1
|
Monreal-Escalante E, Angulo M, Ramos-Vega A, Trujillo E, Angulo C. Plant-made trained immunity-based vaccines: Beyond one approach. Int J Pharm 2025; 675:125572. [PMID: 40204041 DOI: 10.1016/j.ijpharm.2025.125572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Plant-made vaccines and trained immunity-based vaccines (TIbV or TRAIMbV) represent two strategies for enhancing immunity against diseases. Plants provide an effective and cost-efficient vaccine production platform, while TIbV induces innate immune memory that can protect against both homologous and heterologous diseases. Both strategies are generally compatible; however, they have not been explored in a transdisciplinary manner. Despite their strengths in vaccinology, each faces limitations that hinder widespread adoption and health benefits. This review revisits both strategies, discussing their fundamental knowledge alongside practical and experimental examples, ultimately highlighting their limitations and perspectives to pave the way for a unified approach to combat diseases. Future scenarios are envisioned and presented if research on plant-made trained immunity-based vaccines is adopted.
Collapse
Affiliation(s)
- Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico; SECIHTI-Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Miriam Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Abel Ramos-Vega
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) Unidad Morelos del Instituto Politécnico Nacional (IPN), Dirección: Boulevard de la Tecnología No.1036, Código Postal 62790 Xochitepec, Morelos, Mexico
| | - Edgar Trujillo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group and Laboratorio Nacional CONAHCYT (SECIHTI) de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD). Centro de Investigaciones Biológicas del Noroeste, S.C. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.
| |
Collapse
|
2
|
Angulo M, Angulo C. Trained immunity-based vaccines: A vision from the one health initiative. Vaccine 2025; 43:126505. [PMID: 39520776 DOI: 10.1016/j.vaccine.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Trained immunity-based vaccines (TIbV or TRIMbV) represent a novel approach to combating infectious diseases. The innate immune system in animals, including humans, exhibits "memory-like" functions. Remarkably, the immunological mechanisms -both epigenetic and metabolic-) underlying this memory enables immune cells to develop defensive and protective outcomes against unspecific pathogenic infections. Under this context, the One Health initiative promotes integrative efforts to combat zoonotic (and anthropozoonotic) diseases, which is critical because 3 of 4 animal infections are transmitted to humans. Therefore, TIbV constitutes a potential affordable approach to control zoonotic pathologies, especially under pandemic scenarios. This review describes the state-of-the-art TIbV and their hurdles, opportunities, and prospects for the One Health initiative to prevent, control, and treat infectious diseases.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico.
| |
Collapse
|
3
|
Kotwal SB, Orekondey N, Saradadevi GP, Priyadarshini N, Puppala NV, Bhushan M, Motamarry S, Kumar R, Mohannath G, Dey RJ. Multidimensional futuristic approaches to address the pandemics beyond COVID-19. Heliyon 2023; 9:e17148. [PMID: 37325452 PMCID: PMC10257889 DOI: 10.1016/j.heliyon.2023.e17148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Globally, the impact of the coronavirus disease 2019 (COVID-19) pandemic has been enormous and unrelenting with ∼6.9 million deaths and ∼765 million infections. This review mainly focuses on the recent advances and potentially novel molecular tools for viral diagnostics and therapeutics with far-reaching implications in managing the future pandemics. In addition to briefly highlighting the existing and recent methods of viral diagnostics, we propose a couple of potentially novel non-PCR-based methods for rapid, cost-effective, and single-step detection of nucleic acids of viruses using RNA mimics of green fluorescent protein (GFP) and nuclease-based approaches. We also highlight key innovations in miniaturized Lab-on-Chip (LoC) devices, which in combination with cyber-physical systems, could serve as ideal futuristic platforms for viral diagnosis and disease management. We also discuss underexplored and underutilized antiviral strategies, including ribozyme-mediated RNA-cleaving tools for targeting viral RNA, and recent advances in plant-based platforms for rapid, low-cost, and large-scale production and oral delivery of antiviral agents/vaccines. Lastly, we propose repurposing of the existing vaccines for newer applications with a major emphasis on Bacillus Calmette-Guérin (BCG)-based vaccine engineering.
