1
|
Mehmood S, Aslam S, Dilshad E, Ismail H, Khan AN. Transforming Diagnosis and Therapeutics Using Cancer Genomics. Cancer Treat Res 2023; 185:15-47. [PMID: 37306902 DOI: 10.1007/978-3-031-27156-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In past quarter of the century, much has been understood about the genetic variation and abnormal genes that activate cancer in humans. All the cancers somehow possess alterations in the DNA sequence of cancer cell's genome. In present, we are heading toward the era where it is possible to obtain complete genome of the cancer cells for their better diagnosis, categorization and to explore treatment options.
Collapse
Affiliation(s)
- Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan.
| | - Shaista Aslam
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| | - Hammad Ismail
- Departments of Biochemistry and Biotechnology, University of Gujrat (UOG) Gujrat, Gujrat, Pakistan
| | - Amna Naheed Khan
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST) Islamabad, Islamabad, Pakistan
| |
Collapse
|
2
|
Liu M, Li Y, Wang G, Guo N, Liu D, Li D, Guo L, Zheng X, Yu K, Yu K, Wang C. Release of volatile organic compounds (VOCs) from colorectal cancer cell line LS174T. Anal Biochem 2019; 581:113340. [PMID: 31226253 DOI: 10.1016/j.ab.2019.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. To date, no non-invasive and specific biomarkers have been identified for the diagnosis of CRC. The analysis of volatile organic compounds (VOCs) is attracting increasing attention and provides the possibility of a non-invasive diagnosis. Solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) have been used to analyze the VOCs released from the headspace gas of LS174T (Dukes' type B colorectal adenocarcinoma) cells, arsenic trioxide (ATO)-treated LS174T cells and the blood from tumor-bearing mice. The data were processed using principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA), which showed that the levels of decanal, 2,4-dimethyl- heptane, and twelve other metabolites were significantly greater in the headspace gas of the LS174T cells and blood of tumor-bearing mice. Additionally, in vivo experiments indicated that formic acid, ethenyl ester and p-trimethylsilyloxyphenyl-(trimethylsilyloxy)trimethylsilylacrylate were consumed during tumor growth. In conclusion, VOCs such as 1-methoxy-hexane and 2,4-dimethyl-heptane could be useful diagnostic markers for CRC. Further research should focus on the potential metabolic pathways associated with these profiles.
Collapse
Affiliation(s)
- Miao Liu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Yuhang Li
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Anesthesiology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China.
| | - Guiyue Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Anesthesiology, Tianjin Medical University Cancer Hospital, Tianjin, China.
| | - Nana Guo
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Desheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Dandan Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lei Guo
- Department of Anesthesiology, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Xiaoya Zheng
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Kaili Yu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Kaijiang Yu
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China; Department of Critical Care Medicine, The first Affiliated Hospital of Harbin Medical University, China.
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
3
|
More TH, Taware R, Taunk K, Chanukuppa V, Naik V, Mane A, Rapole S. Investigation of altered urinary metabolomic profiles of invasive ductal carcinoma of breast using targeted and untargeted approaches. Metabolomics 2018; 14:107. [PMID: 30830381 DOI: 10.1007/s11306-018-1405-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/01/2018] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Invasive ductal carcinoma (IDC) is a type of breast cancer, usually detected in advanced stages due to its asymptomatic nature which ultimately leads to low survival rate. Identification of urinary metabolic adaptations induced by IDC to understand the disease pathophysiology and monitor therapy response would be a helpful approach in clinical settings. Moreover, its non-invasive and cost effective strategy better suited to minimize apprehension among high risk population. OBJECTIVE This study aims toward investigating the urinary metabolic alterations of IDC by targeted (LC-MRM/MS) and untargeted (GC-MS) approaches for the better understanding of the disease pathophysiology and monitoring therapy response. METHODS Urinary metabolic alterations of IDC subjects (63) and control subjects (63) were explored by targeted (LC-MRM/MS) and untargeted (GC-MS) approaches. IDC specific urinary metabolomics signature was extracted by applying both univariate and multivariate statistical tools. RESULTS Statistical analysis identified 39 urinary metabolites with the highest contribution to metabolomic alterations specific to IDC. Out of which, 19 metabolites were identified from targeted LC-MRM/MS analysis, while 20 were identified from the untargeted GC-MS analysis. Receiver operator characteristic (ROC) curve analysis evidenced 6 most discriminatory metabolites from each type of approach that could differentiate between IDC subjects and controls with higher sensitivity and specificity. Furthermore, metabolic pathway analysis depicted several dysregulated pathways in IDC including sugar, amino acid, nucleotide metabolism, TCA cycle etc. CONCLUSIONS: Overall, this study provides valuable inputs regarding altered urinary metabolites which improved our knowledge on urinary metabolomic alterations induced by IDC. Moreover, this study identified several dysregulated metabolic pathways which offer further insight into the disease pathophysiology.
Collapse
Affiliation(s)
- Tushar H More
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, MH, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MH, India
| | - Ravindra Taware
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, MH, India
| | - Khushman Taunk
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, MH, India
| | - Venkatesh Chanukuppa
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, MH, India
- Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, MH, India
| | - Venkateshwarlu Naik
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, MH, India
| | - Anupama Mane
- Grant Medical Foundation, Ruby Hall Clinic, Pune, 411001, MH, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune, 411007, MH, India.
| |
Collapse
|
4
|
Yoo BC, Kim KH, Woo SM, Myung JK. Clinical multi-omics strategies for the effective cancer management. J Proteomics 2017; 188:97-106. [PMID: 28821459 DOI: 10.1016/j.jprot.2017.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a global health issue as a multi-factorial complex disease, and early detection and novel therapeutic strategies are required for more effective cancer management. With the development of systemic analytical -omics strategies, the therapeutic approach and study of the molecular mechanisms of carcinogenesis and cancer progression have moved from hypothesis-driven targeted investigations to data-driven untargeted investigations focusing on the integrated diagnosis, treatment, and prevention of cancer in individual patients. Predictive, preventive, and personalized medicine (PPPM) is a promising new approach to reduce the burden of cancer and facilitate more accurate prognosis, diagnosis, as well as effective treatment. Here we review the fundamentals of, and new developments in, -omics technologies, together with the key role of a variety of practical -omics strategies in PPPM for cancer treatment and diagnosis. BIOLOGICAL SIGNIFICANCE In this review, a comprehensive and critical overview of the systematic strategy for predictive, preventive, and personalized medicine (PPPM) for cancer disease was described in a view of cancer prognostic prediction, diagnostics, and prevention as well as cancer therapy and drug responses. We have discussed multi-dimensional data obtained from various resources and integration of multisciplinary -omics strategies with computational method which could contribute the more effective PPPM for cancer. This review has provided the novel insights of the current applications of each and combined -omics technologies, which showed their powerful potential for the establishment of PPPM for cancer.
Collapse
Affiliation(s)
- Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea; Omics Core Laboratory, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Sang Myung Woo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea; Center for Liver Cancer, Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Kyung Myung
- Department of Cancer Biomedical System, National Cancer Centre Graduate School of Cancer Science and Policy, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|