1
|
Huan Z, Li J, Luo Z, Yu Y, Li L. Hydrogel-Encapsulated Pancreatic Islet Cells as a Promising Strategy for Diabetic Cell Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0403. [PMID: 38966749 PMCID: PMC11221926 DOI: 10.34133/research.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024]
Abstract
Islet transplantation has now become a promising treatment for insulin-deficient diabetes mellitus. Compared to traditional diabetes treatments, cell therapy can restore endogenous insulin supplementation, but its large-scale clinical application is impeded by donor shortages, immune rejection, and unsuitable transplantation sites. To overcome these challenges, an increasing number of studies have attempted to transplant hydrogel-encapsulated islet cells to treat diabetes. This review mainly focuses on the strategy of hydrogel-encapsulated pancreatic islet cells for diabetic cell therapy, including different cell sources encapsulated in hydrogels, encapsulation methods, hydrogel types, and a series of accessorial manners to improve transplantation outcomes. In addition, the formation and application challenges as well as prospects are also presented.
Collapse
Affiliation(s)
- Zhikun Huan
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Yunru Yu
- Pharmaceutical Sciences Laboratory,
Åbo Akademi University, Turku 20520, Finland
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine,
Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Toftdal MS, Grunnet LG, Chen M. Emerging Strategies for Beta Cell Encapsulation for Type 1 Diabetes Therapy. Adv Healthc Mater 2024; 13:e2400185. [PMID: 38452393 DOI: 10.1002/adhm.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Indexed: 03/09/2024]
Abstract
Diabetes is a prevalent chronic disease affecting millions of people globally. To address this health challenge, advanced beta cell therapy using biomaterials-based macroscale, microscale, and nanoscale encapsulation devices must tackle various obstacles. First, overcoming foreign body responses is a major focus of research. Strategies such as immunomodulatory materials and physical immunoshielding are investigated to reduce the immune response and improve the longevity of the encapsulated cells. Furthermore, oxygenating strategies, such as the use of oxygen-releasing biomaterials, are developed to improve oxygen diffusion and promote cell survival. Finally, yet importantly, promoting vascularization through the use of angiogenic growth factors and the incorporation of pre-vascularized materials are also explored to enhance nutrient and oxygen supply to the encapsulated cells. This review seeks to specifically highlight the emerging research strategies developed to overcome these challenges using micro and nanoscale biomaterial encapsulation devices. Continuously improving and refining these strategies make an advance toward realizing the improved therapeutic potential of the encapsulated beta cells.
Collapse
Affiliation(s)
- Mette Steen Toftdal
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, 8000, Denmark
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Lars Groth Grunnet
- Department of Cell Formulation and Delivery, Novo Nordisk A/S, Måløv, 2760, Denmark
| | - Menglin Chen
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus C, 8000, Denmark
| |
Collapse
|
3
|
Mi B, Xiong Y, Zha K, Cao F, Zhou W, Abbaszadeh S, Ouyang L, Liao Y, Hu W, Dai G, Zhao Z, Feng Q, Shahbazi MA, Liu G. Immune homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated bone regeneration. Biomater Sci 2023; 11:6035-6059. [PMID: 37522328 DOI: 10.1039/d3bm00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guandong Dai
- Department of Orthopedic Surgery, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
4
|
Trombino S, Sole R, Curcio F, Cassano R. Polymeric Based Hydrogel Membranes for Biomedical Applications. MEMBRANES 2023; 13:576. [PMID: 37367780 DOI: 10.3390/membranes13060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The development of biomedical applications is a transdisciplinary field that in recent years has involved researchers from chemistry, pharmacy, medicine, biology, biophysics, and biomechanical engineering. The fabrication of biomedical devices requires the use of biocompatible materials that do not damage living tissues and have some biomechanical characteristics. The use of polymeric membranes, as materials meeting the above-mentioned requirements, has become increasingly popular in recent years, with outstanding results in tissue engineering, for regeneration and replenishment of tissues constituting internal organs, in wound healing dressings, and in the realization of systems for diagnosis and therapy, through the controlled release of active substances. The biomedical application of hydrogel membranes has had little uptake in the past due to the toxicity of cross-linking agents and to the existing limitations regarding gelation under physiological conditions, but now it is proving to be a very promising field This review presents the important technological innovations that the use of membrane hydrogels has promoted, enabling the resolution of recurrent clinical problems, such as post-transplant rejection crises, haemorrhagic crises due to the adhesion of proteins, bacteria, and platelets on biomedical devices in contact with blood, and poor compliance of patients undergoing long-term drug therapies.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
