1
|
Chopjitt P, Kansaen R, Chaisaeng S, Phongchaiwasin S, Boueroy P, Jenjaroenpun P, Wongsurawat T, Kerdsin A, Sunthamala N. High-Risk VREfm Clones and Resistance Determinants in a Thai Hospital. Antibiotics (Basel) 2025; 14:229. [PMID: 40149041 PMCID: PMC11939153 DOI: 10.3390/antibiotics14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objective: Vancomycin-resistant enterococci (VRE), particularly Enterococcus faecium (VREfm), are significant healthcare-associated infections, especially bloodstream infections (BSIs). Method: This study explored the genotypic and phenotypic characteristics of 29 VREfm isolates causing BSIs in Thailand. Bacterial species, sequence types (STs), virulence genes, and vancomycin antimicrobial-resistance genes were identified by multiplex PCR, multilocus sequence typing, and whole-genome sequencing (WGS). Antibiotic susceptibility was determined by disk diffusion, while an E-test or broth microdilution were used for daptomycin, teicoplanin, linezolid, and tigecycline. Biofilm formation was assessed using a microtiter plate assay. Results: All isolates harbored the vanA gene and exhibited resistance to ampicillin, erythromycin, norfloxacin, vancomycin, and rifampin. Resistance to ciprofloxacin, tigecycline, and nitrofurantoin was widespread as well. All isolates remained susceptible to chloramphenicol and linezolid. The majority of isolates belonged to clonal complex 17, with ST17 being predominant (21/29, 72.4%), followed by ST80 (6/29, 20.7%), ST761 (1/29, 3.4%), and ST117 (1/29, 3.4%). WGS analysis confirmed the presence of various antimicrobial resistance genes, including aac(6')-Ii, ant-Ia, erm(B), and vanA. Additionally, virulence genes such as acm (collagen adhesin) and esp (enterococcal surface protein), which are involved in biofilm formation, were detected. Conclusion: This study provides insights into the genomic characteristics and clonal dissemination of invasive VREfm in Thailand, which is crucial for infection control and public health surveillance.
Collapse
Affiliation(s)
- Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Rada Kansaen
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Sumontha Chaisaeng
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Sawarod Phongchaiwasin
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.J.); (T.W.)
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.J.); (T.W.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon Nakhon 47000, Thailand; (P.C.); (R.K.); (S.C.); (P.B.); (A.K.)
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| |
Collapse
|
2
|
Hou Z, Liu L, Wei J, Xu B. Progress in the Prevalence, Classification and Drug Resistance Mechanisms of Methicillin-Resistant Staphylococcus aureus. Infect Drug Resist 2023; 16:3271-3292. [PMID: 37255882 PMCID: PMC10226514 DOI: 10.2147/idr.s412308] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
Staphylococcus aureus is a common human pathogen with a variety of virulence factors, which can cause multiple infectious diseases. In recent decades, due to the constant evolution and the abuse of antibiotics, Staphylococcus aureus was becoming more resistant, the infection rate of MRSA remained high, and clinical treatment of MRSA became more difficult. The genetic diversity of MRSA was mainly represented by the continuous emergence of epidemic strains, resulting in the constant changes of epidemic clones. Different classes of MRSA resulted in different epidemics and resistance characteristics, which could affect the clinical symptoms and treatments. MRSA had also spread from traditional hospitals to community and livestock environments, and the new clones established a relationship between animals and humans, promoting further evolution of MRSA. Since the resistance mechanism of MRSA is very complex, it is important to clarify these resistance mechanisms at the molecular level for the treatment of infectious diseases. We firstly described the diversity of SCCmec elements, and discussed the types of SCCmec, its drug resistance mechanisms and expression regulations. Then, we described how the vanA operon makes Staphylococcus aureus resistant to vancomycin and its expression regulation. Finally, a brief introduction was given to the drug resistance mechanisms of biofilms and efflux pump systems. Analyzing the resistance mechanism of MRSA can help study new anti-infective drugs and alleviate the evolution of MRSA. At the end of the review, we summarized the treatment strategies for MRSA infection, including antibiotics, anti-biofilm agents and efflux pump inhibitors. To sum up, here we reviewed the epidemic characteristics of Staphylococcus aureus, summarized its classifications, drug resistance mechanisms of MRSA (SCCmec element, vanA operon, biofilm and active efflux pump system) and novel therapy strategies, so as to provide a theoretical basis for the treatment of MRSA infection.
