1
|
Liu H, Ma X, Yang X, Xiao S, Ouyang S, Hu Z, Zhou Z, Jiang Z. E. coli Nissle 1917 improves gut microbiota composition and serum metabolites to counteract atherosclerosis via the homocitrulline/Caspase 1/NLRP3/GSDMD axis. Int J Med Microbiol 2025; 318:151642. [PMID: 39742694 DOI: 10.1016/j.ijmm.2024.151642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND The probiotic E. coli Nissle 1917 (EcN) alleviates the progression of various diseases, including colitis and tumors. However, EcN has not been studied in atherosclerosis. The study investigated the effects of EcN on atherosclerosis model mice and the potential mechanisms. METHODS Mice in the high-fat diet (HFD) model were given EcN (1 × 109 CFU/g) or homocitrulline (150 mg/L) by oral administration for 12 weeks. The EcN + antibiotic group was set up to investigate the effects of EcN combined with antibiotics on gut microbiota. The control group was utilized as the negative control. Atherosclerosis status, pyroptosis, gut microbiota, and serum metabolites of mice were examined. RESULTS EcN treatment alleviated HFD-caused atherosclerotic plaque and lipid droplet production. EcN treatment reversed HFD-induced increases in total cholesterol, triglycerides, and low-density lipoprotein levels and decreases in high-density lipoprotein levels. EcN inhibited the HFD-caused rise in the expression of pyroptosis-related indicators (cleaved Caspase 1, GSDMD-N, NLRP3, IL-18, and IL-1β). The antibiotics partially reversed the effects of EcN on the model mice, suggesting that EcN regulated pyroptosis in the model mice through gut microbiota. Probiotic bacteria, such as Lactobacillus and Muribaculum, were mainly enriched in the EcN and EcN + antibiotic groups, while Helicobacter, Alistipes, and Rikenella were depleted, suggesting that EcN and EcN + antibiotics could alleviate disorders of gut microbiota in the model mice. EcN reversed the trend of HFD-induced decrease of some metabolites, such as 2-methyl-5-nitroimidazole-1-ethanol, methionine sulfoxide, and shikimate 3-phosphate, and inhibited the increase of some metabolites, such as kynurenine, oxoadipate, and homocitrulline. In addition, homocitrulline showed the opposite effects of EcN in the model mice. Homocitrulline could bind to pyroptosis-related proteins to aggravate ox-LDL-induced endothelial cell pyroptosis. CONCLUSION EcN could alleviate atherosclerosis development by ameliorating HFD-induced disorders of gut microbiota and serum metabolites (such as homocitrulline) to alleviate pyroptosis, which may be associated with homocitrulline/Caspase 1/NLRP3/GSDMD axis. Our study lays the foundation for the development of promising drugs for atherosclerosis in the future.
Collapse
Affiliation(s)
- Huan Liu
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China; Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaofeng Ma
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuefeng Yang
- Department of Gastroenterology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, University of South China, Hengyang, Hunan 421001, China
| | - Sujun Xiao
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shao Ouyang
- Department of Cardiology, the Second Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhihao Hu
- Department of Cardiology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhixiang Zhou
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China
| | - Zhisheng Jiang
- Insititute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Vu N, Maile TM, Gollapudi S, Gaun A, Seitzer P, O'Brien JJ, Hackett SR, Zavala-Solorio J, McAllister FE, Kolumam G, Keyser R, Bennett BD. Automated preparation of plasma lipids, metabolites, and proteins for LC/MS-based analysis of a high-fat diet in mice. J Lipid Res 2024; 65:100607. [PMID: 39067520 PMCID: PMC11399584 DOI: 10.1016/j.jlr.2024.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Blood plasma is one of the most commonly analyzed and easily accessible biological samples. Here, we describe an automated liquid-liquid extraction platform that generates accurate, precise, and reproducible samples for metabolomic, lipidomic, and proteomic analyses from a single aliquot of plasma while minimizing hands-on time and avoiding contamination from plasticware. We applied mass spectrometry to examine the metabolome, lipidome, and proteome of 90 plasma samples to determine the effects of age, time of day, and a high-fat diet in mice. From 25 μl of mouse plasma, we identified 907 lipid species from 16 different lipid classes and subclasses, 233 polar metabolites, and 344 proteins. We found that the high-fat diet induced only mild changes in the polar metabolome, upregulated apolipoproteins, and induced substantial shifts in the lipidome, including a significant increase in arachidonic acid and a decrease in eicosapentaenoic acid content across all lipid classes.
