1
|
Yang F, Tan H, Hao T, Zeng H, Long L, Zhang Q, Guo Z. Target-Triggered Enzymatic Cascade LF-NMR Biosensor for the Detection of Circulating Tumor Cells. Anal Chem 2025; 97:6175-6181. [PMID: 40067128 DOI: 10.1021/acs.analchem.4c06901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
A target-triggered, enzymatic cascade-amplified low-field nuclear magnetic resonance (LF-NMR) sensor was developed for the detection of the circulating tumor cell (CTC) A549. A multifunctional two-dimensional bionanomaterial GDA@GOX&DNA1 was designed as the initiator, with Fe3O4@DNA2/Apt as the recognition unit and CaO2@MnO2 as the signal unit. When A549 was present, the aptamer (Apt) detached from the recognition unit, allowing the formation of GDA@GOX&DNA1-DNA2@Fe3O4 and triggering the following reactions: (1) glucose oxidase (GOX) catalyzed the reaction between the substrate glucose and oxygen (O2) to produce gluconic acid and hydrogen peroxide (H2O2); (2) the generated acid and H2O2 reacted with MnO2, producing signal probes Mn2+ and O2; and (3) CaO2 reacted with the acid, generating H2O2. These cyclic reactions brought the generation of massive Mn2+ and a decrease of the transverse relaxation time (T2), resulting in a target-triggered, enzymatic cascade-amplified LF-NMR biosensing of CTCs. Under the optimal experimental conditions, the linear range and limit of detection (LOD) were 10-1.0 × 106 and 6 cells/mL, respectively. The feasibility and reliability in practical applications were verified by using spiked whole blood samples containing A549 cells. This study represents the first successful demonstration of an LF-NMR biosensor for the detection of intact CTCs, providing a new tool for clinical testing and diagnosis.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Hao Tan
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Tingting Hao
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Hongtian Zeng
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Lifen Long
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Qingqing Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zhiyong Guo
- State Key Laboratory for Quality and Safety of Agro-Products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
2
|
Liu Y, Wang C, Fu X, Ren M. The Progress and Evolving Trends in Nucleic-Acid-Based Therapies. Biomolecules 2025; 15:376. [PMID: 40149911 PMCID: PMC11940734 DOI: 10.3390/biom15030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Nucleic-acid-based therapies have emerged as a pivotal domain within contemporary biomedical science, marked by significant advancements in recent years. These innovative treatments primarily operate through the precise binding of DNA or RNA molecules to discrete target genes, subsequently suppressing the expression of the target proteins. The spectrum of nucleic-acid-based therapies encompasses antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), etc. Compared to more traditional medicinal approaches, nucleic-acid-based therapies stand out for their highly targeted action on specific genes, as well as their potential for chemical modification to improve resistance to nucleases, ensuring sustained therapeutic activity and mitigating immunogenicity concerns. Nevertheless, these molecules' limited cellular permeability necessitates the deployment of delivery vectors to enhance their intracellular uptake and stability. As nucleic-acid-based therapies progressively display promising pharmacodynamic profiles, there has been a burgeoning interest in these treatments for applications in clinical research. This review aims to summarize the variety of nucleic acid drugs and their mechanisms, evaluate the present status in research and application, discourse on prospective trends, and potential challenges ahead. These innovative therapeutics are anticipated to assume a pivotal role in the management of a wide array of diseases.
Collapse
Affiliation(s)
| | | | - Xiuping Fu
- School of Chemistry and School of Life Sciences, Tiangong University, Tianjin 300387, China; (Y.L.); (C.W.)
| | - Mengtian Ren
- School of Chemistry and School of Life Sciences, Tiangong University, Tianjin 300387, China; (Y.L.); (C.W.)
| |
Collapse
|
3
|
Narwade M, Haldar N, Samanta R, Pawar A, Gajbhiye V, Gajbhiye KR. α vβ 3 integrin aptamer functionalized pH-responsive lipid polymer hybrid nanoparticles for targeted co-delivery of paclitaxel and tamoxifen. Int J Biol Macromol 2025; 306:141754. [PMID: 40049497 DOI: 10.1016/j.ijbiomac.2025.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest type due to its aggressive behavior, high recurrence, metastatic, and mortality rates. This study was aimed at the targeted co-delivery of paclitaxel (PTX) and tamoxifen (TMF) via lipid polymer hybrid nanoparticles (LPHNPs) for treating TNBC. Here, we conjugated αvβ3 integrin aptamer over LPHNPs for targeting TNBC cells. The aptamer-conjugated LPHNPs showed significantly higher uptake in 4 T1 cells than non-targeted LPHNPs. The PTX + TMX co-loaded targeted LPHNPs have cell viabilities of 5.9 ± 0.7 and 7.8 ± 0.6 % in 4 T1 and MDA-MB-231 cells, respectively, in 48 h. The cell viabilities of PTX + TMX co-loaded non-targeted LPHNPs and free PTX + TMX were 17.27 ± 1.56 and 24.31 ± 0.81 % in 4 T1 cells and 16.07 ± 0.14 and 20.15 ± 1.11 % in MDA-MB-231 cells, respectively, in 48 h. Flow cytometry indicated that targeted LPHNP-mediated PTX + TMF delivery was considerably more efficient (~31 %) in inducing apoptosis than PTX + TMF co-loaded non-targeted LPHNPs (~21 %) and free PTX + TMF (~13 %). The anti-cancer efficiency was better when PTX and TMF were delivered together rather than separately. The cytotoxicity assessment in the 3D cell culture demonstrated higher anti-cancer effectiveness of aptamer-conjugated co-loaded LPHNPs, confirmed by significantly inducing cell death. Thus, the results concluded that PTX and TMF-loaded αvβ3 integrin aptamer conjugated LPHNPs have tremendous potential for treating TNBC.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Niladri Haldar
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Rajkumar Samanta
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Atmaram Pawar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India.
