1
|
Xie X, Yue T, Gu W, Cheng W, He L, Ren W, Li F, Piao JG. Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment. Pharmaceutics 2023; 15:2483. [PMID: 37896243 PMCID: PMC10609930 DOI: 10.3390/pharmaceutics15102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Silencing genes using small interfering (si) RNA is a promising strategy for treating cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized MSNs' advancements as effective siRNA delivery vehicles in this paper. The advantages of using MSNs for siRNA loading regarding considerations of different shapes, various options for surface functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention was paid to the exciting progress made by combining RNAi with other therapies to improve cancer therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| |
Collapse
|
2
|
Characterization of graphene oxide-ziziphus seeds and its application as a hazardous dye removal adsorbent. Sci Rep 2023; 13:1631. [PMID: 36717602 PMCID: PMC9886902 DOI: 10.1038/s41598-023-28924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The zizphus seeds are considered as a biomaterial residues that has been used for removing of organic industrial waste such as 2-((10-octyl-9,10-dihydroanthracene-2-yl) methylene) malononitrile (PTZS-CN) dye from aqueous solutions utilizing graphene oxide-Ziziphus (GO-Ziziphus). A batch study explored the impacts of various experimental circumstances, including solution pH, initial dye concentration, temperature, and contact time. General order, nonlinear pseudo-first order and pseudo-second order, elvoich model and intraparticiple diffusion were utilized to analyze the kinetic data. The adsorption kinetics of dye onto GO-ziziphus adsorption was best mentioned by nonlinear pseudo-first order. Similarly, the intra-particle diffusion plots revealed one exponential line throughout the adsorption process. The Freundlich, Dubinin-Radushkevich, and Langmuir models were employed to examine isothermal data. It provided the best fit of the dye adsorption isothermal data onto GO-ziziphus Freundlich models. Besides, the calculated free energies showed that the adsorption progression was physical adsorption. Thermodynamic calculations revealed that dye adsorption onto GO-ziziphus was exothermic and spontaneous. The combined results indicated that GO-ziziphus powder might be used to treat dye-rich wastewater effectively.
Collapse
|
3
|
Chandrababu G, Sah SK, Kumar AR, M S, Nath LR. Green Synthesized Nanoparticles as a Plausible Therapeutic Strategy Against Hepatocellular Carcinoma: An Update on its Preclinical and Clinical Relevance. Recent Pat Anticancer Drug Discov 2023; 18:268-291. [PMID: 35616675 DOI: 10.2174/1574892817666220523124437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Green nanotechnology can offer notable advantages over the conventional drug delivery methods in terms of improved drug stability, drug-carrying capacity, site-specificity, and feasibility to apply different routes of administration with less systemic toxicities. Metal nanoparticles bio fabricated with phytoconstituents and microbial extracts have gained significant interest for the treatment of various solid tumors including hepatocellular carcinoma. Hepatocellular carcinoma (HCC) is an aggressive cancer with a very poor prognosis. The current treatments of HCC fails to provide tumor specificity, causing many systemic toxicities and poor overall survival benefits especially for patients in advanced and terminal stages. A novel therapeutic approach with maximal therapeutic effect and minimum adverse effects are urgently required for HCC patients. Green synthesized metal nanoparticles offer significant anticancer effects along with minimal systemic toxicities because of their site-specific delivery into the tumor microenvironment (TME). Green synthesized metal nanoparticles can therefore be a highly beneficial strategy for the treatment of HCC if properly validated with preclinical and clinical studies. This review focuses on the preclinical evidence of the most widely studied green metal nanoparticles such as green synthesized silver nanoparticles, gold nanoparticles and selenium nanoparticles. We have also summarised the clinical studies and the patents approved for nanoparticles against HCC.
