1
|
Theuretzbacher U. The global resistance problem and the clinical antibacterial pipeline. Nat Rev Microbiol 2025:10.1038/s41579-025-01169-8. [PMID: 40210708 DOI: 10.1038/s41579-025-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
A comprehensive analysis of the clinical antibacterial pipeline demonstrates that there is a limited range of strategies that are primarily focused on modified versions of widely used chemical classes. These modifications aim to circumvent class-specific resistance mechanisms and reduce resistance rates in certain multidrug-resistant pathogens. Owing to the great variation in resistance rates and mechanisms, the clinical success of current approaches varies substantially across different countries, regions, and economic and environmental conditions, which affects the global societal value of these antibiotics that remain vulnerable to cross-resistance. Although there has been some progress in developing urgently needed antibiotics with novel targets and chemical structures, some of which have advanced to phase I/II trials, further breakthroughs are required. Additionally, adjunctive agents designed to enhance the outcome of conventional antibiotic therapies, along with bacteriophages that offer targeted and personalized treatments, are also under investigation. However, the potential of adjunctive therapeutics, such as antivirulence agents, and bacteriophages has yet to be realized in terms of feasibility and global societal impact.
Collapse
|
2
|
Schnabl B, Damman CJ, Carr RM. Metabolic dysfunction-associated steatotic liver disease and the gut microbiome: pathogenic insights and therapeutic innovations. J Clin Invest 2025; 135:e186423. [PMID: 40166938 PMCID: PMC11957707 DOI: 10.1172/jci186423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major cause of liver disease worldwide, and our understanding of its pathogenesis continues to evolve. MASLD progresses from steatosis to steatohepatitis, fibrosis, and cirrhosis, and this Review explores how the gut microbiome and their metabolites contribute to MASLD pathogenesis. We explore the complexity and importance of the intestinal barrier function and how disruptions of the intestinal barrier and dysbiosis work in concert to promote the onset and progression of MASLD. The Review focuses on specific bacterial, viral, and fungal communities that impact the trajectory of MASLD and how specific metabolites (including ethanol, bile acids, short chain fatty acids, and other metabolites) contribute to disease pathogenesis. Finally, we underscore how knowledge of the interaction between gut microbes and the intestinal barrier may be leveraged for MASLD microbial-based therapeutics. Here, we include a discussion of the therapeutic potential of prebiotics, probiotics, postbiotics, and microbial-derived metabolites.
Collapse
Affiliation(s)
- Bernd Schnabl
- Department of Medicine, Division of Gastroenterology, UCSD, San Diego, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Christopher J. Damman
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| | - Rotonya M. Carr
- Department of Medicine, Division of Gastroenterology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Flores-Treviño S, Bocanegra-Ibarias P, Salas-Treviño D, Ramírez-Elizondo MT, Pérez-Alba E, Camacho-Ortiz A. Microbiota transplantation and administration of live biotherapeutic products for the treatment of dysbiosis-associated diseases. Expert Opin Biol Ther 2025:1-14. [PMID: 40134274 DOI: 10.1080/14712598.2025.2484303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION The microbiota composition in humans varies according to the anatomical site and is crucial for maintaining homeostasis and an overall healthy state. Several gastrointestinal, vaginal, respiratory, and skin diseases are associated with dysbiosis. Alternative therapies such as microbiota transplantation can help restore microbiota normal composition and can be implemented to treat clinically relevant diseases. AREAS COVERED Current microbiota transplantation therapies conducted in clinical trials were included in this review (after searching on MEDLINE database from years 2017 to 2025) such as fecal microbiota transplantation (FMT) against recurrent Clostridioides difficile infection (rCDI) and vaginal microbiota transplantation (VMT) against bacterial vaginosis. Washed microbiota transplantation (WMT) and live biotherapeutic products (LBPs) were also reviewed. EXPERT OPINION In microbiota-based transplantation therapy, selecting optimal donors is a limitation. A stool or a vaginal microbiota bank should be implemented to overcome the time-consuming and expensive process of donor recruitment. Microbiota-based LBPs are also promising treatment alternatives for rCDI and other dysbiosis-associated diseases. Specific LBPs could be engineered out of donor fluids-derived strains to achieve the selection of specific beneficial microorganisms for the treatment of specific dysbiosis-associated diseases. Personalized microbiota-based treatments are promising solutions for dysbiosis-associated diseases, which remains an important necessity in clinical practice.