| |
Collapse
|
4
|
Gupta DS, Suares D. Uncovering the Emerging Prospects of Lipid-based Nanoparticulate Vehicles in Lung Cancer Management: A Recent Perspective. Pharm Nanotechnol 2025; 13:155-170. [PMID: 38468532 DOI: 10.2174/0122117385286781240228060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Divya Suares
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
5
|
Hiep Tran T, Thu Phuong Tran T. Current status of nanoparticle-mediated immunogenic cell death in cancer immunotherapy. Int Immunopharmacol 2024; 142:113085. [PMID: 39276455 DOI: 10.1016/j.intimp.2024.113085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Immunogenic cell death (ICD) encompasses various forms of cell death modalities, including apoptosis, necroptosis, ferroptosis, and pyroptosis. It arises from a harmonious interplay of adjuvant (damage-associated molecular patterns-DAMPs and chemokines/cytokines) and antigenicity (tumor-associated antigens-TAA) to induce immune-reaction toward cancer cells. Inducing ICD stands out as a promising approach in cancer immunotherapy, capable of directly eliminating cancer cells and of eliciting enduring antitumor immune responses. Conventional tumor therapies like radiation therapy, photodynamic therapy, and chemotherapy can also induce ICD which could amplify their activities. The development of effective ICD inducers like nano-systems is crucial for ensuring safe and efficacious immunotherapy. Nanoparticles hold considerable promise in cancer therapy, offering enhanced therapeutic outcomes and mitigated side effects. They could be the capacity to adjust systemic biodistribution, augment the accumulation of therapeutic agents at the intended site and protect active agents from the complexity of human biofluid. This review aims to outline the role of nanoparticles in triggering ICD for cancer immunotherapy that potentially pave the way for cancer treatment.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Thi Thu Phuong Tran
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
6
|
Liu S. Self-assembled lipid-based nanoparticles for chemotherapy against breast cancer. Front Bioeng Biotechnol 2024; 12:1482637. [PMID: 39534673 PMCID: PMC11555772 DOI: 10.3389/fbioe.2024.1482637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembled lipid-based nanoparticles have been shown to have improved therapeutic efficacy and lower toxic side effects. Breast cancer is a common type of malignant tumor in women. Conventional drugs such as doxorubicin (DOX) have shown low therapeutic efficacy and high drug toxicity in antitumor therapy. This paper surveys research on self-assembled lipid-based nanoparticles by categorizing them under three groups: self-assembled liposomal nanostructures, self-assembled niosomes, and self-assembled lipid-polymer hybrid nanoparticles. Subsequently, the structural features and operating mechanisms of each group are summarized individually along with examples of representative drugs from each group.
Collapse
Affiliation(s)
- Shan Liu
- Department of Oncology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Erebor JO, Agboluaje EO, Perkins AM, Krishnakumar M, Ngwuluka N. Targeted Hybrid Nanocarriers as Co-Delivery Systems for Enhanced Cancer Therapy. Adv Pharm Bull 2024; 14:558-573. [PMID: 39494247 PMCID: PMC11530881 DOI: 10.34172/apb.2024.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 11/05/2024] Open
Abstract
Hybrid nanocarriers have realized a growing interest in drug delivery research because of the potential of being able to treat, manage or cure diseases that previously had limited therapy or cure. Cancer is currently considered the second leading cause of death globally. This makes cancer therapy a major focus in terms of the need for efficacious and safe drug formulations that can be used to reduce the rate of morbidity and mortality globally. The major challenge encountered over the years with cancer chemotherapy is the non-selectivity of anticancer drugs, leading to severe adverse effects in patients. Multidrug resistance has also resulted in treatment failure in cancer chemotherapy over the years. Hybrid nanocarriers can be targeted to the site and offer co-delivery of two or more chemotherapeutics, thus leading to synergistic or additive results. This makes hybrid nanocarriers an extremely attractive type of drug delivery system for cancer therapy. Hybrid nanocarrier systems are also attracting attention as possible non-viral gene vectors that could have a higher level of transfection, and be efficacious, with the added advantage of being safer than viral vectors in clinical settings. An extensive review of various aspects of hybrid nanocarriers was discussed in this paper. It is envisaged that in the future, metastatic cancers, multi-drug resistant cancers, and low prognosis cancers like pancreatic cancers, will have a lasting solution via hybrid nanocarrier formulations with targeted co-delivery of therapeutics.
Collapse
Affiliation(s)
| | - Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical and Biomedical Sciences University of Georgia, 250 W. Green Street Athens, Georgia 30602- 5036 USA
| | - Ava M. Perkins
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo 3000 Arlington Ave, Toledo, OH 43614-2595 USA
| | - Megha Krishnakumar
- Catalent Pharma Solutions, 7330 Carroll Road, San Diego, California 92121-2363 USA
| | - Ndidi Ngwuluka
- Department of Pharmaceutics, Faculty of Pharmacy, University of Jos, Pharmaceutical Sciences Gate, Bauchi Rd, 930001, Jos, Plateau State, Nigeria
| |
Collapse
|
8
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
9
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
10
|
Omidian H, Gill EJ, Cubeddu LX. Lipid Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024; 16:644. [PMID: 38794306 PMCID: PMC11124812 DOI: 10.3390/pharmaceutics16050644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
This manuscript explores the use of lipid nanoparticles (LNPs) in addressing the pivotal challenges of lung cancer treatment, including drug delivery inefficacy and multi-drug resistance. LNPs have significantly advanced targeted therapy by improving the precision and reducing the systemic toxicity of chemotherapeutics such as doxorubicin and paclitaxel. This manuscript details the design and benefits of various LNP systems, including solid lipid-polymer hybrids, which offer controlled release and enhanced drug encapsulation. Despite achievements in reducing tumor size and enhancing survival, challenges such as manufacturing complexity, biocompatibility, and variable clinical outcomes persist. Future directions are aimed at refining targeting capabilities, expanding combinatorial therapies, and integrating advanced manufacturing techniques to tailor treatments to individual patient profiles, thus promising to transform lung cancer therapy through interdisciplinary collaboration and regulatory innovation.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
11
|
Gamboa J, Lourenço P, Cruz C, Gallardo E. Aptamers for the Delivery of Plant-Based Compounds: A Review. Pharmaceutics 2024; 16:541. [PMID: 38675202 PMCID: PMC11053555 DOI: 10.3390/pharmaceutics16040541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers-short RNA or single-stranded DNA molecules-have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine.