Collapse
Affiliation(s)
- Gopika Chandrababu
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Sunil Kumar Sah
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Sabitha M
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi-682041, Kerala, India
| |
Collapse
|
4
|
Al-Zahrani FAM, Al-Shehri BM, El-Shishtawy RM, Awwad NS, Khan KA, Sayed MA, Siddeeg SM. Characterization of Date Seed Powder Derived Porous Graphene Oxide and Its Application as an Environmental Functional Material to Remove Dye from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8136. [PMID: 36431622 PMCID: PMC9693346 DOI: 10.3390/ma15228136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
This study aims to prepare graphene oxide (GO) from raw date seeds (RDSs), considered one of the available agricultural wastes in Saudi Arabia. The preparation method is done by the conversion of date seeds to lignin and then to graphite which is used in a modified Hummer's method to obtain GO. The adsorption of insoluble phenothiazine-derived dye (PTZS) over raw date Seeds (RDSs) as a low-cost adsorbent was investigated in this study. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) were used to characterize (RDSs). According to the calculations, Freundlich isotherms and pseudo-second-order accurately predicted the kinetic rate of adsorption. The adsorption ability was 4.889 mg/g, and the removal rate was 93.98% GO-date Seeds mass, 11 mg/L starting dye concentration, at a temperature of 328 K, pH 9, and contact length of 30 min by boosting the PTZS solution's ionic strength. In addition, the computed free energies revealed that the adsorption process was physical. Thermodynamic calculations revealed that dye adsorption onto GO-date seeds was exothermic and spontaneous.
Collapse
Affiliation(s)
- Fatimah A. M. Al-Zahrani
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Badria M. Al-Shehri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- National Research Centre, Dyeing, Printing and Textile Auxiliaries Department, Textile Research Division, Dokki, Cairo 12622, Egypt
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Applied College, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - M. A. Sayed
- Physics Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Physics Department, Faculty of Science, Al-Azhar University, P.O. Box 71452, Assiut 71524, Egypt
| | - Saifeldin M. Siddeeg
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
5
|
Alothaid H. Evaluation of cytotoxicity, oxidative stress and organ-specific effects of activated carbon from Al-Baha date palm kernels. Saudi J Biol Sci 2022; 29:103387. [PMID: 35923600 PMCID: PMC9340513 DOI: 10.1016/j.sjbs.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background Activated carbon (AC) is a carbonaceous material derived from carbonization and activation of carbon-containing compounds at high temperature and has a large surface area, providing it with excellent adsorption properties. Human exposure to ACs via ingestion is increasing and, unfortunately, there is little to no evidence related to its level of toxicity Materials and methods Activated carbon of powdered date kernels from Al-Baha city in Saudi Arabia were used to treat rats and cell lines (HepG2 and HCT-116). Toxicity, microbiological tests and biochemical analyses were carried out to investigate biological activity of both commercially available AC (CAC), pharmaceutical AC (PAC) and AC from date palm kernels (AAC) Results None of the ACs showed activity on Staphylococcus aureus, Bacillus subtilis, Protius mirabilis and Escherichia coli. AAC showed the most cytotoxic effect on both HCT-116 and HepG2 cell lines after 24 h, with IC50 of 48.7 ± 17.2 µg/ml and 51 ± 6.24 µg/ml respectively. Rats treated with AAC for 48 h showed no impairment of hepatic and renal functions, unlike those exposed to CAC and PAC. Similarly, AAC-exposed rats did not show oxidative stress in both the liver and kidneys while CAC and PAC exposure resulted in depletion of CAT, GPx, SOD and GSH in both organs. L-arginase and α-fucosidase expression were also induced by both PAC and CAC while α-fucosidase levels were unaffected in AAC-exposed rats Conclusion AAC appears to be biologically safe compared with PAC and CAC due to its antioxidant activities and non-effect on both hepatic and renal functions.