Collapse
Affiliation(s)
- Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Ling Liu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Benjin Xu
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| |
Collapse
|
3
|
Wang Z, Liao S, Huang G, Feng M, Yin R, Teng L, Jia C, Yao Y, Yue M, Li Y. Infant food production environments: A potential reservoir for vancomycin-resistant enterococci non-nosocomial infections. Int J Food Microbiol 2023; 389:110105. [PMID: 36731202 DOI: 10.1016/j.ijfoodmicro.2023.110105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Enterococcus has been considered one of the most important nosocomial pathogens for human infections, and the hospital environment is an important reservoir for vancomycin-resistant enterococci (VRE) that leads to antimicrobial therapeutic failure. However, infant foods and their production environments could pose risks for the immature population, while this question remains unaddressed. This study conducted an extensive and thorough Enterococcus isolation, VRE risk assessment of the Chinese infant food production chains and additional online-marketing infant foods, including powdered infant formula (PIF) and infant complementary food (ICF). To investigate the prevalence of Enterococcus along infant food chains and commodities, a total of 482 strains of Enterococcus, including E. faecium (n = 363), E. faecalis (n = 84), E. casseliflavus (n = 13), E. mundtii (n = 12), E. gallinarum (n = 4), E. hirae (n = 4), and E. durans (n = 2) were recovered from 459 samples collected from infant food production chains (71/254) and food commodities (67/205). A decreasing trend for Enterococcus detection rate was found in the PIF production chain (PIF-PC), particularly during the preparation of the PIF base powder (From 100 % in raw milk to 8.70 % in end products), while an increasing trend was observed in the ICF production chain (ICF-PC) mainly during the initial processing of farm crops and the further processing of the product (20 % at farm crops increasing to 76.92 % at end products). The result indicated that the PIF-PC process effectively reduced Enterococcus contamination, while the ICF-PC showed the opposite trend. Importantly, eleven VRE isolates were recovered from the infant food production chain, including seven E. casseliflavus isolates carrying vanC2/C3 and four E. gallinarum isolates carrying vanC1. Ten VRE isolates were from food production environments. Collectively, our study demonstrated that infant food production environments represent potential reservoirs for VRE non-nosocomial infections in vulnerable populations.
Collapse
Affiliation(s)
- Zining Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Sihao Liao
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Guanwen Huang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Mengyao Feng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Rui Yin
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Lin Teng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yicheng Yao
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yan Li
- Hainan Institute, Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| |
Collapse
|
4
|
Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Kudo K, Tsukamoto N, Ito M, Kobayashi N. Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus faecalis and Enterococcus faecium Clinical Isolates in Northern Japan: Identification of optrA in ST480 E. faecalis. Antibiotics (Basel) 2023; 12:antibiotics12010108. [PMID: 36671309 PMCID: PMC9855154 DOI: 10.3390/antibiotics12010108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Enterococcus faecalis and E. faecium are the major pathogens causing community- and healthcare-associated infections, with an ability to acquire resistance to multiple antimicrobials. The present study was conducted to determine the prevalence of virulence factors, drug resistance and its genetic determinants, and clonal lineages of E. faecalis and E. faecium clinical isolates in northern Japan. A total of 480 (426 E. faecalis and 54 E. faecium) isolates collected over a four-month period were analyzed. Three virulence factors promoting bacterial colonization (asa1, efaA, and ace) were more prevalent among E. faecalis (46-59%) than E. faecium, while a similar prevalence of enterococcal surface protein gene (esp) was found in these species. Between E. faecalis and E. faecium, an evident difference was noted for resistance to erythromycin, gentamicin, and levofloxacin and its responsible resistance determinants. Oxazolidinone resistance gene optrA and phenicol exporter gene fexA were identified in an isolate of E. faecalis belonging to ST480 and revealed to be located on a cluster similar to those of isolates reported in other Asian countries. The E. faecalis isolates analyzed were differentiated into 12 STs, among which ST179 and ST16 of clonal complex (CC) 16 were the major lineage. Nearly all the E. faecium isolates were assigned into CC17, which consisted of 10 different sequence types (STs), including a dominant ST17 containing multidrug resistant isolates and ST78 with isolates harboring the hyaluronidase gene (hyl). The present study revealed the genetic profiles of E. faecalis and E. faecium clinical isolates, with the first identification of optrA in ST480 E. faecalis in Japan.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-11-611-2111