Collapse
Affiliation(s)
- Joana Gamboa
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Pedro Lourenço
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), Av. Infante D. Henrique, 6201-506 Covilhã, Portugal; (J.G.); (P.L.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| |
Collapse
|
12
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
13
|
Li Q, Chen S, Wang X, Cai J, Huang H, Tang S, He D. Cisplatin-Based Combination Therapy for Enhanced Cancer Treatment. Curr Drug Targets 2024; 25:473-491. [PMID: 38591210 DOI: 10.2174/0113894501294182240401060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Cisplatin, a primary chemotherapeutic drug, is of great value in the realm of tumor treatment. However, its clinical efficacy is strictly hindered by issues, such as drug resistance, relapse, poor prognosis, and toxicity to normal tissue. Cisplatin-based combination therapy has garnered increasing attention in both preclinical and clinical cancer research for its ability to overcome resistance, reduce toxicity, and enhance anticancer effects. This review examines three primary co-administration strategies of cisplatin-based drug combinations and their respective advantages and disadvantages. Additionally, seven types of combination therapies involving cisplatin are discussed, focusing on their main therapeutic effects, mechanisms in preclinical research, and clinical applications. This review also discusses future prospects and challenges, aiming to offer guidance for the development of optimal cisplatin-based combination therapy regimens for improved cancer treatment.
Collapse
Affiliation(s)
- Qi Li
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| | - Siwei Chen
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| | - Xiao Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| | - Jia Cai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| | - Hongwu Huang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua, China
| | - Dongxiu He
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
15
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
16
|
Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res 2023; 24:242. [PMID: 37798767 PMCID: PMC10552248 DOI: 10.1186/s12931-023-02548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Fama Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Safiya Al Yazeedi
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
17
|
Barroso PAA, Nascimento DR, Lima Neto MFD, De Assis EIT, Figueira CS, Silva JRV. Therapeutic potential of nanotechnology in reproduction disorders and possible limitations. ZYGOTE 2023; 31:433-440. [PMID: 37537957 DOI: 10.1017/s0967199423000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
One of the prominent peculiarities of nanoparticles (NPs) is their ability to cross biological barriers. Therefore, the development of NPs with different properties has great therapeutic potential in the area of reproduction because the association of drugs, hormones and other compounds with NPs represents an alternative for delivering substances directly at a specific site and for treatment of reproductive problems. Additionally, lipid-based NPs can be taken up by the tissues of patients with ovarian failure, deep endometriosis, testicular dysfunctions, etc., opening up new perspectives for the treatment of these diseases. The development of nanomaterials with specific size, shape, ligand density and charge certainly will contribute to the next generation of therapies to solve fertility problems in humans. Therefore, this review discusses the potential of NPs to treat reproductive disorders, as well as to regulate the levels of the associated hormones. The possible limitations of the clinical use of NPs are also highlighted.
Collapse
Affiliation(s)
- Pedro Alves Aguiar Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Danisvânia Ripardo Nascimento
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Miguel F De Lima Neto
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ernando Igo T De Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
- Research Center of Animal Experimentation (NUPEX), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - Ciro Siqueira Figueira
- Laboratory of Material Engineering and Simulation of Sobral (LEMSS), Federal University of Ceará - UFC, Sobral-CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará - UFC, Sobral-CE, Brazil
| |
Collapse
|
18
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Bangera PD, Kara DD, Tanvi K, Tippavajhala VK, Rathnanand M. Highlights on Cell-Penetrating Peptides and Polymer-Lipid Hybrid Nanoparticle: Overview and Therapeutic Applications for Targeted Anticancer Therapy. AAPS PharmSciTech 2023; 24:124. [PMID: 37225901 DOI: 10.1208/s12249-023-02576-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/26/2023] Open
Abstract
Polymer-lipid hybrid nanoparticles (PLHNs) have been widely used as a vehicle for carrying anticancer owing to its unique framework of polymer and lipid combining and giving the maximum advantages over the lipid and polymer nanoparticle drug delivery system. Surface modification of PLHNs aids in improved targeting and active delivery of the encapsulated drug. Therefore, surface modification of the PLHNs with the cell-penetrating peptide is explored by many researchers and is explained in this review. Cell-penetrating peptides (CPPs) are made up of few amino acid sequence and act by disrupting the cell membrane and transferring the cargos into the cell. Ideally, we can say that CPPs are peptide chains which are cell specific and are biocompatible, noninvasive type of delivery vehicle which can transport siRNA, protein, peptides, macromolecules, pDNA, etc. into the cell effectively. Therefore, this review focuses on the structure, type, and method of preparation of PLHNs also about the uptake mechanism of CPPs and concludes with the therapeutic application of PLHNs surface modified with the CPPs and their theranostics.
Collapse
Affiliation(s)
- Pragathi Devanand Bangera
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Dhatri Kara
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Katikala Tanvi
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
20
|
Gandhi S, Roy I. Lipid-Based Inhalable Micro- and Nanocarriers of Active Agents for Treating Non-Small-Cell Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15051457. [PMID: 37242697 DOI: 10.3390/pharmaceutics15051457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) afflicts about 2 million people worldwide, with both genetic (familial) and environmental factors contributing to its development and spread. The inadequacy of currently available therapeutic techniques, such as surgery, chemotherapy, and radiation therapy, in addressing NSCLC is reflected in the very low survival rate of this disease. Therefore, newer approaches and combination therapy regimens are required to reverse this dismal scenario. Direct administration of inhalable nanotherapeutic agents to the cancer sites can potentially lead to optimal drug use, negligible side effects, and high therapeutic gain. Lipid-based nanoparticles are ideal agents for inhalable delivery owing to their high drug loading, ideal physical traits, sustained drug release, and biocompatibility. Drugs loaded within several lipid-based nanoformulations, such as liposomes, solid-lipid nanoparticles, lipid-based micelles, etc., have been developed as both aqueous dispersed formulations as well as dry-powder formulations for inhalable delivery in NSCLC models in vitro and in vivo. This review chronicles such developments and charts the future prospects of such nanoformulations in the treatment of NSCLC.