Collapse
Affiliation(s)
- Shifa Bushra Kotwal
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Nidhi Orekondey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | | | - Neha Priyadarshini
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Navinchandra V Puppala
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Snehasri Motamarry
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Rahul Kumar
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Gireesha Mohannath
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| | - Ruchi Jain Dey
- Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Telangana 500078, India
| |
Collapse
|
4
|
Noverr MC, Yano J, Hagensee ME, Lin HY, Meyaski MC, Meyaski E, Cameron J, Shellito J, Trauth A, Fidel PL. Effect of MMR Vaccination to Mitigate Severe Sequelae Associated With COVID-19: Challenges and Lessons Learned. MEDICAL RESEARCH ARCHIVES 2023; 11:3598. [PMID: 37153751 PMCID: PMC10162774 DOI: 10.18103/mra.v11i2.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Mortality in COVID-19 cases was strongly associated with progressive lung inflammation and eventual sepsis. There is mounting evidence that live attenuated vaccines commonly administered during childhood, also provide beneficial non-specific immune effects, including reduced mortality and hospitalization due to unrelated infections. It has been proposed that live attenuated vaccine-associated non-specific effects are a result of inducing trained innate immunity to function more effectively against broader infections. In support of this, our laboratory has reported that immunization with a live attenuated fungal strain induces a novel form of trained innate immunity which provides protection against various inducers of sepsis in mice via myeloid-derived suppressor cells. Accordingly, we initiated a randomized control clinical trial with the live attenuated Measles, Mumps, Rubella (MMR) vaccine in healthcare workers in the greater New Orleans area aimed at preventing/reducing severe lung inflammation/sepsis associated with COVID-19 (ClinicalTrials.gov Identifier: NCT04475081). Included was an outcome to evaluate the myeloid-derived suppressor cell populations in blood between those administered the MMR vaccine vs placebo. The unanticipated emergency approval of several COVID-19 vaccines in the midst of the MMR clinical trials eliminated the ability to examine effects of the MMR vaccine on COVID-19-related health status. Unfortunately, we were also unable to show any impact of the MMR vaccine on peripheral blood myeloid-derived suppressor cells due to several inherent limitations (low percentages of blood leukocytes, small sample size), that also included a collaboration with a similar trial (CROWN CORONATION; ClinicalTrials.gov Identifier: NCT04333732) in St. Louis, MO. In contrast, monitoring the COVID-19 vaccine response in trial participants revealed that high COVID-19 antibody titers occurred more often in those who received the MMR vaccine vs placebo. While the trial was largely inconclusive, lessons learned from addressing several trial-associated challenges may aid future studies that test the non-specific beneficial immune effects of live attenuated vaccines.
Collapse
Affiliation(s)
- Mairi C. Noverr
- Department of Microbiology and Immunology, Tulane University School of Medicine
| | - Junko Yano
- Center of Excellence in Oral and Craniofacial Biology, LSU Health School of Dentistry
| | - Michael E. Hagensee
- Section of Infectious Diseases, Department of Medicine, LSU Health New Orleans
| | - Hui-Yi Lin
- Biostatistics Program, LSU Health School of Public Health
| | - Mary C. Meyaski
- Clinical and Translational Research Center, LSU Health New Orleans
| | - Erin Meyaski
- Clinical and Translational Research Center, LSU Health New Orleans
| | - Jennifer Cameron
- Department of Microbiology, Immunology, and Parasitology, LSU Health New Orleans
| | - Judd Shellito
- Section of Pulmonary Medicine, Department of Medicine, LSU Health New Orleans
| | - Amber Trauth
- Section of Infectious Diseases, Department of Medicine, LSU Health New Orleans
| | - Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, LSU Health School of Dentistry
| |
Collapse
|
5
|
Aaby P, Netea MG, Benn CS. Beneficial non-specific effects of live vaccines against COVID-19 and other unrelated infections. THE LANCET. INFECTIOUS DISEASES 2023; 23:e34-e42. [PMID: 36037824 PMCID: PMC9417283 DOI: 10.1016/s1473-3099(22)00498-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 12/25/2022]
Abstract
Live attenuated vaccines could have beneficial, non-specific effects of protecting against vaccine-unrelated infections, such as BCG protecting against respiratory infection. During the COVID-19 pandemic, testing of these effects against COVID-19 was of interest to the pandemic control programme. Non-specific effects occur due to the broad effects of specific live attenuated vaccines on the host immune system, relying on heterologous lymphocyte responses and induction of trained immunity. Knowledge of non-specific effects has been developed in randomised controlled trials and observational studies with children, but examining of whether the same principles apply to adults and older adults was of interest to researchers during the pandemic. In this Personal View, we aim to define a framework for the analysis of non-specific effects of live attenuated vaccines against vaccine-unrelated infections with pandemic potential using several important concepts. First, study endpoints should prioritise severity of infection and overall patient health rather than incidence of infection only (eg, although several trials found no protection of the BCG vaccine against COVID-19 infection, it is associated with lower overall mortality than placebo). Second, revaccination of an individual with the same live attenuated vaccine could be the most effective strategy against vaccine-unrelated infections. Third, coadministration of several live attenuated vaccines might enhance beneficial non-specific effects. Fourth, the sequence of vaccine administration matters; the live attenuated vaccine should be the last vaccine administered before exposure to the pandemic infection and non-live vaccines should not be administered afterwards. Fifth, live attenuated vaccines could modify the immune response to specific COVID-19 vaccines. Finally, non-specific effects of live attenuated vaccines should always be analysed with subgroup analysis by sex of individuals receiving the vaccines.