5
|
Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus. Stem Cell Rev Rep 2022; 19:601-624. [PMID: 36434300 DOI: 10.1007/s12015-022-10482-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, lifelong metabolic disease. It is characterised by the autoimmune-mediated loss of insulin-producing pancreatic β cells in the islets of Langerhans (β-islets), resulting in disrupted glucose homeostasis. Administration of exogenous insulin is the most common management method for T1D, but this requires lifelong reliance on insulin injections and invasive blood glucose monitoring. Replacement therapies with beta cells are being developed as an advanced curative treatment for T1D. Unfortunately, this approach is limited by the lack of donated pancreatic tissue, the difficulties in beta cell isolation and viability maintenance, the longevity of the transplanted cells in vivo, and consequently high costs. Emerging approaches to address these limitations are under intensive investigations, including the production of insulin-producing beta cells from various stem cells, and the development of bioengineered devices including nanotechnologies for improving islet transplantation efficacy without the need for recipients taking toxic anti-rejection drugs. These emerging approaches present promising prospects, while the challenges with the new techniques need to be tackled for ultimately clinical treatment of T1D. This review discussed the benefits and limitations of the cell-based therapies for beta cell replacement as potential curative treatment for T1D, and the applications of bioengineered devices including nanotechnology to overcome the challenges associated with beta cell transplantation.
Collapse
|
6
|
Xu Y, Song D, Wang X. 3D Bioprinting for Pancreas Engineering/Manufacturing. Polymers (Basel) 2022; 14:polym14235143. [PMID: 36501537 PMCID: PMC9741443 DOI: 10.3390/polym14235143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes is the most common chronic disease in the world, and it brings a heavy burden to people's health. Against this background, diabetic research, including islet functionalization has become a hot topic in medical institutions all over the world. Especially with the rapid development of microencapsulation and three-dimensional (3D) bioprinting technologies, organ engineering and manufacturing have become the main trends for disease modeling and drug screening. Especially the advanced 3D models of pancreatic islets have shown better physiological functions than monolayer cultures, suggesting their potential in elucidating the behaviors of cells under different growth environments. This review mainly summarizes the latest progress of islet capsules and 3D printed pancreatic organs and introduces the activities of islet cells in the constructs with different encapsulation technologies and polymeric materials, as well as the vascularization and blood glucose control capabilities of these constructs after implantation. The challenges and perspectives of the pancreatic organ engineering/manufacturing technologies have also been demonstrated.
Collapse
|
7
|
Shi Y, Zhao YZ, Jiang Z, Wang Z, Wang Q, Kou L, Yao Q. Immune-Protective Formulations and Process Strategies for Improved Survival and Function of Transplanted Islets. Front Immunol 2022; 13:923241. [PMID: 35903090 PMCID: PMC9315421 DOI: 10.3389/fimmu.2022.923241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the immune system attacking and destroying insulin-producing β cells in the pancreas. Islet transplantation is becoming one of the most promising therapies for T1D patients. However, its clinical use is limited by substantial cell loss after islet infusion, closely related to immune reactions, including instant blood-mediated inflammatory responses, oxidative stress, and direct autoimmune attack. Especially the grafted islets are not only exposed to allogeneic immune rejection after transplantation but are also subjected to an autoimmune process that caused the original disease. Due to the development and convergence of expertise in biomaterials, nanotechnology, and immunology, protective strategies are being investigated to address this issue, including exploring novel immune protective agents, encapsulating islets with biomaterials, and searching for alternative implantation sites, or co-transplantation with functional cells. These methods have significantly increased the survival rate and function of the transplanted islets. However, most studies are still limited to animal experiments and need further studies. In this review, we introduced the immunological challenges for islet graft and summarized the recent developments in immune-protective strategies to improve the outcomes of islet transplantation.
