1
|
Vumba L, Singh R, Vasaikar S. Molecular Analysis of Tigecycline Resistance in Carbapenem-Resistant Enterobacterales (CRE) in Mthatha and Surrounding Hospitals. Antibiotics (Basel) 2025; 14:407. [PMID: 40298581 PMCID: PMC12024395 DOI: 10.3390/antibiotics14040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Background: The emergence of carbapenem-resistant Enterobacterales is prevalent and poses a significant threat to health systems worldwide. This study aimed to conduct a molecular analysis of tigecycline resistance in 100 CRE isolates from Mthatha Hospital and surrounding hospitals. Methods: A retrospective study among patients who attended Nelson Mandela Academic Hospital (NMAH) and Mthatha Regional Hospital (MRH), Eastern Cape, South Africa. Enterobacterales isolates were identified using the Vitek2® system (bioMérieux); an E-test was performed on 100 CRE isolates according to the manufacturer's instructions. PCR assays for rapid detection of tet(X) and its variants, including tet(X1) and tet(X2), and high-level tigecycline resistance genes tet(X3), tet(X4), and tet(X5) were developed. Results: The results show a notably high prevalence of CRE infections in neonatal, male surgical, and maternal and pediatric wards, predominantly driven by Klebsiella species (53.4%), followed by Enterobacter species (20.5%) and then Escherichia coli (6.7%), and 7.2% of CRE isolates were resistant to tigecycline (E-test). In this study, tet(X) genes were not identified as the primary mechanism of tigecycline resistance. The risk factors associated with tigecycline resistance in CRE include age, pre-exposure to antibiotics, prolonged hospitalization, and undergoing invasive procedures, indicated by strong r = 0.9501. Conclusions: CRE gradually evolves, posing a significant threat to patients of all ages; early detection of carbapenemase production in clinical infections, carriage states, or both is essential to prevent hospital-based outbreaks.
Collapse
Affiliation(s)
- Luyolo Vumba
- Department of Laboratory Medicine and Pathology, Division of Medical Microbiology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | - Ravesh Singh
- Department of Medical Microbiology, National Laboratory Service, Inkosi Albert Luthuli Hospital, Durban 4001, South Africa;
| | - Sandeep Vasaikar
- Department of Laboratory Medicine and Pathology, Division of Medical Microbiology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| |
Collapse
|
2
|
Siderius NL, Sapula SA, Hart BJ, Hutchings JL, Venter H. Enterobacter adelaidei sp. nov. Isolation of an extensively drug resistant strain from hospital wastewater in Australia and the global distribution of the species. Microbiol Res 2024; 288:127867. [PMID: 39163716 DOI: 10.1016/j.micres.2024.127867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Enterobacter species are included among the normal human gut microflora and persist in a diverse range of other environmental niches. They have become important opportunistic nosocomial pathogens known to harbour plasmid-mediated multi-class antimicrobial resistance (AMR) determinants. Global AMR surveillance of Enterobacterales isolates shows the genus is second to Klebsiella in terms of frequency of carbapenem resistance. Enterobacter taxonomy is confusing and standard species identification methods are largely inaccurate or insufficient. There are currently 27 named species and a total of 46 taxa in the genus distinguishable via average nucleotide identity (ANI) calculation between pairs of genomic sequences. Here we describe an Enterobacter strain, ECC3473, isolated from the wastewater of an Australian hospital whose species could not be determined by standard methods nor by ribosomal RNA gene multi-locus typing. AIM To characterise ECC3473 in terms of phenotypic and genotypic antimicrobial resistance, biochemical characteristics and taxonomy as well as to determine the global distribution of the novel species to which it belongs. METHODS Standard broth dilution and disk diffusion were used to determine phenotypic AMR. The strain's complete genome, including plasmids, was obtained following long- and short read sequencing and a novel long/short read hybrid assembly and polishing, and the genomic basis of AMR was determined. Phylogenomic analysis and quantitative measures of relatedness (ANI, digital DNA-DNA hybridisation, and difference in G+C content) were used to study the taxonomic relationship between ECC3473 and Enterobacter type-strains. NCBI and PubMLST databases and the literature were searched for additional members of the novel species to determine its global distribution. RESULTS ECC3473 is one of 21 strains isolated globally belonging to a novel Enterobacter species for which the name, Enterobacter adelaidei sp. nov. is proposed. The novel species was found to be resilient in its capacity to persist in contaminated water and adaptable in its ability to accumulate multiple transmissible AMR determinants. CONCLUSION E. adelaidei sp. nov. may become increasingly important to the dissemination of AMR.