Collapse
Affiliation(s)
- Peter Aaby
- Bandim Health Project, Bissau, Guinea-Bissau, University of Southern Denmark, Odense, Denmark; Odense Patient data Explorative Network, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Mihai G Netea
- Radboud Center for Infectious Diseases, Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands; Department of Immunology and Metabolism, Life and Medical Science Institute, University of Bonn, Bonn, Germany
| | - Christine S Benn
- Odense Patient data Explorative Network, Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Institute of Advanced Science, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Fang ZG, Yang SQ, Lv CX, An SY, Wu W. Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study. BMJ Open 2022; 12:e056685. [PMID: 35777884 PMCID: PMC9251895 DOI: 10.1136/bmjopen-2021-056685] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The COVID-19 outbreak was first reported in Wuhan, China, and has been acknowledged as a pandemic due to its rapid spread worldwide. Predicting the trend of COVID-19 is of great significance for its prevention. A comparison between the autoregressive integrated moving average (ARIMA) model and the eXtreme Gradient Boosting (XGBoost) model was conducted to determine which was more accurate for anticipating the occurrence of COVID-19 in the USA. DESIGN Time-series study. SETTING The USA was the setting for this study. MAIN OUTCOME MEASURES Three accuracy metrics, mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE), were applied to evaluate the performance of the two models. RESULTS In our study, for the training set and the validation set, the MAE, RMSE and MAPE of the XGBoost model were less than those of the ARIMA model. CONCLUSIONS The XGBoost model can help improve prediction of COVID-19 cases in the USA over the ARIMA model.
Collapse
Affiliation(s)
- Zheng-Gang Fang
- Department of Epidemiology, China Medical University, Shenyang, China
| | - Shu-Qin Yang
- Department of Epidemiology, China Medical University, Shenyang, China
| | - Cai-Xia Lv
- Department of Epidemiology, China Medical University, Shenyang, China
| | - Shu-Yi An
- Department of Social Medicine and Health, Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Wei Wu
- Department of Epidemiology, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Chiu NC, Lo KH, Chen CC, Huang SY, Weng SL, Wang CJ, Kuo HH, Chi H, Lien CH, Tai YL, Lin CY. The impact of COVID-19 on routine vaccinations in Taiwan and an unexpected surge of pneumococcal vaccination. Hum Vaccin Immunother 2022; 18:2071079. [PMID: 35561305 PMCID: PMC9359358 DOI: 10.1080/21645515.2022.2071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had substantial impacts, including disruptions in routine vaccinations. In Taiwan, COVID-19 was relatively controllable, and the reduction in routine vaccinations was not profound. The impact of the pandemic on vaccination remained unclear. We collected vaccination uptake data at our hospital and analyzed the weekly trends of different vaccines. We calculated the monthly number of vaccinations and compared consumption before and during the COVID-19 pandemic (year 2019 vs years 2020 and 2021). Except for self-paid pneumococcal conjugate vaccines (PCV13), a mild (14.6%, p < .001) monthly decrease in government-funded routine vaccination and a moderate (28.2%, p = .018) monthly decrease in self-paid vaccination were observed during the COVID-19 pandemic. Interestingly, an unexpected surge of PCV13 vaccination occurred with a 355.8% increase. The shortage of COVID-19 vaccines and the potential benefits of PCV13 against COVID-19 may have contributed to this surge. In conclusion, our study found an obvious disruption of vaccination rates in Taiwan during the COVID-19 epidemic. However, an increase in PCV13 vaccination was also observed, and the important role of the infodemic was emphasized.