Collapse
Affiliation(s)
- Sona Gandhi
- Department of Chemistry, School of Basic & Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
21
|
Narwade M, Shaikh A, Gajbhiye KR, Kesharwani P, Gajbhiye V. Advanced cancer targeting using aptamer functionalized nanocarriers for site-specific cargo delivery. Biomater Res 2023; 27:42. [PMID: 37149607 PMCID: PMC10164340 DOI: 10.1186/s40824-023-00365-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 05/08/2023] Open
Abstract
The non-specificity of standard anticancer therapies has profound detrimental consequences in clinical treatment. Therapeutic specificity can be precisely achieved using cutting-edge ligands. Small synthetic oligonucleotide-ligands chosen through Systematic evolution of ligands by exponential enrichment (SELEX) would be an unceasing innovation in using nucleic acids as aptamers, frequently referred to as "chemical antibodies." Aptamers act as externally controlled switching materials that can attach to various substrates, for example, membrane proteins or nucleic acid structures. Aptamers pose excellent specificity and affinity for target molecules and can be used as medicines to suppress tumor cell growth directly. The creation of aptamer-conjugated nanoconstructs has recently opened up innovative options in cancer therapy that are more effective and target tumor cells with minor toxicity to healthy tissues. This review focuses on a comprehensive description of the most capable classes of aptamer-tethered nanocarriers for precise recognition of cancer cells with significant development in proficiency, selectivity, and targetability for cancer therapy. Existing theranostic applications with the problems and future directions are also highlighted.
Collapse
Affiliation(s)
- Mahavir Narwade
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Aazam Shaikh
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India
| | - Kavita R Gajbhiye
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth, Pune, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411 007, India.
| |
Collapse
|
22
|
Jin B, Guo Z, Chen Z, Chen H, Li S, Deng Y, Jin L, Liu Y, Zhang Y, He N. Aptamers in cancer therapy: problems and new breakthroughs. J Mater Chem B 2023; 11:1609-1627. [PMID: 36744587 DOI: 10.1039/d2tb02579e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aptamers, a class of oligonucleotides that can bind with molecular targets with high affinity and specificity, have been widely applied in research fields including biosensing, imaging, diagnosing, and therapy of diseases. However, compared with the rapid development in the research fields, the clinical application of aptamers is progressing at a much slower speed, especially in the therapy of cancer. Obstructions including nuclease degradation, renal clearance, a complex selection process, and potential side effects have inhibited the clinical transformation of aptamer-conjugated drugs. To overcome these problems, taking certain measures to improve the biocompatibility and stability of aptamer-conjugated drugs in vivo is necessary. In this review, the obstructions mentioned above are thoroughly discussed and the methods to overcome these problems are introduced in detail. Furthermore, landmark research works and the most recent studies on aptamer-conjugated drugs for cancer therapy are also listed as examples, and the future directions of research for aptamer clinical transformation are discussed.
Collapse
Affiliation(s)
- Baijiang Jin
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhukang Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yuan Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanying Zhang
- Department of Molecular Biology, Jiangsu Cancer Hospital, Nanjing 210009, P. R. China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China. .,Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| |
Collapse
|
23
|
Nano-Enabled Strategies for the Treatment of Lung Cancer: Potential Bottlenecks and Future Perspectives. Biomedicines 2023; 11:biomedicines11020473. [PMID: 36831009 PMCID: PMC9952953 DOI: 10.3390/biomedicines11020473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
On a global scale, lung cancer is acknowledged to be the major driver of cancer death attributable to treatment challenges and poor prognosis. Classical cancer treatment regimens, such as chemotherapy or radiotherapy, can be used to treat lung cancer, but the appended adverse effects limit them. Because of the numerous side effects associated with these treatment modalities, it is crucial to strive to develop novel and better strategies for managing lung cancer. Attributes such as enhanced bioavailability, better in vivo stability, intestinal absorption pattern, solubility, prolonged and targeted distribution, and the superior therapeutic effectiveness of numerous anticancer drugs have all been boosted with the emergence of nano-based therapeutic systems. Lipid-based polymeric and inorganic nano-formulations are now being explored for the targeted delivery of chemotherapeutics for lung cancer treatment. Nano-based approaches are pioneering the route for primary and metastatic lung cancer diagnosis and treatment. The implementation and development of innovative nanocarriers for drug administration, particularly for developing cancer therapies, is an intriguing and challenging task in the scientific domain. The current article provides an overview of the delivery methods, such as passive and active targeting for chemotherapeutics to treat lung cancer. Combinatorial drug therapy and techniques to overcome drug resistance in lung cancer cells, as potential ways to increase treatment effectiveness, are also discussed. In addition, the clinical studies of the potential therapies at different stages and the associated challenges are also presented. A summary of patent literature has also been included to keep readers aware of the new and innovative nanotechnology-based ways to treat lung cancer.