Collapse
Affiliation(s)
- Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | - Rob Keyser
- Calico Life Sciences LLC, South San Francisco, CA, USA
| | | |
Collapse
|
3
|
Yang S, Wei Z, Luo J, Wang X, Chen G, Guan X, She Z, Liu W, Tong Y, Liu H, Wen M, Chen H, Zhu P, Li G, Wang D, Huang L, Xu S, Chen D, Zhang Q, Wei Y. Integrated bioinformatics and multiomics reveal Liupao tea extract alleviating NAFLD via regulating hepatic lipid metabolism and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155834. [PMID: 38941818 DOI: 10.1016/j.phymed.2024.155834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) poses a significant global public health concern. Liupao tea (LPT) is a Chinese national geographical indication product renowned for its lipid-lowering properties. However, the precise mechanisms and active constituents contributing to the efficacy of LPT against NAFLD remain unclear. PURPOSE This study aims to comprehensively explore the therapeutic potential of Liupao tea extract (LPTE) in alleviating NAFLD through an integrated strategy. METHODS Initially, network pharmacology analysis was conducted based on LPTE chemical ingredient analysis, identifying core targets and key components. Potential active ingredients were validated through chemical standards based on LC-MS/MS. To confirm the pharmacological efficacy of LPTE in NAFLD, NAFLD mice models were employed. Alterations in hepatic lipid metabolism were comprehensively elucidated through integration of metabolomics, lipidomics, network pharmacology analysis, and real-time PCR analysis. To further explore the binding interactions between key components and core targets, molecular docking and microscale thermophoresis (MST) analysis were employed. Furthermore, to investigate LPTE administration effectiveness on gut microbiota in NAFLD mice, a comprehensive approach was employed. This included Metorigin analysis, 16S rRNA sequencing, molecular docking, and fecal microbiome transplantation (FMT). RESULTS Study identified naringenin, quercetin, luteolin, and kaempferol as the potential active ingredients of LPTE. These compounds exhibited therapeutic potential for NAFLD by targeting key proteins such as PTGS2, CYP3A4, and ACHE, which are involved in the metabolic pathways of hepatic linoleic acid (LA) and glycerophospholipid (GP) metabolism. The therapeutic effectiveness of LPTE was observed to be comparable to that of simvastatin. Furthermore, LPTE exhibited notable efficacy in alleviating NAFLD by influencing alterations in gut microbiota composition (Proteobacteria phylum, Lactobacillus and Dubosiella genus) that perhaps impact LA and GP metabolic pathways. CONCLUSION LPTE could be effective in preventing high-fat diet (HFD)-induced NAFLD by modulating hepatic lipid metabolism and gut microbiota. This study firstly integrated bioinformatics and multi-omics technologies to identify the potential active components and key microbiota associated with LPTE's effects, while also primally elucidating the action mechanisms of LPTE in alleviating NAFLD. The findings offer a conceptual basis for LPTE's potential transformation into an innovative pharmaceutical agent for NAFLD prevention.
Collapse
Affiliation(s)
- Shanyi Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Zhijuan Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Jichu Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Xuancheng Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Guanghui Chen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, PR China
| | - Xuan Guan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Zhiyong She
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Wenhui Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Ying Tong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Huan Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Mingsen Wen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Hongwei Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530004, PR China
| | - Gui Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, PR China
| | - Dongling Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, PR China
| | - Lin Huang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Siyi Xu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Danying Chen
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China
| | - Qisong Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, 530004, PR China.
| | - Ye Wei
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, 530023, PR China.