Collapse
Affiliation(s)
- Nan-Chang Chiu
- Department of Pediatrics, MacKay Children's Hospital, Taipei city, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei city, Taiwan
| | - Kai-Hsun Lo
- Department of Pharmacy, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chung-Chu Chen
- Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.,Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Shih-Yu Huang
- Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan.,Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei city, Taiwan.,Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chung-Jen Wang
- Department of Pharmacy, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Hsiao-Huai Kuo
- Department of Pharmacy, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Hsin Chi
- Department of Pediatrics, MacKay Children's Hospital, Taipei city, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei city, Taiwan
| | - Chi-Hone Lien
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Yu-Lin Tai
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Department of Medicine, MacKay Medical College, New Taipei city, Taiwan.,Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| |
Collapse
|
8
|
Bwire G, Ario AR, Eyu P, Ocom F, Wamala JF, Kusi KA, Ndeketa L, Jambo KC, Wanyenze RK, Talisuna AO. The COVID-19 pandemic in the African continent. BMC Med 2022; 20:167. [PMID: 35501853 PMCID: PMC9059455 DOI: 10.1186/s12916-022-02367-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/05/2022] [Indexed: 01/13/2023] Open
Abstract
In December 2019, a new coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and associated disease, coronavirus disease 2019 (COVID-19), was identified in China. This virus spread quickly and in March, 2020, it was declared a pandemic. Scientists predicted the worst scenario to occur in Africa since it was the least developed of the continents in terms of human development index, lagged behind others in achievement of the United Nations sustainable development goals (SDGs), has inadequate resources for provision of social services, and has many fragile states. In addition, there were relatively few research reporting findings on COVID-19 in Africa. On the contrary, the more developed countries reported higher disease incidences and mortality rates. However, for Africa, the earlier predictions and modelling into COVID-19 incidence and mortality did not fit into the reality. Therefore, the main objective of this forum is to bring together infectious diseases and public health experts to give an overview of COVID-19 in Africa and share their thoughts and opinions on why Africa behaved the way it did. Furthermore, the experts highlight what needs to be done to support Africa to consolidate the status quo and overcome the negative effects of COVID-19 so as to accelerate attainment of the SDGs.
Collapse
Affiliation(s)
- Godfrey Bwire
- Department of Integrated Epidemiology Surveillance and Public Health Emergencies, Ministry of Health, P.O Box 7272, Kampala, Uganda
- School of Public Health, Makerere University, P.O. Box 7072, Kampala, Uganda
| | | | - Patricia Eyu
- Uganda National Institute of Public Health, Kampala, Uganda
| | - Felix Ocom
- Uganda National Institute of Public Health, Kampala, Uganda
| | | | - Kwadwo A. Kusi
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Latif Ndeketa
- Malawi-Liverpool-Wellcome Programme (MLW), Blantyre, Malawi
| | - Kondwani C. Jambo
- Malawi-Liverpool-Wellcome Programme (MLW), Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Rhoda K. Wanyenze
- School of Public Health, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Ambrose O. Talisuna
- Epidemic Preparedness and Response Cluster, World Health Organization, Regional Office for Africa, Brazzaville, Congo
| |
Collapse
|
9
|
Bayram Z, Musharrafieh U, Bizri AR. Revisiting the potential role of BCG and MMR vaccines in COVID-19. Sci Prog 2022; 105:368504221105172. [PMID: 35848578 PMCID: PMC10450304 DOI: 10.1177/00368504221105172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Despite the development and deployment of effective COVID-19 vaccines, many regions remain poorly covered. Seeking alternative tools for achieving immunity against COVID-19 remains to be of high importance. "Trained immunity" is the nonspecific immune response usually established through administering live attenuated vaccines and is a potential preventive tool against unrelated infections. Evidence regarding a possible protective role for certain live attenuated vaccines against COVID-19 has emerged mainly for those administered as part of childhood vaccination protocols. This review summarizes the relevant literature about the potential impact of Bacille Calmette-Guérin (BCG) and measles, mumps and rubella (MMR) vaccines on COVID-19. Existing available data suggest a potential role for BCG and MMR in reducing COVID-19 casualties and burden. However, more investigation and comparative studies are required for a better understanding of their impact on COVID-19 outcomes.