Collapse
|
24
|
Zhu Y, Zhang W, Chen J. Binary Nanodrug-Delivery System Designed for Leukemia Therapy: Aptamer- and Transferrin-Codecorated Daunorubicin- and Luteolin-Coloaded Nanoparticles. Drug Des Devel Ther 2023; 17:1-13. [PMID: 36636745 PMCID: PMC9830956 DOI: 10.2147/dddt.s387246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Objective This study aimed to develop a binary nanodrug-delivery system decorated with aptamers (APs) and transferrin (Tf) and loaded with daunorubicin (Drn) and luteolin (Lut) for the treatment of leukemia. Methods Oligonucleotide AP- and Tf-contaiing ligands were designed and synthesized separately. AP-decorated Drn-loaded nanoparticles (AP-Drn NPs) and Tf-Lut NPs were prepared by self-assembly. An AP- and Tf-codecorated Drn- and Lut-coloaded nanodrug-delivery system (AP/Tf-Drn/Lut NPs) was prepared by self-assembly of AP-Drn NPs and Tf-Lut NPs. In vitro and in vivo efficiency of the system was evaluated on leukemia cell line and cell-bearing mouse model in comparison with single ligand-decorated, single drug-loaded and free-drug formulations. Results AP/Tf-Drn/Lut NPs were spherical and nanosized (187.3±5.3 nm) and loaded with about 85% of drugs. In vitro cytotoxicity of AP/Tf-Drn/Lut NPs was remarkably higher than single ligand-decorated ones. Double drug-loaded AP/Tf-Drn/Lut NPs exhibited higher tumor-cell inhibition than single drug-loaded ones, which showed a synergic effect of the two drugs. AP/Tf-Drn/Lut NPs achieved the most efficient antileukemic activity and absence of toxicity in vivo. Conclusion The present study showed that AP/Tf-Drn/Lut NPs are a promising drug-delivery system for targeted treatment of leukemia, due to the synergic effect of the two drugs in this system. The limitations of this system include stability during large-scale production and application from bench to bedside.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- Department of Pharmacy, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Wei Zhang
- Department of Pharmacy, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Jing Chen
- Department of Pharmacy, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, People’s Republic of China,Correspondence: Jing Chen, Department of Pharmacy, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital Affiliated with Qingdao University, 4 Renmin Road, Qingdao, Shandong Province, 266000, People’s Republic of China, Email
| |
Collapse
|
25
|
Gupta C, Jaipuria A, Gupta N. Inhalable Formulations to Treat Non-Small Cell Lung Cancer (NSCLC): Recent Therapies and Developments. Pharmaceutics 2022; 15:139. [PMID: 36678768 PMCID: PMC9861595 DOI: 10.3390/pharmaceutics15010139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer has been the leading cause of mortalities, with lung cancer contributing 18% to overall deaths. Non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. The primary form of therapy used to treat lung cancer still includes oral and systemic administration of drugs, radiotherapy, or chemotherapy. Some patients have to go through a regime of combination therapy. Despite being the only available form of therapy, their use is limited due to the adverse effects, toxicity, and development of resistance over prolonged use. This led to a shift and progressive evolution into using pulmonary drug delivery systems. Being a non-invasive method of drug-administration and allowing localized delivery of drugs to cancer cells, inhalable drug delivery systems can lead to lower dosing and fewer systemic toxicities over other conventional routes. In this way, we can increase the actual local concentration of the drug in lungs, which will ultimately lead to better antitumor therapy. Nano-based systems also provide additional diagnostic advantages during lung cancer treatment, including imaging, screening, and tracking. Regardless of the advantages, pulmonary delivery is still in the early stages of development and various factors such as pharmacology, immunology, and toxicology should be taken into consideration for the development of suitable inhalable nano-based chemotherapeutic drugs. They face numerous physiological barriers such as lung retention and efficacy, and could also lead to toxicity due to prolonged exposure. Nano-carriers with a sustained drug release mechanism could help in overcoming these challenges. This review article will focus on the various inhalable formulations for targeted drug delivery, including nano-based delivery systems such as lipids, liposome, polymeric and inorganic nanocarriers, micelles, microparticles and nanoaggregates for lung cancer treatment. Various devices used in pulmonary drug delivery loaded on various nano-carriers are also discussed in detail.
Collapse
Affiliation(s)
- Chetna Gupta
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Aadya Jaipuria
- Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115, USA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Chen Y, Xu Z, Lu T, Luo J, Xue H. Prostate-specific membrane antigen targeted, glutathione-sensitive nanoparticles loaded with docetaxel and enzalutamide for the delivery to prostate cancer. Drug Deliv 2022; 29:2705-2712. [PMID: 35980107 PMCID: PMC9487954 DOI: 10.1080/10717544.2022.2110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignant tumor in men. Chemotherapy with docetaxel (DTX) and novel hormonal agents such as enzalutamide (EZL) and abiraterone are the preferred first-line therapeutic regimens. Prostate-specific membrane antigen (PSMA) is overexpressed on the surface of PCa cells. This study aimed to prepare a PSMA targeted (Glutamate-Urea-Lysine, GUL ligand modified), glutathione (GSH)-sensitive (Cystamine, SS), DTX and EZL co-loaded nanoparticles (GUL-SS DTX/EZL-NPs) to treat PCa. Polyethylene glycol (PEG) was conjugated with oleic acid (OA) using a GSH-sensitive ligand: cystamine (PEG-SS-OA). GUL was covalently coupled to PEG-SS-OA to achieve GUL-PEG-SS-OA. GUL-PEG-SS-OA was used to prepare GUL-SS DTX/EZL-NPs. To evaluate the in vitro and in vivo efficiency of the system, human prostate cancer cell lines and PCa cells bearing mice were applied. Single drug-loaded nanoparticle and free drugs systems were utilized for the comparison of the anticancer ability. GUL-SS DTX/EZL-NPs showed a size of 143.7 ± 4.1 nm, with a PDI of 0.162 ± 0.037 and a zeta potential of +29.1 ± 2.4 mV. GUL-SS DTX/EZL-NPs showed high cancer cell uptake of about 70%, as well as higher cell growth inhibition efficiency (a maximum 79% of cells were inhibited after treatment) than single drug-loaded NPs and free drugs. GUL-SS DTX/EZL-NPs showed the most prominent tumor inhibition ability and less systemic toxicity. The novel GUL-SS DTX/EZL-NPs could be used as a promising system for PCa therapy.