Collapse
Affiliation(s)
- Naomi L Siderius
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Sylvia A Sapula
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Bradley J Hart
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Joshua L Hutchings
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| | - Henrietta Venter
- UniSA Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Han M, Liu C, Xie H, Zheng J, Zhang Y, Li C, Shen H, Cao X. Genomic and clinical characteristics of carbapenem-resistant Enterobacter cloacae complex isolates collected in a Chinese tertiary hospital during 2013-2021. Front Microbiol 2023; 14:1127948. [PMID: 36896426 PMCID: PMC9989974 DOI: 10.3389/fmicb.2023.1127948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Objective To analyze the molecular epidemiology of carbapenem-resistant Enterobacter cloacae complex (CREC) by whole-genome sequencing and to explore its clinical characteristics. Methods Enterobacter cloacae complex isolates collected in a tertiary hospital during 2013-2021 were subjected to whole-genome sequencing to determine the distribution of antimicrobial resistance genes (ARGs), sequence types (STs), and plasmid replicons. A phylogenetic tree of the CREC strains was constructed based on the whole-genome sequences to analyze their relationships. Clinical patient information was collected for risk factor analysis. Results Among the 51 CREC strains collected, blaNDM-1 (n = 42, 82.4%) was the main carbapenem-hydrolyzing β-lactamase (CHβL), followed by blaIMP-4 (n = 11, 21.6%). Several other extended-spectrum β-lactamase-encoding genes were also identified, with blaSHV-12 (n = 30, 58.8%) and blaTEM-1B (n = 24, 47.1%) being the predominant ones. Multi-locus sequence typing revealed 25 distinct STs, and ST418 (n = 12, 23.5%) was the predominant clone. Plasmid analysis identified 15 types of plasmid replicons, among which IncHI2 (n = 33, 64.7%) and IncHI2A (n = 33, 64.7%) were the main ones. Risk factor analysis showed that intensive care unit (ICU) admission, autoimmune disease, pulmonary infection, and previous corticosteroid use within 1 month were major risk factors for acquiring CREC. Logistic regression analysis showed that ICU admission was an independent risk factor for CREC acquisition and was closely related with acquiring infection by CREC with ST418. Conclusion BlaNDM-1 and blaIMP-4 were the predominant carbapenem resistance genes. ST418 carrying BlaNDM-1 not only was the main clone, but also circulated in the ICU of our hospital during 2019-2021, which highlights the necessity for surveillance of this strain in the ICU. Furthermore, patients with risk factors for CREC acquisition, including ICU admission, autoimmune disease, pulmonary infection, and previous corticosteroid use within 1 month, need to be closely monitored for CREC infection.