Collapse
|
6
|
Zhou X, Guo Y, Yang K, Liu P, Wang J. The signaling pathways of traditional Chinese medicine in promoting diabetic wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114662. [PMID: 34555452 DOI: 10.1016/j.jep.2021.114662] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The diabetic wound is one of the common chronic complications of diabetes, which seriously affects patients' quality of life and even causes disability and death. Traditional Chinese medicine (TCM) is a unique and precious resource in China, which has a good curative effect and safety. At present, it has been found that Chinese herbal compounds and effective active ingredients can effectively promote diabetic wound healing, and its mechanism needs to be further studied. Signaling pathways are involved in the pathogenesis and progression of diabetic wounds, which is one of the main targets for the pathologic mechanism of diabetic wounds and the pharmacological research of therapeutic drugs. AIM OF THE REVIEW This study has been carried out to reveal the classical signaling pathways and potential targets by the action of TCM on diabetic wound healing and provides evidence for its clinical efficacy. MATERIALS AND METHODS "diabetic wound", "diabetic foot ulcer", "traditional Chinese medicine", "natural plant" and "medicinal plant", were selected as the main keywords, and various online search engines, such as PubMed, Web of Science, CNKI and other publication resources, were used for searching literature. RESULTS The results showed that TCM could regulate the signaling pathways to promote diabetic wound healing, such as Wnt, Nrf2/ARE, MAPK, PI3K/Akt, NF-κB, Notch, TGF-β/Smad, HIF-1α/VEGF, which maintaining inflammatory interaction balance, inhibiting oxidative stress and regulating abnormal glucose metabolism. CONCLUSION The effect of TCM on diabetic wound healing was reflected in multiple levels and multiple pathways. It is envisaged to carry out further research from precision-targeted therapy, provide ideas for screening the core target of TCM in treating diabetic wounds and create modern innovative drugs based on this target.
Collapse
Affiliation(s)
- Xin Zhou
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanling Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Kun Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Peng Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture Moxibustion, No.88 Changling Road, Xiqing District, Tianjin, 300193, China.
| |
Collapse
|
7
|
Wahib SA, Da'na DA, Zaouri N, Hijji YM, Al-Ghouti MA. Adsorption and recovery of lithium ions from groundwater using date pits impregnated with cellulose nanocrystals and ionic liquid. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126657. [PMID: 34315023 DOI: 10.1016/j.jhazmat.2021.126657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
The study aims to prepare a novel low-cost and environmentally friendly adsorbent by using date pits (DP) impregnated with cellulose nanocrystals (CNCs) and ionic liquid (IL), named IL-CNC@DP. The batch adsorption of lithium onto IL-CNC@DP and DP were studied at different pH values, initial lithium concentrations, and temperatures. The thermodynamics constants of the adsorption process showed that the IL-CNC@DP was exothermic, did not favor a high level of disorder, and spontaneous in nature. At pH 6, there is a significant increase in the removal efficiency where it increased to 90%. This also could be explained by the fact that electrostatic attraction forces and hydrogen bonding existed between the protonated Li+ and the less protonated IL-CNC@DP adsorbent surface, which enhanced the percentage of Li+ removal. A strong inter- and intra-hydrogen bonding (O-H) stretching absorption is seen at 3311 cm-1 that occurs in cellulose components. In conclusion, the IL-CNC@DP in comparison to the DP confirmed exceptional results proving that the modification enhanced the remediation of the Li+ from water. Furthermore, the selectivity of IL-CNC@DP towards real groundwater samples isolated in Qatar depends upon the physicochemical characteristics of each element.
Collapse
Affiliation(s)
- Sara A Wahib
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Dana A Da'na
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Nabil Zaouri
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Yousef M Hijji
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
8
|
Du YD, Zhang XQ, Shu L, Feng Y, Lv C, Liu HQ, Xu F, Wang Q, Zhao CC, Kong Q. Safety evaluation and ibuprofen removal via an Alternanthera philoxeroides-based biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40568-40586. [PMID: 32564323 DOI: 10.1007/s11356-020-09714-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are a representative class of emerging contaminants. This study aimed to investigate the PPCP removal performance and application safety of a biochar fabricated using the invasive plant Alternanthera philoxeroides (APBC). According to scanning electron microscopy and pore size analyses, APBC exhibited a porous structure with a specific surface area of 857.5 m2/g. A Fourier transform infrared spectroscopy analysis indicated the presence of surface functional groups, including phosphorus-containing groups, C=O, C=C, and -OH. The adsorption experiment showed that the maximum removal efficiency of ibuprofen was 97% at an initial concentration of 10 mg/L and APBC dosage of 0.8 g/L. The adsorption kinetics were fitted by the pseudo-second-order model with the highest correlation coefficient (R2 = 0.9999). The adsorption isotherms were well described by the Freundlich model (R2 = 0.9896), which indicates a dominant multilayer adsorption. The maximum adsorption capacity of APBC was 172 mg/g. A toxicity evaluation, based on Chlorella pyrenoidosa and human epidermal BEAS-2B cells, was carried out using a spectrum analysis, thiazolyl blue tetrazolium bromide assay, and flow cytometry. The results of the above showed the low cytotoxicity of APBC and demonstrated its low toxicity in potential environmental applications.