Collapse
Affiliation(s)
- Yang Chen
- Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Zhenyu Xu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi214000, Jiangsu Province, China
| | - Jia Luo
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong226000, Jiangsu Province, China
| | - Hua Xue
- Department of Pharmacy, Wuxi Mental Health Center, Wuxi214000, Jiangsu Province, China
| |
Collapse
|
27
|
Amanat M, Nemeth CL, Fine AS, Leung DG, Fatemi A. Antisense Oligonucleotide Therapy for the Nervous System: From Bench to Bedside with Emphasis on Pediatric Neurology. Pharmaceutics 2022; 14:2389. [PMID: 36365206 PMCID: PMC9695718 DOI: 10.3390/pharmaceutics14112389] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023] Open
Abstract
Antisense oligonucleotides (ASOs) are disease-modifying agents affecting protein-coding and noncoding ribonucleic acids. Depending on the chemical modification and the location of hybridization, ASOs are able to reduce the level of toxic proteins, increase the level of functional protein, or modify the structure of impaired protein to improve function. There are multiple challenges in delivering ASOs to their site of action. Chemical modifications in the phosphodiester bond, nucleotide sugar, and nucleobase can increase structural thermodynamic stability and prevent ASO degradation. Furthermore, different particles, including viral vectors, conjugated peptides, conjugated antibodies, and nanocarriers, may improve ASO delivery. To date, six ASOs have been approved by the US Food and Drug Administration (FDA) in three neurological disorders: spinal muscular atrophy, Duchenne muscular dystrophy, and polyneuropathy caused by hereditary transthyretin amyloidosis. Ongoing preclinical and clinical studies are assessing the safety and efficacy of ASOs in multiple genetic and acquired neurological conditions. The current review provides an update on underlying mechanisms, design, chemical modifications, and delivery of ASOs. The administration of FDA-approved ASOs in neurological disorders is described, and current evidence on the safety and efficacy of ASOs in other neurological conditions, including pediatric neurological disorders, is reviewed.
Collapse
Affiliation(s)
- Man Amanat
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christina L. Nemeth
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Amena Smith Fine
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Doris G. Leung
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Ezhilarasan D, Lakshmi T, Mallineni SK. Nano-based targeted drug delivery for lung cancer: therapeutic avenues and challenges. Nanomedicine (Lond) 2022; 17:1855-1869. [PMID: 35311343 DOI: 10.2217/nnm-2021-0364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Most anticancer drugs often fail in clinical trials due to poor solubility, poor bioavailability, lack of targeted delivery and several off-target effects. Polymeric nanoparticles such as poly(lactide), poly(lactic-co-glycolic acid), ALB-loading paclitaxel (Abraxane® ABI-007), lomustine-loaded chitosan, gelatin (decorated with EGF receptor-targeted biotinylated EGF) and so on offer controlled and sustained drug-release properties, biocompatibility and promising anticancer effects. EGF, folic acid, transferrin, sigma and urokinase plasminogen activator receptors-targeting nano preparations improve bioavailability and accumulate drugs on the lung tumor cell surface. However, route of administration, size, pharmacokinetic properties, immune clearance and so on hamper nanomedicines' clinical uses. This review focuses on the benefits, avenues and challenges of nanoparticle-based drug-delivery systems for lung cancer treatment.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Gold Lab, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Thangavelu Lakshmi
- Department of Pharmacology, Gold Lab, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Sreekanth Kumar Mallineni
- Department of Preventive Dental Sciences, College of Dentistry, Majmaah University, Almajmaah, 11952, Saudi Arabia
| |
Collapse
|
29
|
Kumar R, Dkhar DS, Kumari R, Supratim Mahapatra D, Srivastava A, Dubey VK, Chandra P. Ligand conjugated lipid-based nanocarriers for cancer theranostics. Biotechnol Bioeng 2022; 119:3022-3043. [PMID: 35950676 DOI: 10.1002/bit.28205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022]
Abstract
Cancer is one of the major health-related issues affecting the population worldwide and subsequently accounts for the second-largest death. Genetic and epigenetic modifications in oncogenes or tumor suppressor genes affect the regulatory systems that lead to the initiation and progression of cancer. Conventional methods, including chemotherapy/radiotherapy/appropriate combinational therapy and surgery, are being widely used for theranostics of cancer patients. Surgery is useful in treating localized tumors, but it is ineffective in treating metastatic tumors, which spread to other organs and result in a high recurrence rate and death. Also, the therapeutic application of free drugs is related to substantial issues such as poor absorption, solubility, bioavailability, high degradation rate, short shelf-life, and low therapeutic index. Therefore, these issues can be sorted out using nano lipid-based carriers (NLBCs) as promising drug delivery carriers. Still, at most, they fail to achieve site targeted drug delivery and detection. This can be achieved by selecting a specific ligand/antibody for its cognate receptor molecule expressed on the surface of cancer cell. In this review, we have mainly discussed the various types of ligands used to decorate NLBCs. A list of the ligands used to design nanocarriers to target malignant cells has been extensively undertaken. The approved ligand decorated lipid-based nanomedicines with their clinical status has been explained in tabulated form to provide a wider scope to the readers regarding ligand coupled NLBCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rahul Kumar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Daphika S Dkhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rohini Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Divya Supratim Mahapatra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
30
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
31
|
Sun L, Zhao P, Chen M, Leng J, Luan Y, Du B, Yang J, Yang Y, Rong R. Taxanes prodrug-based nanomedicines for cancer therapy. J Control Release 2022; 348:672-691. [PMID: 35691501 DOI: 10.1016/j.jconrel.2022.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022]
Abstract
Malignant tumor remains a huge threat to human health and chemotherapy still occupies an important place in clinical tumor treatment. As a kind of potent antimitotic agent, taxanes act as the first-line broad-spectrum cancer drug in clinical use. However, disadvantages such as prominent hydrophobicity, severe off-target toxicity or multidrug resistance lead to unsatisfactory therapeutic effects, which restricts its wider usage. The efficient delivery of taxanes is still quite a challenge despite the rapid developments in biomaterials and nanotechnology. Great progress has been made in prodrug-based nanomedicines (PNS) for cancer therapy due to their outstanding advantages such as high drug loading efficiency, low carrier induced immunogenicity, tumor stimuli-responsive drug release, combinational therapy and so on. Based on the numerous developments in this filed, this review summarized latest updates of taxanes prodrugs-based nanomedicines (TPNS), focusing on polymer-drug conjugate-based nanoformulations, small molecular prodrug-based self-assembled nanoparticles and prodrug-encapsulated nanosystems. In addition, the new trends of tumor stimuli-responsive TPNS were also discussed. Moreover, the future challenges of TPNS for clinical translation were highlighted. We here expect this review will inspire researchers to explore more practical taxanes prodrug-based nano-delivery systems for clinical use.