Collapse
Affiliation(s)
- Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Xie
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jie Zheng
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Chuchu Li
- Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Jiang Y, Yang S, Deng S, Lu W, Huang Q, Xia Y. Epidemiology and mechanisms of tigecycline- and carbapenem- resistant Enterobacter cloacae in Southwest China: a five-year retrospective study. J Glob Antimicrob Resist 2022; 28:161-167. [PMID: 35021124 DOI: 10.1016/j.jgar.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/12/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND The prevalence and molecular epidemiology of tigecycline resistance in carbapenem-resistant Enterobacter cloacae (CREC) in mainland China is unknown. In this study, we aimed to investigate the molecular characteristics and resistance mechanism of tigecycline-resistant CREC (TCREC) in Southwest China. METHODS We conducted a five-year retrospective study. TCREC isolates were subjected to antimicrobial susceptibility testing, pulsed-field gel electrophoresis, and multilocus sequence typing. We determined the presence of genes, deficiency of outer membrane proteins, and expression of efflux pumps using polymerase chain reaction (PCR), reverse transcription-polymerase chain reaction (RT-PCR), and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS We found that a high incidence rate of 21.7% (36/166) of isolates were positive for TCREC. All isolates were resistant to ertapenem whereas 67% remained susceptible to imipenem and meropenem. ST88 (10/36, 27.8%) was predominant and associated with moderate resistance to tigecycline and high resistance to carbapenems, followed by ST256 (3/36, 8.3%), ST78 (2/36, 5.6%), ST577 (2/36, 5.6%), and ST102 (2/36, 5.6%). blaNDM-1 (6/36, 16.6%) carriers was the most common carbapenemase gene and ST88 (5/6, 83.3%) was the most common type, followed by blaIMP-8 (n=3/36, 8.3%). Coexistence of extensive-spectrum β-lactamase (ESBL) genes and outer membrane protein OmpF and/or OmpC loss were found in 27 out of 36 isolates, in addition, increased co-expression of efflux pump genes acrB and oqxA was identified in 25 out of 36 isolates, which may together contribute to co-resistance to carbapenem and tigecycline. CONCLUSION Most ST88 strains carried carbapenemases, especially New Delhi metallo-β-lactamase 1 (NDM-1). Overexpression of efflux pumps contributed to tigecycline resistance. The presence of carbapenemase and/or ESBL genes and lack of outer membrane proteins, but not overexpression of efflux pumps, may confer carbapenem resistance. Reasonable supervision and management the epidemic of TCREC will help to stem the transmission of the isolates.
Collapse
Affiliation(s)
- Yuansu Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China
| | - Shuangshuang Yang
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaoli Deng
- Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China
| | - Weiping Lu
- Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China
| | - Qing Huang
- Department of Clinical Laboratory, Daping Hospital of Army Medical University, Chongqing, China.
| | - Yun Xia
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Tian X, Huang C, Ye X, Jiang H, Zhang R, Hu X, Xu D. Carbapenem-Resistant Enterobacter cloacae Causing Nosocomial Infections in Southwestern China: Molecular Epidemiology, Risk Factors, and Predictors of Mortality. Infect Drug Resist 2020; 13:129-137. [PMID: 32021327 PMCID: PMC6959490 DOI: 10.2147/idr.s234678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background The emergence and spread of carbapenem-resistant Enterobacter cloacae (CR-ECL) have posed a serious threat to clinical management. This retrospective study assessed the epidemiological characteristics of CR-ECL to explore the risk factors and predictors of mortality in patients with CR-ECL infection. Methods We performed a retrospective 1:2 case-control study of hospitalized patients from January 2014 to December 2017. A total of 85 consecutive unique CR-ECL strains comprised the case group, and 170 matched patients with carbapenem-susceptible Enterobacter cloacae (CS-ECL) infection at the same period as the control group. Isolates were screened for potential resistance genes by polymerase chain reaction (PCR) and molecular typing was performed by multilocus sequence typing (MLST). Results The results of drug resistance gene detection showed that blaNDM-1 was the most common carbapenem resistance gene. The MLST results showed that ST51 was the predominant epidemic type, followed by ST88. ICU admission (P<0.001), drainage tube (P=0.002), central venous catheter (P=0.005), and carbapenem exposure (P=0.003) were independent risk factors for CR-ECL infection. Significant predictors for 28-day mortality included solid tumours (P=0.005), septic shock (P=0.019), and mechanical ventilation (P=0.027). Conclusion Our study indicated that ST51 and ST88, which are closely related, were the predominant epidemic types of CR-ECL producing blaNDM-1 in southwestern China. Strengthening the surveillance of patients with solid tumours, septic shock and mechanical ventilation is an urgent need.
