1
|
Ardenkjær-Skinnerup J, Saar D, Petersen PSS, Pedersen M, Svingen T, Kragelund BB, Hadrup N, Ravn-Haren G, Emanuelli B, Brown KA, Vogel U. PPARγ antagonists induce aromatase transcription in adipose tissue cultures. Biochem Pharmacol 2024; 222:116095. [PMID: 38423186 DOI: 10.1016/j.bcp.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Aromatase is the rate-limiting enzyme in the biosynthesis of estrogens and a key risk factor for hormone receptor-positive breast cancer. In postmenopausal women, estrogens synthesized in adipose tissue promotes the growth of estrogen receptor positive breast cancers. Activation of peroxisome proliferator-activated receptor gamma (PPARγ) in adipose stromal cells (ASCs) leads to decreased expression of aromatase and differentiation of ASCs into adipocytes. Environmental chemicals can act as antagonists of PPARγ and disrupt its function. This study aimed to test the hypothesis that PPARγ antagonists can promote breast cancer by stimulating aromatase expression in human adipose tissue. Primary cells and explants from human adipose tissue as well as A41hWAT, C3H10T1/2, and H295R cell lines were used to investigate PPARγ antagonist-stimulated effects on adipogenesis, aromatase expression, and estrogen biosynthesis. Selected antagonists inhibited adipocyte differentiation, preventing the adipogenesis-associated downregulation of aromatase. NMR spectroscopy confirmed direct interaction between the potent antagonist DEHPA and PPARγ, inhibiting agonist binding. Short-term exposure of ASCs to PPARγ antagonists upregulated aromatase only in differentiated cells, and a similar effect could be observed in human breast adipose tissue explants. Overexpression of PPARG with or without agonist treatment reduced aromatase expression in ASCs. The data suggest that environmental PPARγ antagonists regulate aromatase expression in adipose tissue through two mechanisms. The first is indirect and involves inhibition of adipogenesis, while the second occurs more acutely.
Collapse
Affiliation(s)
- Jacob Ardenkjær-Skinnerup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Daniel Saar
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Patricia S S Petersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Mikael Pedersen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Terje Svingen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Birthe B Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Niels Hadrup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Gitte Ravn-Haren
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Brice Emanuelli
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Kristy A Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Ulla Vogel
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark; The National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| |
Collapse
|
2
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Sáinz N, Fernández-Galilea M, Costa AGV, Prieto-Hontoria PL, Barraco GM, Moreno-Aliaga MJ. n-3 polyunsaturated fatty acids regulate chemerin in cultured adipocytes: role of GPR120 and derived lipid mediators. Food Funct 2020; 11:9057-9066. [PMID: 33021612 DOI: 10.1039/d0fo01445a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemerin is a pro-inflammatory adipokine that is increased in obesity and associated with obesity-related comorbidities. The aim of this study was to investigate the effects of omega-3 polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic acids (EPA and DHA), on basal and tumor necrosis factor-α (TNF-α)-induced chemerin production in 3T3-L1 and human subcutaneous cultured adipocytes. The potential involvement of G protein-coupled receptor 120 (GPR120), as well as the actions of DHA-derived specialized proresolving lipid mediators (SPMs), resolvin D1 and D2 (RvD1 and RvD2) and maresin 1 (MaR1), were also evaluated. DHA significantly lowered both basal and TNF-α-stimulated chemerin production in 3T3-L1 and human adipocytes. EPA did not modify basal chemerin production, while it attenuated the induction of chemerin by TNF-α. Silencing of GPR120 using siRNA blocked the ability of DHA and EPA to reduce TNF-α-induced chemerin secretion. Interestingly, treatment with the DHA-derived SPMs RvD1, RvD2 and MaR1 also reversed the stimulatory effect of TNF-α on chemerin production in human adipocytes.
Collapse
Affiliation(s)
- N Sáinz
- University of Navarra. Centre for Nutrition Research, Pamplona, Spain. and University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - M Fernández-Galilea
- University of Navarra. Centre for Nutrition Research, Pamplona, Spain. and University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A G V Costa
- University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - P L Prieto-Hontoria
- University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - G M Barraco
- University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain
| | - M J Moreno-Aliaga
- University of Navarra. Centre for Nutrition Research, Pamplona, Spain. and University of Navarra. Department of Nutrition, Food Science and Physiology, Pamplona, Spain and Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|