1
|
Przegaliński E, Witek K, Wydra K, Kotlińska JH, Filip M. 5-HT2C Receptor Stimulation in Obesity Treatment: Orthosteric Agonists vs. Allosteric Modulators. Nutrients 2023; 15:nu15061449. [PMID: 36986191 PMCID: PMC10058696 DOI: 10.3390/nu15061449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/22/2023] Open
Abstract
Obesity is a substantial health and economic issue, and serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter system involved in the regulation of body weight. The 5-HT2C receptors (5-HT2CRs), one of 16 of the 5-HT receptor (5-HTRs) subtypes, play a significant role in food intake and body weight control. In this review, we focused on the 5-HTR agonists, such as fenfluramines, sibutramine, and lorcaserin, which act directly or indirectly at 5-HT2CRs and have been introduced into the clinic as antiobesity medications. Due to their unwanted effects, they were withdrawn from the market. The 5-HT2CR positive allosteric modulators (PAMs) can be potentially safer active drugs than 5-HT2CR agonists. However, more in vivo validation of PAMs is required to fully determine if these drugs will be effective in obesity prevention and antiobesity pharmacology treatment. Methodology strategy: This review focuses on the role of 5-HT2CR agonism in obesity treatment, such as food intake regulation and weight gain. The literature was reviewed according to the review topic. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open-access scientific journals using the following keyword search strategy depending on the chapter phrases: (1) “5-HT2C receptor” AND “food intake”, and (2) “5-HT2C receptor” AND “obesity” AND “respective agonists”, and (3) “5-HT2C receptor” AND “PAM”. We included preclinical studies (only present the weight loss effects) and double-blind, placebo-controlled, randomized clinical trials published since the 1975s (mostly related to antiobesity treatment), and excluded the pay-walled articles. After the search process, the authors selected, carefully screened, and reviewed appropriate papers. In total, 136 articles were included in this review.
Collapse
Affiliation(s)
- Edmund Przegaliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland; (K.W.); (K.W.); (M.F.)
- Correspondence:
| | - Kacper Witek
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland; (K.W.); (K.W.); (M.F.)
| | - Karolina Wydra
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland; (K.W.); (K.W.); (M.F.)
| | - Jolanta H. Kotlińska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki Street 4a, 20-093 Lublin, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343 Krakow, Poland; (K.W.); (K.W.); (M.F.)
| |
Collapse
|
2
|
Song Q, Jiang C, Wang C, Zhou L, Han Z, Sun N, Huang P, Wang D. Preparation and in Vitro Evaluation of Osmotic-Pump Lorcaserin-hydrochloride Controlled-Release Tablets. Chem Pharm Bull (Tokyo) 2022; 70:202-210. [PMID: 35228384 DOI: 10.1248/cpb.c21-00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term and constant-release osmotic-pump lorcaserin hydrochloride controlled-release tablets (OP LH CRTs) were prepared, to investigate the influencing factors of LH release and optimize the formulation. The mechanism of release of LH from OP LH CRTs in vitro was investigated. By establishing a high-efficiency method for measuring LH release in vitro, and optimizing it by single-factor and orthogonal experiments, the best formulation of OP LH CRTs was determined. Then, the optimal prescription of OP LH CRTs was: LH = 20.8 mg; mannitol = 100 mg, microcrystalline cellulose = 125 mg; magnesium stearate = 5 mg; cellulose acetate = 3%; polyethylene glycol 400 = 10%; dibutyl phthalate = 10%; Wetting agent and binder was 3% polyvinyl pyrrolidone (PVP) K30 ethanol solution; aperture diameter = 0.8 mm; the coating gained 3% weight. And finally, prepared OP LH CRTs were released at a constant rate in vitro and sustained for 16 h with good reproducibility between batches. Using an orthogonal experimental design, OP LH CRTs with remarkable zero-order release characteristics within 16 h were obtained, and formulation optimization was realized.