Collapse
Affiliation(s)
- Xiaolang Tian
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Changwu Huang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Xiaoli Ye
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Hongyan Jiang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Rufang Zhang
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Xiaofang Hu
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| | - Dongshuang Xu
- Department of Clinical Laboratory, University of Chinese Academy of Sciences Chongqing Renji Hospital (Fifth People's Hospital of Chongqing), Chongqing, People's Republic of China
| |
Collapse
|
6
|
Qian W, Fu Y, Liu M, Wang T, Zhang J, Yang M, Sun Z, Li X, Li Y. In Vitro Antibacterial Activity and Mechanism of Vanillic Acid against Carbapenem-Resistant Enterobacter cloacae. Antibiotics (Basel) 2019; 8:antibiotics8040220. [PMID: 31766130 PMCID: PMC6963763 DOI: 10.3390/antibiotics8040220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022] Open
Abstract
Vanillic acid (VA) is a flavoring agent found in edible plants and fruits. Few recent studies exhibited robust antibacterial activity of VA against several pathogen microorganisms. However, little was reported about the effect of VA on carbapenem-resistant Enterobacter cloacae (CREC). The purpose of the current study was to assess in vitro antimicrobial and antibiofilm activities of VA against CREC. Here, minimum inhibitory concentrations (MIC) of VA against CREC was determined via gradient diffusion method. Furthermore, the antibacterial mode of VA against CREC was elucidated by measuring changes in intracellular adenosine triphosphate (ATP) concentration, intracellular pH (pHin), cell membrane potential and membrane integrity. In addition, antibiofilm formation of VA was measured by crystal violet assay and visualized with field emission scanning electron microscopy (FESEM) and confocal laser scanning microscopy (CLSM). The results showed that MIC of VA against E. cloacae was 600 μg/mL. VA was capable of inhibiting the growth of CREC and destroying the cell membrane integrity of CREC, as confirmed by the decrease of intracellular ATP concentration, pHin and membrane potential as well as distinctive variation in cellular morphology. Moreover, crystal violet staining, FESEM and CLSM results indicated that VA displayed robust inhibitory effects on biofilm formation of CREC and inactivated biofilm-related CREC cells. These findings revealed that VA exhibits potent antibacterial activity against CREC, and thus has potential to be exploited as a natural preservative to control the CREC associated infections.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
- Correspondence: (W.Q.); (T.W.); Tel.: +86-29-86168583 (W.Q. & T.W.)
| | - Yuting Fu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Miao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Ting Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
- Correspondence: (W.Q.); (T.W.); Tel.: +86-29-86168583 (W.Q. & T.W.)
| | - Jianing Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Min Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Zhaohuan Sun
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Xiang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (Y.F.); (M.L.); (J.Z.); (Z.S.); (X.L.)
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, China;
| |
Collapse
|
7
|
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Bioactive Ingredients in Chinese Herbal Medicines That Target Non-coding RNAs: Promising New Choices for Disease Treatment. Front Pharmacol 2019; 10:515. [PMID: 31178721 PMCID: PMC6537929 DOI: 10.3389/fphar.2019.00515] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Chinese herbal medicines (CHMs) are widely used in China and have long been a powerful method to treat diseases in Chinese people. Bioactive ingredients are the main components extracted from herbs that have therapeutic properties. Since artemisinin was discovered to inhibit malaria by Nobel laureate Youyou Tu, extracts from natural plants, particularly bioactive ingredients, have aroused increasing attention among medical researchers. The bioactive ingredients of some CHMs have been found to target various non-coding RNA molecules (ncRNAs), especially miRNAs, lncRNAs, and circRNAs, which have emerged as new treatment targets in numerous diseases. Here we review the evidence that, by regulating the expression of ncRNAs, these ingredients exert protective effects, including pro-apoptosis, anti-proliferation and anti-migration, anti-inflammation, anti-atherosclerosis, anti-infection, anti-senescence, and suppression of structural remodeling. Consequently, they have potential as treatment agents in diseases such as cancer, cardiovascular disease, nervous system disease, inflammatory bowel disease, asthma, infectious diseases, and senescence-related diseases. Although research has been relatively limited and inadequate to date, the promising choices and new alternatives offered by bioactive ingredients for the treatment of the above diseases warrant serious investigation.
Collapse
Affiliation(s)
- Yan Dong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hengwen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongmei Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|