Collapse
Affiliation(s)
- Yannan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeqing Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Yao, ; Longfa Kou,
| |
Collapse
|
8
|
Karimova MV, Gvazava IG, Vorotelyak EA. Overcoming the Limitations of Stem Cell-Derived Beta Cells. Biomolecules 2022; 12:biom12060810. [PMID: 35740935 PMCID: PMC9221417 DOI: 10.3390/biom12060810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
Great advances in type 1 diabetes (T1D) and type 2 diabetes (T2D) treatment have been made to this day. However, modern diabetes therapy based on insulin injections and cadaveric islets transplantation has many disadvantages. That is why researchers are developing new methods to regenerate the pancreatic hormone-producing cells in vitro. The most promising approach is the generation of stem cell-derived beta cells that could provide an unlimited source of insulin-secreting cells. Recent studies provide methods to produce beta-like cell clusters that display glucose-stimulated insulin secretion—one of the key characteristics of the beta cell. However, in comparison with native beta cells, stem cell-derived beta cells do not undergo full functional maturation. In this paper we review the development and current state of various protocols, consider advantages, and propose ways to improve them. We examine molecular pathways, epigenetic modifications, intracellular components, and the microenvironment as a possible leverage to promote beta cell functional maturation. A possibility to create islet organoids from stem cell-derived components, as well as their encapsulation and further transplantation, is also examined. We try to combine modern research on beta cells and their crosstalk to create a holistic overview of developing insulin-secreting systems.
Collapse
Affiliation(s)
- Mariana V. Karimova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Inessa G. Gvazava
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
| | - Ekaterina A. Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 119334 Moscow, Russia; (M.V.K.); (I.G.G.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
9
|
Vemana HP, Dukhande VV. Recent advances in the application of nanomedicine for the treatment of diabetes. Nanomedicine (Lond) 2022; 17:65-69. [PMID: 34983192 PMCID: PMC8765109 DOI: 10.2217/nnm-2021-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA,Author for correspondence: Tel.: +1 718 990 5009;
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA,Author for correspondence: Tel.: +1 718 990 2640;
| |
Collapse
|
10
|
Wu S, Wang L, Fang Y, Huang H, You X, Wu J. Advances in Encapsulation and Delivery Strategies for Islet Transplantation. Adv Healthc Mater 2021; 10:e2100965. [PMID: 34480420 DOI: 10.1002/adhm.202100965] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic metabolic disease caused by the destruction of pancreatic β-cells in response to autoimmune reactions. Shapiro et al. conducted novel islet transplantation with a glucocorticoid-free immunosuppressive agent in 2000 and achieved great success; since then, islet transplantation has been increasingly regarded as a promising strategy for the curative treatment of T1DM. However, many unavoidable challenges, such as a lack of donors, poor revascularization, blood-mediated inflammatory reactions, hypoxia, and side effects caused by immunosuppression have severely hindered the widespread application of islet transplantation in clinics. Biomaterial-based encapsulation and delivery strategies are proposed for overcoming these obstacles, and have demonstrated remarkable improvements in islet transplantation outcomes. Herein, the major problems faced by islet transplantation are summarized and updated biomaterial-based strategies for islet transplantation, including islet encapsulation across different scales, delivery of stem cell-derived beta cells, co-delivery of islets with accessory cells and immunomodulatory molecules are highlighted.
Collapse
Affiliation(s)
- Siying Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Liying Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Yifen Fang
- The Affiliated TCM Hospital of Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Hai Huang
- Department of Urology Sun Yat‐sen Memorial Hospital Sun Yat‐sen University Guangzhou 510120 P. R. China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province School of Biomedical Engineering Sun Yat‐sen University Guangzhou 510006 P. R. China
| |
Collapse
|
11
|
Ghasemi A, Akbari E, Imani R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front Bioeng Biotechnol 2021; 9:662084. [PMID: 34513805 PMCID: PMC8427138 DOI: 10.3389/fbioe.2021.662084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Islet transplantation provides a promising strategy in treating type 1 diabetes as an autoimmune disease, in which damaged β-cells are replaced with new islets in a minimally invasive procedure. Although islet transplantation avoids the complications associated with whole pancreas transplantations, its clinical applications maintain significant drawbacks, including long-term immunosuppression, a lack of compatible donors, and blood-mediated inflammatory responses. Biomaterial-assisted islet transplantation is an emerging technology that embeds desired cells into biomaterials, which are then directly transplanted into the patient, overcoming the aforementioned challenges. Among various biomaterials, hydrogels are the preferred biomaterial of choice in these transplants due to their ECM-like structure and tunable properties. This review aims to present a comprehensive overview of hydrogel-based biomaterials that are engineered for encapsulation of insulin-secreting cells, focusing on new hydrogel design and modification strategies to improve β-cell viability, decrease inflammatory responses, and enhance insulin secretion. We will discuss the current status of clinical studies using therapeutic bioengineering hydrogels in insulin release and prospective approaches.
Collapse
Affiliation(s)
| | | | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|