Collapse
Affiliation(s)
- Samantha Flores-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Paola Bocanegra-Ibarias
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Daniel Salas-Treviño
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - María Teresa Ramírez-Elizondo
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Eduardo Pérez-Alba
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| | - Adrián Camacho-Ortiz
- Department of Infectious Diseases, University Hospital "Dr. José Eleuterio González", Autonomous University of Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
4
|
Herbin SR, Crum H, Gens K. Breaking the Cycle of Recurrent Clostridioides difficile Infections: A Narrative Review Exploring Current and Novel Therapeutic Strategies. J Pharm Pract 2024; 37:1361-1373. [PMID: 38739837 DOI: 10.1177/08971900241248883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is a toxin-producing bacteria that is a main cause of antibiotic-associated diarrhea. Clostridioides difficile infections (CDI) are associated with disruptions within the gastrointestinal (GI) microbiota which can be further exacerbated by CDI-targeted antibiotic treatment thereby causing recurrent CDI (rCDI) and compounding the burden placed on patients and the healthcare system. Treatment of rCDI consists of antibiotics which can be paired with preventative therapeutics, such as bezlotoxumab or fecal microbiota transplants (FMTs), if sustained clinical response is not obtained. Newer preventative strategies have been recently approved to assist in restoring balance within the GI system with the goal of preventing recurrent infections.
Collapse
Affiliation(s)
- Shelbye R Herbin
- Antimicrobial Stewardship and Medication Safety, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Hannah Crum
- Mercy Hospital Southeast, Cape Girardeau, MO, USA
| | - Krista Gens
- Allina Health, Minneapolis, MN, USA
- Abbott Northwestern Hospital, Minneapolis, MN, USA
| |
Collapse
|
5
|
Britton RA, Verdu EF, Di Rienzi SC, Reyes Muñoz A, Tarr PI, Preidis GA. Taking Microbiome Science to the Next Level: Recommendations to Advance the Emerging Field of Microbiome-Based Therapeutics and Diagnostics. Gastroenterology 2024; 167:1059-1064. [PMID: 38815708 DOI: 10.1053/j.gastro.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Robert A Britton
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sara C Di Rienzi
- Department of Molecular Virology and Microbiology and Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas
| | - Alejandro Reyes Muñoz
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics and, Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri
| | - Geoffrey A Preidis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| |
Collapse
|
6
|
Saeed A, Batra N, Rezgui R, Alshaghdali K, Alkhalaf I, Yadav DK, Dey P. Gut microbiota-centered risk factors and altered immunometabolism in the pathogenesis and prophylaxis of Clostridium difficile infection. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2024; 36:103374. [DOI: 10.1016/j.jksus.2024.103374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2025]
|
7
|
Rahman S, Lu E, Patel RK, Tsikitis VL, Martindale RG. Colorectal Disease and the Gut Microbiome: What a Surgeon Needs to Know. Surg Clin North Am 2024; 104:647-656. [PMID: 38677827 DOI: 10.1016/j.suc.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The gut microbiome is defined as the microorganisms that reside within the gastrointestinal tract and produce a variety of metabolites that impact human health. These microbes play an intricate role in human health, and an imbalance in the gut microbiome, termed gut dysbiosis, has been implicated in the development of varying diseases. The purpose of this review is to highlight what is known about the microbiome and its impact on colorectal cancer, inflammatory bowel disease, constipation, Clostridioides difficile infection, the impact of bowel prep, and anastomotic leaks.
