Yaroshenko IS, Sidorova AA, Kryshen KL, Chernobrovkin MG, Zatirakha AV, Chernobrovkina AV. Hydrophilic interaction liquid chromatography method for eremomycin determination in pre-clinical study. J Chromatogr A 2020; 1637:461750. [PMID: 33360638 DOI: 10.1016/j.chroma.2020.461750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
A complex of hydrophilic interaction liquid chromatography (HILIC) methods for simple and efficient determination of eremomycin (ERM) as an active pharmaceutical ingredient (API) of a novel drug is proposed for preclinical study, which includes the dissolution test and pharmacokinetic study on the animals. A home-made HILIC silica-based stationary phase (SP) containing diol functionalities and positively charged nitrogen atoms in its structure was synthesized for this research and applied for the first time for performing the first step of preclinical study (dissolution test) of the novel ERM-containing drug. HILIC method developed using novel home-made SP allowed us to avoid any interferences from polyethylene glycol (PEG) contained in the drug matrix thus providing a unique advantage of the proposed approach over RP HPLC. The home-made SP demonstrated better chromatographic performance as compared to the tested commercially available columns with various functionalities. Different retention behaviour and mechanisms with various electrostatic impact were demonstrated for two glycopeptide antibiotics, namely, ERM and its analogue vancomycin (VAN), on the home-made SP. For the second step of the preclinical study HILIC-MS/MS method for ERM determination in rabbit plasma was developed and validated in accordance with the EMA requirements and successfully applied to the preclinical study on rabbits after intravenous and intraperitoneal drug administration. The results of dissolution test and pharmacokinetic study revealed similar in vitro solubility of ERM and VAN and low ERM bioavailability, which proved the potential safety and efficiency of the novel drug.
Collapse
Affiliation(s)
- Dmitry V Yaroshenko
- Bioanalytical Laboratory CSU "Analytical Spectrometry" LLC, Engelsa pr., b.34, 194156, St. Petersburg, Russian Federation
| | - Alexander V Grigoriev
- Bioanalytical Laboratory CSU "Analytical Spectrometry" LLC, Engelsa pr., b.34, 194156, St. Petersburg, Russian Federation
| | - Irina S Yaroshenko
- Bioanalytical Laboratory CSU "Analytical Spectrometry" LLC, Engelsa pr., b.34, 194156, St. Petersburg, Russian Federation
| | - Alla A Sidorova
- Bioanalytical Laboratory CSU "Analytical Spectrometry" LLC, Engelsa pr., b.34, 194156, St. Petersburg, Russian Federation
| | - Kirill L Kryshen
- HOME OF PHARMACY, JSC, Kuzmolovsky Village, b.245, 188663, Leningrad Region, Russian Federation
| | - Mikhail G Chernobrovkin
- LLC "Drugs Technology", Rabochaya str., 2a, build.1, 141400, Khimki city, Moscow region, Russian Federation
| | - Alexandra V Zatirakha
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991, Moscow, Russian Federation
| | - Alla V Chernobrovkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, GSP-1, 119991, Moscow, Russian Federation.
| |
Collapse
|
7
|
Rodríguez-Mayor AV, Peralta-Camacho GJ, Cárdenas-Martínez KJ, García-Castañeda JE. Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200701121037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Collapse
|
8
|
Main trends in the design of semi-synthetic antibiotics of a new generation. RUSSIAN CHEMICAL REVIEWS 2020. [PMCID: PMC7149660 DOI: 10.1070/rcr4892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review summarizes main advances achieved by Russian researchers in the synthesis and characterization of semi-synthetic antibiotics of a new generation in the period from 2004 to 2019. The following classes of compounds are considered as the basis for modification: polycyclic antibacterial glycopeptides of the vancomycin group, classical macrolides, antifungal polyene macrolides, the antitumour antibiotic olivomycin A, antitumour anthracyclines and broad-spectrum antibiotics, in particular, oligomycin A, heliomycin and some other. Main trends in the design of modern anti-infective and antitumour agents over this period are considered in relation to original natural antibiotics, which have been independently discovered by Russian researchers. It is shown that a new type of hybrid structures can, in principle, be synthesized based on glycopeptides, macrolides and other antibiotics, including heterodimers containing a new benzoxaborole pharmacophore. The review addresses the influence of the length of the spacer between two antibiotic molecules on the biological activity of hybrid structures. A combination of genetic engineering techniques and methods of organic synthesis is shown to be useful for the design of new potent antifungal antibiotics based on polyenes of the amphotericin B group. Many new semi-synthetic analogues exhibit important biological properties, such as a broad spectrum of activity and low toxicity. Emphasis is given to certain aspects related to investigation of a broad range of biological activity and mechanisms of action of new derivatives. The bibliography includes 101 references.
Collapse
|