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan
| | - Kenji Kudo
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | | | - Masahiko Ito
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
5
|
Shen J, Long X, Jiang Q, Xu H, Wei Q, Shi Q, Liu Y, Xu S, Ma X, Li L. Genomic Characterization of a Vancomycin-Resistant Strain of Enterococcus faecium Harboring a rep2 Plasmid. Infect Drug Resist 2023; 16:1153-1158. [PMID: 36875226 PMCID: PMC9983603 DOI: 10.2147/idr.s398913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Purpose In China, vancomycin-resistant enterococci (VRE) was not a common occurrence, and research on the genetic context and transmission mechanism of vanA-plasmid was scarce. The aim of this study was to molecularly characterise a vancomycin-resistant Enterococcus faecium isolate from a bloodstream infection and determine the genetic environment and delivery pattern of the plasmid carrying vancomycin-resistant gene. Materials and Methods In May 2022, a vancomycin-resistant strain of Enterococci was identified during routine screening for VRE bacteria at the First Affiliated Hospital, Zhejiang University School of Medicine. Utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), the isolate was accurately identified. Antimicrobial susceptibility and whole-genome sequencing (WGS) were employed to perform phenotypic and genomic analysis, respectively. Further bioinformatics analyses was carried out to characterize the vanA-bearing plasmid. Results The antimicrobial susceptibility test showed that SJ2 strain was resistant to multiple antimicrobials, including ampicillin, benzylpenicillin, ciprofloxacin, erythromycin, levofloxacin, streptomycin, and vancomycin. Whole-genome analysis revealed that SJ2 strain carries several antimicrobial resistance genes and virulence determinants. MLST analysis found that SJ2 strain belongs to an unknown ST type. Plasmid analysis confirmed that the vanA gene was located on a variant of ~50 kb rep2 plasmid. Conclusion Our study found that vanA-bearing rep2 plasmid is a potential source of dissemination and outbreak, and continuous surveillance is necessary to control its spread in Hangzhou, China.
Collapse
Affiliation(s)
- Jie Shen
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiao Long
- Department of Orthopedics, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qi Jiang
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qinming Wei
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shanshan Xu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiaolu Ma
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Wen Z, Liu F, Zhang P, Wei Y, Shi Y, Zheng J, Li G, Yu Z, Xu Z, Deng Q, Chen Z. In vitro activity and adaptation strategies of eravacycline in clinical Enterococcus faecium isolates from China. J Antibiot (Tokyo) 2022; 75:498-508. [PMID: 35896611 DOI: 10.1038/s41429-022-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 11/09/2022]
Abstract
Eravacycline (Erava) is a synthetic fluorocycline with potent antimicrobial activity against a wide range of Gram-positive bacteria. This study aimed to investigate the in vitro antimicrobial activity and resistance mechanism of Erava in clinical E. faecium isolates from China. Erava minimum inhibitory concentrations (MICs) against clinical E. faecium isolates-including those resistant to linezolid (LZD) or harboring the tetracycline (Tet) resistance genes was ≤0.25 mg l-1. Moreover, our data indicated that clinical isolates of E. faecium with Erava MIC 0.25 mg l-1 were predominantly shown to belong to Sequence-type 78 (ST78) and ST80. The prevalence of Erava heteroresistance in clinical E. faecium strain was 2.46% (3/122). The increased Erava MIC values of heteroresistance-derived E. faecium clones could be significantly reduced by efflux pump inhibitors (EPIs). Furthermore, comparative proteomics results showed that efflux pumps lmrA, mdlA, and mdlB contributed significantly to the acquisition of Erava resistance in E. faecium. In addition, a genetic mutation in 16 S rRNA (G190A) were detected in resistant E. faecium isolates induced by Erava. In summary, Erava exhibits potent in vitro antimicrobial activity against E. faecium, but mutation of Tet target sites and elevated expression of efflux pumps under Erava selection results in Erava resistance.
Collapse
Affiliation(s)
- Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Fangfang Liu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Peixing Zhang
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Ying Wei
- Heilongjiang Medical Service Management Evaluation Center, Harbin, Heilongjiang, 150031, China
| | - Yiyi Shi
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Guiqiu Li
- Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.,The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China.,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Zhicao Xu
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th affiliated hospital of Guangdong Medical University, Shenzhen, 518052, China. .,Quality Control Center of Hospital Infection Management of Shenzhen, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China.