| |
Collapse
|
4
|
Fu Y, Wang Q, Tang Z, Liu G, Guan G, Lyu J. Cordycepin Ameliorates High Fat Diet-Induced Obesity by Modulating Endogenous Metabolism and Gut Microbiota Dysbiosis. Nutrients 2024; 16:2859. [PMID: 39275176 PMCID: PMC11396883 DOI: 10.3390/nu16172859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Numerous metabolic illnesses have obesity as a risk factor. The composition of the gut microbiota and endogenous metabolism are important factors in the onset and progression of obesity. Recent research indicates that cordycepin (CRD), derived from fungi, exhibits anti-inflammatory and antioxidant properties, showing potential in combating obesity. However, further investigation is required to delineate its precise impacts on endogenous metabolism and gut microbiota. METHODS In this work, male C57BL/6J mice were used as models of obesity caused by a high-fat diet (HFD) and given CRD. Mice's colon, liver, and adipose tissues were stained with H&E. Serum metabolome analysis and 16S rRNA sequencing elucidated the effects of CRD on HFD-induced obese mice and identified potential mediators for its anti-obesity effects. RESULTS CRD intervention alleviated HFD-induced intestinal inflammation, improved blood glucose levels, and reduced fat accumulation. Furthermore, CRD supplementation demonstrated the ability to modulate endogenous metabolic disorders by regulating the levels of key metabolites, including DL-2-aminooctanoic acid, inositol, and 6-deoxyfagomine. CRD influenced the abundance of important microbiota such as Parasutterella, Alloprevotella, Prevotellaceae_NK3B31_group, Alistipes, unclassified_Clostridia_vadinBB60_group, and unclassified_Muribaculaceae, ultimately leading to the modulation of endogenous metabolism and the amelioration of gut microbiota disorders. CONCLUSIONS According to our research, CRD therapies show promise in regulating fat accumulation and stabilizing blood glucose levels. Furthermore, through the modulation of gut microbiota composition and key metabolites, CRD interventions have the dual capacity to prevent and ameliorate obesity.
Collapse
Affiliation(s)
- Yifeng Fu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiangfeng Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zihan Tang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guiping Guan
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jin Lyu
- Department of Pathology, The First People's Hospital of Foshan, Foshan 528000, China
| |
Collapse
|
5
|
Tomar M, Sharma A, Araniti F, Pateriya A, Shrivastava A, Tamrakar AK. Distinct Metabolomic Profiling of Serum Samples from High-Fat-Diet-Induced Insulin-Resistant Mice. ACS Pharmacol Transl Sci 2023; 6:771-782. [PMID: 37200804 PMCID: PMC10186361 DOI: 10.1021/acsptsci.3c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 05/20/2023]
Abstract
High-fat-diet (HFD)-induced obesity is associated with an elevated risk of insulin resistance (IR), which may precede the onset of type 2 diabetes mellitus and associated metabolic complications. Being a heterogeneous metabolic condition, it is pertinent to understand the metabolites and metabolic pathways that are altered during the development and progression of IR toward T2DM. Serum samples were collected from C57BL/6J mice fed with HFD or chow diet (CD) for 16 weeks. Collected samples were analyzed by gas chromatography-tandem mass spectrometry (GC-MS/MS). Data on the identified raw metabolites were evaluated using a combination of univariate and multivariate statistical methods. Mice fed with HFD had glucose and insulin intolerance associated with impairment of insulin signaling in key metabolic tissues. From the GC-MS/MS analysis of serum samples, a total of 75 common annotated metabolites were identified between HFD- and CD-fed mice. In the t-test, 22 significantly altered metabolites were identified. Out of these, 16 metabolites were up-accumulated, whereas 6 metabolites were down-accumulated. Pathway analysis identified 4 significantly altered metabolic pathways. In particular, primary bile acid biosynthesis and linoleic acid metabolism were upregulated, whereas the TCA cycle and pentose and glucuronate interconversion were downregulated in HFD-fed mice in comparison to CD-fed mice. These results show the distinct metabolic profiles associated with the onset of IR that could provide promising metabolic biomarkers for diagnostic and clinical applications.
