1
|
Gaitantzi H, Meyer C, Rakoczy P, Thomas M, Wahl K, Wandrer F, Bantel H, Alborzinia H, Wölfl S, Ehnert S, Nüssler A, Bergheim I, Ciuclan L, Ebert M, Breitkopf-Heinlein K, Dooley S. Ethanol sensitizes hepatocytes for TGF-β-triggered apoptosis. Cell Death Dis 2018; 9:51. [PMID: 29352207 PMCID: PMC5833779 DOI: 10.1038/s41419-017-0071-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED Alcohol abuse is a global health problem causing a substantial fraction of chronic liver diseases. Abundant TGF-β-a potent pro-fibrogenic cytokine-leads to disease progression. Our aim was to elucidate the crosstalk of TGF-β and alcohol on hepatocytes. Primary murine hepatocytes were challenged with ethanol and TGF-β and cell fate was determined. Fluidigm RNA analyses revealed transcriptional effects that regulate survival and apoptosis. Mechanistic insights were derived from enzyme/pathway inhibition experiments and modulation of oxidative stress levels. To substantiate findings, animal model specimens and human liver tissue cultures were investigated. RESULTS On its own, ethanol had no effect on hepatocyte apoptosis, whereas TGF-β increased cell death. Combined treatment led to massive hepatocyte apoptosis, which could also be recapitulated in human HCC liver tissue treated ex vivo. Alcohol boosted the TGF-β pro-apoptotic gene signature. The underlying mechanism of pathway crosstalk involves SMAD and non-SMAD/AKT signaling. Blunting CYP2E1 and ADH activities did not prevent this effect, implying that it was not a consequence of alcohol metabolism. In line with this, the ethanol metabolite acetaldehyde did not mimic the effect and glutathione supplementation did not prevent the super-induction of cell death. In contrast, blocking GSK-3β activity, a downstream mediator of AKT signaling, rescued the strong apoptotic response triggered by ethanol and TGF-β. This study provides novel information on the crosstalk between ethanol and TGF-β. We give evidence that ethanol directly leads to a boost of TGF-β's pro-apoptotic function in hepatocytes, which may have implications for patients with chronic alcoholic liver disease.
Collapse
Affiliation(s)
- Haristi Gaitantzi
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Pia Rakoczy
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Kristin Wahl
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Franziska Wandrer
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heike Bantel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Sabrina Ehnert
- Eberhard-Karls University Tübingen, BG Trauma Center, SWI, Schnarrenbergstraße 95, 72076, Tübingen, Germany
| | - Andreas Nüssler
- Eberhard-Karls University Tübingen, BG Trauma Center, SWI, Schnarrenbergstraße 95, 72076, Tübingen, Germany
| | - Ina Bergheim
- University of Vienna, Department of Nutritional Sciences, Molecular Nutritional Science, Althanstr. 14, UZA II, A-1090, Wien, Austria
| | - Loredana Ciuclan
- Roche Products Limited, 6 Falcon Way, Shire Park, Welwyn Garden City, AL7 1TW, UK
| | - Matthias Ebert
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
2
|
Bachmann A, Moll M, Gottwald E, Nies C, Zantl R, Wagner H, Burkhardt B, Sánchez JJM, Ladurner R, Thasler W, Damm G, Nussler AK. 3D Cultivation Techniques for Primary Human Hepatocytes. MICROARRAYS (BASEL, SWITZERLAND) 2015; 4:64-83. [PMID: 27600213 PMCID: PMC4996383 DOI: 10.3390/microarrays4010064] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device.
Collapse
Affiliation(s)
- Anastasia Bachmann
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Matthias Moll
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Eric Gottwald
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany.
| | - Cordula Nies
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, POB 3640, 76021 Karlsruhe, Germany.
| | - Roman Zantl
- GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany.
| | - Helga Wagner
- GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany.
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Juan J Martínez Sánchez
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| | - Ruth Ladurner
- Clinic for General, Visceral and Transplantation Surgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Wolfgang Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, 81377 Munich, Germany.
| | - Georg Damm
- Department for General, Visceral and Transplantation Surgery, Charité Medical University Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | - Andreas K Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, Schnarrenbergstr. 95, 72076 Tü̈bingen, Germany.
| |
Collapse
|