| |
Collapse
|
7
|
Li W, Hu J, Li L, Zhang M, Cui Q, Ma Y, Su H, Zhang X, Xu H, Wang M. New Mutations in cls Lead to Daptomycin Resistance in a Clinical Vancomycin- and Daptomycin-Resistant Enterococcus faecium Strain. Front Microbiol 2022; 13:896916. [PMID: 35801099 PMCID: PMC9253605 DOI: 10.3389/fmicb.2022.896916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Daptomycin (DAP), a last-resort antibiotic for treating Gram-positive bacterial infection, has been widely used in the treatment of vancomycin-resistant enterococci (VRE). Resistance to both daptomycin and vancomycin leads to difficulties in controlling infections of enterococci. A clinical multidrug-resistant Enterococcus faecium EF332 strain that shows resistance to both daptomycin and vancomycin was identified, for which resistance mechanisms were investigated in this work. Whole-genome sequencing and comparative genomic analysis were performed by third-generation PacBio sequencing, showing that E. faecium EF332 contains four plasmids, including a new multidrug-resistant pEF332-2 plasmid. Two vancomycin resistance-conferring gene clusters vanA and vanM were found on this plasmid, making it the second reported vancomycin-resistant plasmid containing both clusters. New mutations in chromosomal genes cls and gdpD that, respectively, encode cardiolipin synthase and glycerophosphoryl diester phosphodiesterase were identified. Their potential roles in leading to daptomycin resistance were further investigated. Through molecular cloning and phenotypic screening, two-dimensional thin-layer chromatography, fluorescence surface charge test, and analysis of cardiolipin distribution patterns, we found that mutations in cls decrease surface negative charges of the cell membrane (CM) and led to redistribution of lipids of CM. Both events contribute to the DAP resistance of E. faecium EF332. Mutation in gdpD leads to changes in CM phospholipid compositions, but cannot confer DAP resistance. Neither mutation could result in changes in cellular septa. Therefore, we conclude that the daptomycin resistance of E. faecium EF332 is conferred by new cls mutations. This work reports the genetic basis for vancomycin and daptomycin resistance of a multidrug-resistant E. faecium strain, with the finding of new mutations of cls that leads to daptomycin resistance.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
- Division of Science and Technology, Ludong University, Yantai, China
| | - Jiamin Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Qingyu Cui
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yanan Ma
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hainan Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xuhua Zhang
- Laboratory Medicine Center, The Second Hospital of Shandong University, Jinan, China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Chen J, Cao Z, Cannon J, Fan Y, Baker JR, Wang SH. Effective Treatment of Skin Wounds Co-Infected with Multidrug-Resistant Bacteria with a Novel Nanoemulsion. Microbiol Spectr 2022; 10:e0250621. [PMID: 35412373 PMCID: PMC9045288 DOI: 10.1128/spectrum.02506-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
Wound infections with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are particularly difficult to treat and present a great challenge to clinicians. Nanoemulsions (NE) are novel oil-in-water emulsions formulated from soybean oil, water, solvent, and surfactants such as benzalkonium chloride (BZK). An optimal ratio of those components produces nanometer-sized particles with the positive-charged surfactant at their oil-water interface. We sought to investigate antimicrobial NE as a novel treatment to address wounds co-infected by MRSA and VRE. Swine split-thickness skin wounds were first infected with MRSA and/or VRE, then treated with the nanoemulsion formulation (X-1735) or placebo controls. Bacterial viability after treatment were determined by nutrient agar plates for total, MRSA-specific, and VRE-specific loads. In addition, inflammation indexes were scored by histopathology. When VRE infected wounds were treated with X-1735, they contained 103 lower VRE CFU counts across a 2-week period compared with placebo. Once co-infected MRSA and VRE split-thickness wounds were successfully established, topical treatment of co-infected wounds with X-1735 resulted in a reduction of bacteria by 2 to 3 logs (compared with placebo) at 3- and 14-day postinfection time points. Importantly, X-1735 was effective in significantly alleviating multilevel inflammation in the treated wounds. X-1735 is a new antimicrobial that is safe to apply to open wounds and effectively kills MRSA and VRE. It appears to also reduce inflammation in these co-infected wounds. The data suggest that this approach offers promise as an antimicrobial for open wounds with MRSA and VRE co-infection. IMPORTANCE Infections, specifically polymicrobial, can cause serious consequences when it comes to wound treatment. Prolonged treatment with antibiotics can lead to an increased risk of bacterial resistance; co-infections can complicate treatment options even further. Our research proposes a novel nanoemulsion treatment for two of the most common antibiotic resistant bacteria: methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-resistant enterococci (VRE). This optimized topical treatment formulation not only significantly reduces inflammation and infection in MRSA or VRE infected wounds, but also in MRSA and VRE co-infected wounds as well. The work aims to provide an alternative treatment approach for multidrug-resistant organisms and decrease dependence on systemic treatments.
Collapse
Affiliation(s)
- Jesse Chen
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Zhengyi Cao
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayme Cannon
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongyi Fan
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - James R. Baker
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Su He Wang
- Department of Internal Medicine, Division of Allergy, Michigan Nanotechnology, Institute for Medicine and Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
9
|
Adamecz Z, Nielsen KL, Kirkby NS, Frimodt-Møller N. Aminoglycoside resistance genes in Enterococcus faecium: mismatch with phenotype. J Antimicrob Chemother 2021; 76:2215-2217. [PMID: 33969403 DOI: 10.1093/jac/dkab137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zsuzsanna Adamecz
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Karen Leth Nielsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|