Collapse
Affiliation(s)
- Shahrose Rahman
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA.
| | - Ethan Lu
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Ranish K Patel
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| | - Robert G Martindale
- Department of Surgery, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mail Code L223, Portland, OR 97239, USA
| |
Collapse
|
8
|
Blair HA. SER-109 (VOWST ™): A Review in the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2024; 84:329-336. [PMID: 38441806 DOI: 10.1007/s40265-024-02006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2024] [Indexed: 04/02/2024]
Abstract
SER-109 (VOWST™; fecal microbiota spores, live-brpk) is a live biotherapeutic product indicated to prevent the recurrence of Clostridioides difficile infection (CDI) in patients 18 years of age and older following standard of care (SOC) antibacterial treatment for recurrent CDI. It is a purified bacterial spore suspension sourced from healthy donors. As the first oral faecal microbiota product approved for prevention of recurrent CDI, SER-109 is administered as four capsules once daily for three consecutive days. In a well-designed, placebo-controlled, phase III trial (ECOSPOR III), SER-109 significantly reduced the risk of recurrent CDI at 8 weeks post-treatment, with a durable response seen at 6 months post-treatment. Treatment with SER-109 was also associated with rapid and steady improvement in health-related quality of life compared with placebo. SER-109 was generally well tolerated, with a safety profile similar to that of placebo. The most common adverse events were of mild to moderate severity and generally gastrointestinal in nature. Thus, with the convenience of oral administration and lack of necessity for cold storage, SER-109 is a valuable option for preventing further CDI recurrence in adults following antibacterial treatment for recurrent CDI.
Collapse
Affiliation(s)
- Hannah A Blair
- Springer Nature, Mairangi Bay, Private Bag 65901, Auckland, 0754, New Zealand.
| |
Collapse
|
9
|
Kim DY, Lee SY, Lee JY, Whon TW, Lee JY, Jeon CO, Bae JW. Gut microbiome therapy: fecal microbiota transplantation vs live biotherapeutic products. Gut Microbes 2024; 16:2412376. [PMID: 39377231 PMCID: PMC11469438 DOI: 10.1080/19490976.2024.2412376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024] Open
Abstract
The human intestine hosts a complex ecosystem of various microorganisms, collectively known as the gut microbiome, which significantly impacts human health. Disruptions in the gut microbiome are linked to various disorders, including gastrointestinal diseases, such as Clostridioides difficile infection and inflammatory bowel disease, as well as metabolic, neurological, oncologic conditions. Fecal microbiota transplantation (FMT) and live biotherapeutic products (LBPs) have emerged as prospective therapeutic procedures to restore microbial and metabolic balance in the gut. This review assesses the latest advancements, challenges, and therapeutic efficacy of FMT and LBPs, highlighting the need for standardization, safety, and long-term evaluation to optimize their clinical application.
Collapse
Affiliation(s)
- Do-Yeon Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - So-Yeon Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Jae-Yun Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
| | - Tae Woong Whon
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju, Korea
| | - June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul, Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| |
Collapse
|
10
|
Jain N, Umar TP, Fahner AF, Gibietis V. Advancing therapeutics for recurrent clostridioides difficile infections: an overview of vowst's FDA approval and implications. Gut Microbes 2023; 15:2232137. [PMID: 37431860 PMCID: PMC10337487 DOI: 10.1080/19490976.2023.2232137] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Clostridioides difficile infections (CDI) are a leading cause of healthcare-associated infections with a high relapse rate. Current treatment guidelines recommend fidaxomicin as the primary therapy for initial CDI episodes and suggest alternative approaches for recurrent episodes, including fecal microbiota transplantation (FMT). This paper explores the recent approval of Vowst, a novel oral FMT drug, by the United States Food and Drug Administration (FDA) as a prophylactic therapy to prevent recurrent CDIs. Vowst comprises a formulation of live fecal microbiota spores and works by reestablishing the disrupted gut microbiota, limiting C. difficile spore germination, and promoting microbiome repair. Furthermore, this paper will discuss the product's approval journey and the uncertainties regarding its efficacy in CDI patients beyond the ones who participated in the clinical trials, pharmacovigilance, cost estimates, and the need for a more stringent donor screening process. Overall, Vowst's approval marks a significant step forward in the prevention of recurrent CDI infections with various beneficial implications for future gastroenterology.
Collapse
Affiliation(s)
- Nityanand Jain
- Faculty of Medicine, Riga Stradinš University, Riga, Latvia
- Joint Microbiology Laboratory, Pauls Stradinš Clinical University Hospital, Riga, Latvia
| | | | - Anne-Fleur Fahner
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Faculty of Biomedical Sciences, Vrije Universiteit, Amsterdam, Netherlands
| | - Valdis Gibietis
- Department of Internal Diseases, Riga Stradinš University, Riga, Latvia
| |
Collapse
|