Collapse
Affiliation(s)
- Manendra
Singh Tomar
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Aditya Sharma
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Fabrizio Araniti
- Dipartimento
di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Ankit Pateriya
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Ashutosh Shrivastava
- Centre
for Advance Research, Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Akhilesh Kumar Tamrakar
- Division
of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
6
|
Wang L, Zhang Z, Luo G, Wang Y, Du K, Gao X. Metabolome combined with gut microbiome revealed the lipid-lowering mechanism of Xuezhiping capsule on hyperlipidemic hamster induced by high fat diet. Front Mol Biosci 2023; 10:1147910. [PMID: 36891237 PMCID: PMC9986548 DOI: 10.3389/fmolb.2023.1147910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Hyperlipidemia is a common metabolic disorder with presence of excess fat or lipids in the blood, may induce liver injury, oxidative stress and inflammatory. Xuezhiping capsule (XZP) is a famous Chinese patent medicine clinically used for anti-hyperlipidemia. However, the regulation mechanism of XZP on hyperlipidemia has not been elucidated so far. Methods: This study aimed to explore the effects of XZP on hypolipidemic, antioxidant and anti-inflammatory effects, and the potential mechanism by a combination of untargeted metabolomics and 16S rRNA sequencing. Results: The results indicated that XZP reduced the level of total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), increased the level of high density liptein cholesterol (HDL-C), alleviated excessive accumulation of lipid droplets in liver. Biochemical indexes of liver function including gamma glutamyl transferase (GGT) and glutamic oxaloacetic transaminase (GOT) in liver were remarkably decreased. Meanwhile, XZP increased the level of oxidative stress biochemical indexes including superoxide dismutase (SOD) and glutathione (GSH). In addition, XZP increased the level of peroxisome proliferators-activated receptors α (PPARα), acetyl CoA carboxylase 1 (ACOX1) and cholesterol 7-alpha hydroxylase (CYP7A1) in liver, and improved lipid metabolism in serum, liver and fecal lipid metabolism. XZP increased diversity index and the ratio of Firmicutes and Bacteroidetes, regulated seventeen genera, and illustrated strong correlations with liver lipid metabolism and phenotypic indicators. Discussion: These findings suggest that XZP reduced blood lipid and liver lipid, protected liver function, anti inflammation and anti-oxidation, ameliorate lipid metabolic disorders by modulating alpha linolenic acid and linoleic acid metabolism, bile acid metabolism, arachidonic acid metabolism, and regulated gut microbiota composition of high-fat diet (HFD) hamsters.
Collapse
Affiliation(s)
- Li Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Traditional Chinese Medicine Formula Jian Pi Tiao Gan Yin Reduces Obesity in Mice by Modulating the Gut Microbiota and Fecal Metabolism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9727889. [PMID: 35979004 PMCID: PMC9377893 DOI: 10.1155/2022/9727889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The current study employed the high-fat diet (HFD) induced murine model to assess the relationship between the effect of Jian Pi Tiao Gan Yin (JPTGY) and the alterations of gut microbiota and fecal metabolism. C57BL/6 mice were used to establish an animal model of obesity via HFD induce. Serum biochemical indicators of lipid metabolism were used to evaluate the pharmacodynamics of JPTGY in obese mice. Bacterial communities and metabolites in the feces specimens from the controls, the Group HFD, and the JPTGY-exposed corpulency group were studied by 16s rDNA genetic sequence in combination with liquid chromatography-mass spectrometry (LC-MS) based untargeted fecal metabolomics techniques. Results revealed that JPTGY significantly decreased the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and elevated high-density lipoprotein cholesterol (HDL-C). Moreover, JPTGY could up-regulate the abundance and diversity of fecal microbiota, which was characterized by the higher phylum of proteobacteria. Consistently, at the genus levels, JPTGY supplementation induced enrichments in Lachnospiraceae NK4A136 group, Oscillibacter, Turicibacter, Clostridium sensu stricto 1, and Intestinimonas, which were intimately related to 14 pivotal fecal metabolins in respond to JPTGY therapy were determined. What is more, metabolomics further analyses show that the therapeutic effect of JPTGY for obesity involves linoleic acid (LA) metabolism paths, alpha-linolenic acid (ALA) metabolism paths, glycerophospholipid metabolism paths, arachidonic acid (AA) metabolism paths, and pyrimidine metabolism paths, which implied the potential mechanism of JPTGY in treating obesity. It was concluded that the linking of corpulency phenotypes with intestinal flora and fecal metabolins unveils the latent causal link of JPTGY in the treatment of hyperlipidemia and obesity.