Collapse
Affiliation(s)
- Qiqi Song
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Chengjun Jiang
- School of Pharmacy, Anhui University of Chinese Medicine.,Shanghai Mosim Pharmaceutical Technology CO., LTD
| | - Chongyang Wang
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Li Zhou
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Zhili Han
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Nianxia Sun
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Peng Huang
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine
| |
Collapse
|
3
|
AbuAsal BS, Hamed SS, Ahmed MA, Al-Mansour L, Uppoor R, Mehta M. Application of Clinical Pharmacology Principles in Drug Development of Modified-Release Products: Leveraging Exposure-Response Information to Support Approval. J Clin Pharmacol 2020; 60:1441-1452. [PMID: 32453882 DOI: 10.1002/jcph.1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/14/2020] [Indexed: 11/10/2022]
Abstract
The development of modified-release (MR) drug products aims to address a clinical need such as improving patient compliance. There are multiple pathways and development strategies for the registration and approval of MR products. The development strategy of an MR product is usually dependent on the availability and pharmacokinetic/pharmacodynamics (PK/PD) characteristics of the reference drug product, that is, an immediate-release (IR) product or a reference MR. Compared with a reference IR product, an MR product is likely to have a different PK profile over the least common dosing time due to unequal dosing intervals. In case of differences in PK profiles between the MR product and the reference product, confirmatory efficacy and safety studies may be needed to support registration. In some cases, however, a thorough clinical PK/PD characterization may provide sufficient basis to support the approval of the proposed MR product without the need for additional safety and efficacy studies. This article summarizes the US Food and Drug Administration experience and the regulatory considerations supporting the approval of MR products in the past 6 years and discusses cases in which clinical pharmacology and PK/PD information were leveraged to support approval without the need for additional clinical studies. Details of all these cases are available in the public domain. In 2 cases a well-characterized exposure-response relationship provided sufficient justification that differences in the shape of the PK profiles were not clinically relevant. In the remaining 3 cases a thorough characterization of the PK profile along with a risk-based approach provided bases for approval.
Collapse
Affiliation(s)
- Bilal S AbuAsal
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Salaheldin S Hamed
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mariam A Ahmed
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lana Al-Mansour
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ramana Uppoor
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mehul Mehta
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Davies JR, Wilkinson LS, Isles AR, Humby T. Prader-Willi syndrome imprinting centre deletion mice have impaired baseline and 5-HT2CR-mediated response inhibition. Hum Mol Genet 2020; 28:3013-3023. [PMID: 31087031 PMCID: PMC6737253 DOI: 10.1093/hmg/ddz100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022] Open
Abstract
Prader–Willi syndrome (PWS) is a neurodevelopmental disorder caused by deletion or inactivation of paternally expressed imprinted genes on human chromosome 15q11–q13. In addition to endocrine and developmental issues, PWS presents with behavioural problems including stereotyped behaviour, impulsiveness and cognitive deficits. The PWS genetic interval contains several brain-expressed small nucleolar (sno) RNA species that are subject to genomic imprinting, including snord115 that negatively regulates post-transcriptional modification of the serotonin 2C receptor (5-HT2CR) pre-mRNA potentially leading to a reduction in 5-HT2CR function. Using the imprinting centre deletion mouse model for PWS (PWSICdel) we have previously shown impairments in a number of behaviours, some of which are abnormally sensitive to 5-HT2CR-selective drugs. In the stop-signal reaction time task test of impulsivity, PWSICdel mice showed increased impulsivity relative to wild-type (WT) littermates. Challenge with the selective 5-HT2CR agonist WAY163909 reduced impulsivity in PWSICdel mice but had no effect on WT behaviour. This behavioural dissociation in was also reflected in differential patterns of immunoreactivity of the immediate early gene c-Fos, with a blunted response to the drug in the orbitofrontal cortex of PWSICdel mice, but no difference in c-Fos activation in the nucleus accumbens. These findings suggest specific facets of response inhibition are impaired in PWSICdel mice and that abnormal 5-HT2CR function may mediate this dissociation. These data have implications for our understanding of the aetiology of PWS-related behavioural traits and translational relevance for individuals with PWS who may seek to control appetite with the new obesity treatment 5-HT2CR agonist lorcaserin.
Collapse
Affiliation(s)
- Jennifer R Davies
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine
| | - Lawrence S Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine.,Psychology, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine
| | | |
Collapse
|
5
|
Higgins GA, Fletcher PJ, Shanahan WR. Lorcaserin: A review of its preclinical and clinical pharmacology and therapeutic potential. Pharmacol Ther 2020; 205:107417. [DOI: 10.1016/j.pharmthera.2019.107417] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
6
|
Yammine L, Kosten TR, Pimenova M, Schmitz JM. Cigarette smoking, type 2 diabetes mellitus, and glucagon-like peptide-1 receptor agonists as a potential treatment for smokers with diabetes: An integrative review. Diabetes Res Clin Pract 2019; 149:78-88. [PMID: 30735771 DOI: 10.1016/j.diabres.2019.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 01/26/2023]
Abstract
Tobacco use disorder (TUD), in particular cigarette smoking, contributes significantly to the macro- and micro-vascular complications of type 2 diabetes mellitus (DM). Persons with DM who regularly use tobacco products are twice as likely to experience mortality and negative health outcomes. Despite these risks, TUD remains prevalent in persons with DM. The objective of this integrative review is to summarize the relationship between TUD and DM based on epidemiological and preclinical biological evidence. We conclude with a review of the literature on the glucagon-like peptide-1 (GLP-1) as a potential treatment target for addressing comorbid TUD in smokers with DM.
Collapse
Affiliation(s)
- Luba Yammine
- University of Texas Health Science Center at Houston, Houston, TX, United States.
| | | | - Maria Pimenova
- University of Texas Medical Branch, Galveston, TX, United States
| | - Joy M Schmitz
- University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|