Collapse
Affiliation(s)
| | - Umayya Musharrafieh
- Department of Internal Medicine, Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
- Department of Family Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abdul Rahman Bizri
- Department of Internal Medicine, Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Lee MH, Kim BJ. COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol 2022; 60:321-334. [PMID: 35157221 PMCID: PMC8853094 DOI: 10.1007/s12275-022-1621-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Republic of Korea.
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
11
|
Kusi KA, Frimpong A, Partey FD, Lamptey H, Amoah LE, Ofori MF. High infectious disease burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa. AAS Open Res 2021; 4:2. [PMID: 34729457 PMCID: PMC8524298 DOI: 10.12688/aasopenres.13196.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2021] [Indexed: 12/19/2022] Open
Abstract
Following the coronavirus outbreaks described as severe acute respiratory syndrome (SARS) in 2003 and the Middle East respiratory syndrome (MERS) in 2012, the world has again been challenged by yet another corona virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infections were first detected in a Chinese Province in December 2019 and then declared a pandemic by the World Health Organization in March 2020. An infection caused by SARS-CoV-2 may result in asymptomatic, uncomplicated or fatal coronavirus disease 2019 (COVID-19). Fatal disease has been linked with the uncontrolled "cytokine storm" manifesting with complications mostly in people with underlying cardiovascular and pulmonary disease conditions. The severity of COVID-19 disease and the associated mortality has been disproportionately lower in terms of number of cases and deaths in Africa and also Asia in comparison to Europe and North America. Also, persons of colour residing in Europe and North America have been identified as a highly susceptible population due to a combination of several socioeconomic factors and poor access to quality healthcare. Interestingly, this has not been the case in sub-Saharan Africa where majority of the population are even more deprived of the aforementioned factors. On the contrary, sub-Saharan Africa has recorded the lowest levels of mortality and morbidity associated with the disease, and an overwhelming proportion of infections are asymptomatic. Whilst it can be argued that these lower number of cases in Africa may be due to challenges associated with the diagnosis of the disease such as lack of trained personnel and infrastructure, the number of persons who get infected and develop symptoms is proportionally lower than those who are asymptomatic, including asymptomatic cases that are never diagnosed. This review discusses the most probable reasons for the significantly fewer cases of severe COVID-19 disease and deaths in sub-Saharan Africa.
Collapse
Affiliation(s)
- Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frederica Dedo Partey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
12
|
Kusi KA, Frimpong A, Partey FD, Lamptey H, Amoah LE, Ofori MF. High infectious disease burden as a basis for the observed high frequency of asymptomatic SARS-CoV-2 infections in sub-Saharan Africa. AAS Open Res 2021; 4:2. [PMID: 34729457 PMCID: PMC8524298 DOI: 10.12688/aasopenres.13196.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2021] [Indexed: 11/03/2023] Open
Abstract
Following the coronavirus outbreaks described as severe acute respiratory syndrome (SARS) in 2003 and the Middle East respiratory syndrome (MERS) in 2012, the world has again been challenged by yet another corona virus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infections were first detected in a Chinese Province in December 2019 and then declared a pandemic by the World Health Organization in March 2020. An infection caused by SARS-CoV-2 may result in asymptomatic, uncomplicated or fatal coronavirus disease 2019 (COVID-19). Fatal disease has been linked with the uncontrolled "cytokine storm" manifesting with complications mostly in people with underlying cardiovascular and pulmonary disease conditions. The severity of COVID-19 disease and the associated mortality has been disproportionately lower in terms of number of cases and deaths in Africa and also Asia in comparison to Europe and North America. Also, persons of colour residing in Europe and North America have been identified as a highly susceptible population due to a combination of several socioeconomic factors and poor access to quality healthcare. Interestingly, this has not been the case in sub-Saharan Africa where majority of the population are even more deprived of the aforementioned factors. On the contrary, sub-Saharan Africa has recorded the lowest levels of mortality and morbidity associated with the disease, and an overwhelming proportion of infections are asymptomatic. Whilst it can be argued that these lower number of cases in Africa may be due to challenges associated with the diagnosis of the disease such as lack of trained personnel and infrastructure, the number of persons who get infected and develop symptoms is proportionally lower than those who are asymptomatic, including asymptomatic cases that are never diagnosed. This review discusses the most probable reasons for the significantly fewer cases of severe COVID-19 disease and deaths in sub-Saharan Africa.
Collapse
Affiliation(s)
- Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Augustina Frimpong
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Frederica Dedo Partey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael Fokuo Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|