Collapse
|
8
|
Dibal NI, Buba F, Chiroma SM, Goni ZM, Kilobas HE, Sheriff H, Jason UK, Kwaha TJ, Andrew J, Muhammed A, Garba HS, Falnyi ZG, Muhammad AA. Aloe vera ameliorates hyperlipidemia, enhances endogenous antioxidant activity and regulates liver function in high fat diet fed mice. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Prolonged high fat diet consumption was reported to cause metabolic disorders including obesity, NAFLD and insulin resistance. NAFLD is one of the common causes of liver failure with lipid accumulation and inflammation as the major driving forces for its progression. OBJECTIVE: The study was aimed at evaluating the benefits of Aloe vera supplementation on lipid profiles, antioxidant properties, liver function as well as the histology of liver, heart and brain on high fat diet induced toxicity in BALB/c mice. METHODS: Eighteen mice were divided into three groups (n = 6). Group 1 received normal diet (Vital feed), group 2 received high fat diet (HFD) i.e. 70 g of normal diet plus 30 g of margarine, while group 3 received high fat diet plus Aloe vera (HFD+AV) i.e. 80 g of HFD plus 20 g of Aloe vera gel. The mice were fed for 10 weeks and euthanized thereafter. The liver function, lipid profiles, antioxidant properties as well as liver, brain and heart histology were evaluated. RESULTS: The levels of cholesterol, triglycerides and low density lipoprotein were significantly increased (P < 0.05) in the HFD treated mice compared to the control. Liver catalase and superoxide dismutase activities were significantly increased (P < 0.05) in HFD+AV treated mice compared to the control and HFD treated mice. The liver of HFD+AV treated mice showed normal architecture while those of HFD treated mice showed numerous hepatic vacuoles indicative of fat droplets. CONCLUSIONS: Aloe vera supplementation regulated liver function and prevents hyperlipidemia. The resultant effect increased antioxidant activities thereby preventing liver injury and brain damage.
Collapse
Affiliation(s)
| | - Fatimah Buba
- Department of Biochemistry, University of Maiduguri, Nigeria
| | | | | | | | - Hassan Sheriff
- Department of Biochemistry, University of Maiduguri, Nigeria
| | | | | | - Judge Andrew
- Department of Biochemistry, University of Maiduguri, Nigeria
| | - Ayuba Muhammed
- Department of Human Anatomy, University of Maiduguri, Nigeria
| | | | | | | |
Collapse
|
9
|
Wan M, Li Q, Lei Q, Zhou D, Wang S. Polyphenols and Polysaccharides from Morus alba L. Fruit Attenuate High-Fat Diet-Induced Metabolic Syndrome Modifying the Gut Microbiota and Metabolite Profile. Foods 2022; 11:foods11121818. [PMID: 35742014 PMCID: PMC9223293 DOI: 10.3390/foods11121818] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Morus alba L. fruit, a medicinal and edible fruit in East Asia, showed potential health-promoting effects against metabolic syndrome (MetS). However, both the protective effects and mechanisms of different fractions extracted from Morus alba L. fruit against MetS remain unclear. Additionally, the gut microbiota and its metabolites are regarded as key factors in the development of MetS. This study aimed to investigate the potential role of polyphenols and polysaccharides derived from Morus alba L. fruit against MetS in high-fat diet (HFD)-fed mice, individually and in combination, focusing on remodeling effects on gut microbiota and metabolite profiles. In the study, polyphenols and polysaccharides derived from Morus alba L. fruit improved the traditional pharmacodynamic parameters of MetS, including reductions in body weight (BW) and fat accumulation, improvement in insulin resistance, regulation of dyslipidemia, prevention of pathological changes in liver, kidney and proximal colon tissue, and suppressive actions against oxidative stress. In particular, the group treated with polyphenols and polysaccharides in combination showed better efficacy. The relative abundance of beneficial bacterial genera Muribaculum and Lachnospiraceae_NK4A136_group were increased to various degrees, while opportunistic pathogens such as Prevotella_2, Bacteroides, Faecalibacterium and Fusobacterium were markedly decreased after treatments. Moreover, fecal metabolite profiles revealed 23 differential metabolites related to treatments with polyphenols and polysaccharides derived from Morus alba L. fruit, individually and in combination. Altogether, these results demonstrated that polyphenols and polysaccharides derived from Morus alba L. fruit attenuated MetS in HFD-fed mice, and improved the gut microbiota composition and fecal metabolite profiles.
Collapse
Affiliation(s)
- Meixia Wan
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
- Qibo College of Medicine, Longdong University, Qingyang 745000, China
| | - Qing Li
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Qianya Lei
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Dan Zhou
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
| | - Shu Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China; (M.W.); (Q.L.); (Q.L.); (D.Z.)
- Correspondence: ; Tel.: +86-028-85-503-950
| |
Collapse
|