Collapse
Affiliation(s)
- Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Pan Zhao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Menghan Chen
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jiayi Leng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yixin Luan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Baoxiang Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jia Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Rong Rong
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
32
|
Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Liu Y, Zhang H, Cui H, Zhang F, Zhao L, Liu Y, Meng Q. Combined and targeted drugs delivery system for colorectal cancer treatment: Conatumumab decorated, reactive oxygen species sensitive irinotecan prodrug and quercetin co-loaded nanostructured lipid carriers. Drug Deliv 2022; 29:342-350. [PMID: 35049388 PMCID: PMC8786253 DOI: 10.1080/10717544.2022.2027573] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Colorectal cancer (CRC) is the third most frequently diagnosed cancer and this study aimed to develop a conatumumab decorated, irinotecan prodrug and quercetin co-loaded delivery system for combined and targeted colorectal cancer treatment. METHODS A conatumumab (C) decorated, irinotecan prodrug (I-p) and quercetin (Q) co-encapsulated NLC (C I-p/Q NLC) was developed. In vitro and in vivo antitumor efficiency of NLC was evaluated on CRC cells and mice xenograft. RESULTS The results showed that the HT-29 cells uptake of C I-p/Q NLC was over 70%. Reactive oxygen species (ROS) sensitive irinotecan prodrug formulation showed improved drug release ability in hypoxic conditions. C I-p/Q NLC showed significantly higher cytotoxicity than non-decorated NLC, single drug-loaded NLC and free drugs. In vivo studies in a CRC-bearing model corroborated the capability of nanoparticles for the inhibition of cancer, leading to a reduction of tumor growth without systemic toxicity. CONCLUSION The conatumumab decorated, ROS sensitive prodrug contained combination nano-system is a promising platform for CRC therapy.
Collapse
Affiliation(s)
- Youqiang Liu
- The Second Department of General Surgery, the Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei Province, China
| | - Hongxin Zhang
- Ward 1 of Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Haijing Cui
- Ward 2 of Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Futong Zhang
- Ward 1 of Department of Oncology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei Province, China
| | - Liyan Zhao
- Department of Endocrinology, the First Hospital of Xingtai, Xingtai, Hebei Province, China
| | - Yibing Liu
- Department of Medical Oncology, the Fourth Hospital of Hebei Medical University, Hebei Cancer Hospital, Shijiazhuang, Hebei Province, China
| | - Qingju Meng
- Department of Osteology, the First Hospital of Xingtai, Xingtai, Hebei Province, China
| |
Collapse
|
34
|
Ao M, Yu F, Li Y, Zhong M, Tang Y, Yang H, Wu X, Zhuang Y, Wang H, Sun X, Hong X, Chen XD. Carrier-free nanoparticles of camptothecin prodrug for chemo-photothermal therapy: the making, in vitro and in vivo testing. J Nanobiotechnology 2021; 19:350. [PMID: 34717646 PMCID: PMC8557616 DOI: 10.1186/s12951-021-01093-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/18/2021] [Indexed: 11/25/2022] Open
Abstract
Background Nanoscale drug delivery systems have emerged as broadly applicable approach for chemo-photothermal therapy. However, these nanoscale drug delivery systems suffer from carrier-induced toxicity, uncontrolled drug release and low drug carrying capacity issues. Thus, to develop carrier-free nanoparticles self-assembled from amphiphilic drug molecules, containing photothermal agent and anticancer drug, are very attractive. Results In this study, we conjugated camptothecin (CPT) with a photothermal agent new indocyanine green (IR820) via a redox-responsive disulfide linker. The resulting amphiphilic drug–drug conjugate (IR820-SS-CPT) can self-assemble into nanoparticles (IR820-SS-CPT NPs) in aqueous solution, thus remarkably improving the membrane permeability of IR820 and the aqueous solubility of CPT. The disulfide bond in the IR820-SS-CPT NPs could be cleaved in GSH rich tumor microenvironment, leading to the on demand release of the conjugated drug. Importantly, the IR820-SS-CPT NPs displayed an extremely high therapeutic agent loading efficiency (approaching 100%). Besides, in vitro experimental results indicated that IR820-SS-CPT NPs displayed remarkable tumor cell killing efficiency. Especially, the IR820-SS-CPT NPs exhibited excellent anti-tumor effects in vivo. Both in vitro and in vivo experiments were conducted, which have indicated that the design of IR820-SS-CPT NPs can provide an efficient nanotherapeutics for chemo-photothermal therapy. Conclusion A novel activatable amphiphilic small molecular prodrug IR820-SS-CPT has been developed in this study, which integrated multiple advantages of GSH-triggered drug release, high therapeutic agent content, and combined chemo-photothermal therapy into one drug delivery system. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01093-y.
Collapse
Affiliation(s)
- Mingtao Ao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Yu
- Medical College, Guangxi University, Nanning, 530004, China. .,Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China.
| | - Yixiang Li
- Medical College, Guangxi University, Nanning, 530004, China
| | - Mengya Zhong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China
| | - Yonghe Tang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xiaojing Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Yifan Zhuang
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao, 276826, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xuehui Hong
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361005, China.
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
35
|
Zahiri M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Fabrication of versatile targeted lipopolymersomes for improved camptothecin efficacy against colon adenocarcinoma in vitro and in vivo. Expert Opin Drug Deliv 2021; 18:1309-1322. [PMID: 33970721 DOI: 10.1080/17425247.2021.1928631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hybrid vesicular systems (lipopolymersomes) are promising platforms for minimizing the liposomes and polymersomes disadvantages in terms of chemotherapeutic transportation. In this regard, lipopolymersome has been designed to integrate the advantage of both polymersomes and liposomes to enable better structural integrity of the bilayer after encapsulation of hydrophobic drugs while maintaining the soft nature of liposomes, superior serum stability, and high encapsulation efficiency of cargos in the bilayer segment. RESEARCH DESIGN AND METHODS In the present study, we reported preparation and characterization of five camptothecin (CPT)-loaded lipopolymersomal formulations composed of poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) and dipalmitoylphosphatidylcholine (DPPC) at different molar ratios using film rehydration method. Afterward, the preferred formulation was tagged with AS1411 DNA aptamer in order to evaluate the therapeutic index using nucleolin-positive colon cancer cell lines (HT29 and C26). RESULTS The obtained data indicated that the prepared CPT-loaded lipopolymersome at a PEG-PLA: DPPC ratio of 75:25 exhibited superior stability and high loading capacity compared to other systems. Moreover, high cytotoxicity of the aptamer-targeted lipopolymersome and increased tumor accumulation were observed in comparison with non-targeted one. CONCLUSIONS The designed polymer-rich lipopolymersomal platform offers bright future for the development of potent nanomedicine against cancer.
Collapse
Affiliation(s)
- Mahsa Zahiri
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
A Reflection on the Mechanism of the Role of Nanoparticles in Increasing the Efficacy of Anti-tumour Properties of Docetaxel. CURRENT PATHOBIOLOGY REPORTS 2021. [DOI: 10.1007/s40139-021-00223-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
38
|
Feng QP, Zhu YT, Yuan YZ, Li WJ, Yu HH, Hu MY, Xiang SY, Yu SQ. Oral administration co-delivery nanoparticles of docetaxel and bevacizumab for improving intestinal absorption and enhancing anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112039. [PMID: 33947539 DOI: 10.1016/j.msec.2021.112039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
In this study, to improve the intestinal absorption of small molecule chemotherapeutic drug docetaxel (DTX) and macromolecular monoclonal antibody drug bevacizumab (BVZ), we designed and prepared a type of co-delivery nanoparticles for the oral administration of DTX and BVZ. Carboxymethyl chitosan (CMC) and poly(lactic-co-glycolic acid) (PLGA) were used as the carrier of DTX nanoparticles (CPNPDTX), and methoxy polyethylene glycol-poly (β-amino ester) (mPEG-PAE) was used as the carrier of BVZ nanoparticles (PPNPBVZ). Then, the two nanoparticles were physically mixed in mass ratios to form mixed co-delivery nanoparticles, which was named as CPNPDTX&PPNPBVZ. The nanoparticles were characterized with pH-sensitive drug release property. CPNPDTX&PPNPBVZ could significantly increase the bioavailability of DTX and BVZ according to the more cellular uptake in Caco-2 cells and the higher absorption in the intestinal tissue. Compared with free DTX and BVZ, CPNPDTX&PPNPBVZ showed excellent cytotoxic effects on A549 cells. Our study revealed the potential of co-delivery nanoparticles of binary mixture of chemotherapeutic small molecule and macromolecular antibody drug as an oral administration therapeutic system.
Collapse
Affiliation(s)
- Qiu-Ping Feng
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Yu-Ting Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yi-Zhen Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen-Jie Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Hao-Han Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng-Yuan Hu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Su-Yun Xiang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
39
|
A. Razak SA, Mohd Gazzali A, Fisol FA, M. Abdulbaqi I, Parumasivam T, Mohtar N, A. Wahab H. Advances in Nanocarriers for Effective Delivery of Docetaxel in the Treatment of Lung Cancer: An Overview. Cancers (Basel) 2021; 13:400. [PMID: 33499040 PMCID: PMC7865793 DOI: 10.3390/cancers13030400] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
Docetaxel (DCX) is a highly effective chemotherapeutic drug used in the treatment of different types of cancer, including non-small cell lung cancer (NSCLC). The drug is known to have low oral bioavailability due to its low aqueous solubility, poor membrane permeability and susceptibility to hepatic first-pass metabolism. To mitigate these problems, DCX is administered via the intravenous route. Currently, DCX is commercially available as a single vial that contains polysorbate 80 and ethanol to solubilize the poorly soluble drug. However, this formulation causes short- and long-term side effects, including hypersensitivity, febrile neutropenia, fatigue, fluid retention, and peripheral neuropathy. DCX is also a substrate to the drug efflux pump P-glycoprotein (P-gp) that would reduce its concentration within the vicinity of the cells and lead to the development of drug resistance. Hence, the incorporation of DCX into various nanocarrier systems has garnered a significant amount of attention in recent years to overcome these drawbacks. The surfaces of these drug-delivery systems indeed can be functionalized by modification with different ligands for smart targeting towards cancerous cells. This article provides an overview of the latest nanotechnological approaches and the delivery systems that were developed for passive and active delivery of DCX via different routes of administration for the treatment of lung cancer.
Collapse
Affiliation(s)
- S. Aishah A. Razak
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Faisalina Ahmad Fisol
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Institute of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation (MOSTI), Gelugor, Penang 11700, Malaysia
| | - Ibrahim M. Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia; (S.A.A.R.); (F.A.F.); (I.M.A.); (T.P.); (N.M.)
| |
Collapse
|
40
|
Doroudian M, O' Neill A, Mac Loughlin R, Prina-Mello A, Volkov Y, Donnelly SC. Nanotechnology in pulmonary medicine. Curr Opin Pharmacol 2020; 56:85-92. [PMID: 33341460 PMCID: PMC7746087 DOI: 10.1016/j.coph.2020.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022]
Abstract
Nanotechnology in medicine—nanomedicine—is extensively employed to diagnose, treat, and prevent pulmonary diseases. Over the last few years, this brave new world has made remarkable progress, offering opportunities to address historical clinical challenges in pulmonary diseases including multidrug resistance, adverse side effects of conventional therapeutic agents, novel imaging, and earlier disease detection. Nanomedicine is also being applied to tackle the new emerging infectious diseases, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), influenza A virus subtype H1N1 (A/H1N1), and more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this review we provide both a historical overview of the application of nanomedicine to respiratory diseases and more recent cutting-edge approaches such as nanoparticle-mediated combination therapies, novel double-targeted nondrug delivery system for targeting, stimuli-responsive nanoparticles, and theranostic imaging in the diagnosis and treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland; Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Andrew O' Neill
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland
| | - Ronan Mac Loughlin
- Aerogen, IDA Business Park, Dangan, Galway, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland; School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland; Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland
| | - Yuri Volkov
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Department of Medicine, Trinity College Dublin, Ireland; Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Ireland; CRANN Institute and AMBER Centre, Trinity College Dublin, Ireland; Department of Histology, Cytology and Embryology, First Moscow State Sechenov Medical University, Moscow, Russian Federation
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital & Trinity College Dublin, Ireland.
| |
Collapse
|