Collapse
Affiliation(s)
- Yuan-da Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Xin-Qian Zhang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Li Shu
- School of Engineering, RMIT University, 402 Swanston Street, Melbourne, VIC, 3000, Australia
| | - Yu Feng
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cui Lv
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Hong-Qiang Liu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Cong-Cong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in the Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China.
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
9
|
Salmanian G, Hassanzadeh-Tabrizi SA, Koupaei N. Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: A review. Int J Biol Macromol 2021; 184:618-635. [PMID: 34166696 DOI: 10.1016/j.ijbiomac.2021.06.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Cancer is one of the major causes of death worldwide, and its prevalence is rising every day. New methods and materials with multifunctional tasks such as simultaneous hyperthermia treatment and drug release with minimum side effects are highly demanded. Magnetic chitosan nanocomposites can be utilized for localized tumor heating under magnetic field and have a controlled anticancer drug release due to unique functional groups of chitosan with the least complications. Combining different types of magnetic cores and engineered chitosan shells can create unique characteristics such as biocompatibility, the least toxic effects, long-term circulation in the body, controlled drug released, and the ability to carry various medicines. Recent advances in the synthesis, development, and applications of magnetic chitosan nanocomposites for hyperthermia and drug delivery are summarized in this review. The structure and different heating and drug release mechanisms of this magnetic system are discussed.
Collapse
Affiliation(s)
- Ghazaleh Salmanian
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
10
|
Sabry S, El hakim Ramadan A, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Alsaif NA, Wani TA, Bakheit AH, Zargar S. Multi-spectroscopic investigation, molecular docking and molecular dynamic simulation of competitive interactions between flavonoids (quercetin and rutin) and sorafenib for binding to human serum albumin. Int J Biol Macromol 2020; 165:2451-2461. [DOI: 10.1016/j.ijbiomac.2020.10.098] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022]
|
12
|
Mathew BT, Torky Y, Amin A, Mourad AHI, Ayyash MM, El-Keblawy A, Hilal-Alnaqbi A, AbuQamar SF, El-Tarabily KA. Halotolerant Marine Rhizosphere-Competent Actinobacteria Promote Salicornia bigelovii Growth and Seed Production Using Seawater Irrigation. Front Microbiol 2020; 11:552. [PMID: 32308651 PMCID: PMC7145952 DOI: 10.3389/fmicb.2020.00552] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Salicornia bigelovii is a promising halophytic cash crop that grows in seawater of the intertidal zone of the west-north coast of the UAE. This study assess plant growth promoting (PGP) capabilities of halotolerant actinobacteria isolated from rhizosphere of S. bigelovii to be used as biological inoculants on seawater-irrigated S. bigelovii plants. Under laboratory conditions, a total of 39 actinobacterial strains were isolated, of which 22 were tolerant to high salinity (up to 8% w/v NaCl). These strains were further screened for their abilities to colonize S. bigelovii roots in vitro; the most promising ones that produced indole-3-acetic acid, polyamines (PA) or 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) were selected for rhizosphere-competency under naturally competitive environment. Three outstanding rhizosphere-competent isolates, Streptomyces chartreusis (Sc), S. tritolerans (St), and S. rochei (Sr) producing auxins, PA and ACCD, respectively, were investigated individually and as consortium (Sc/St/Sr) to determine their effects on the performance of S. bigelovii in the greenhouse. Individual applications of strains on seawater-irrigated plants significantly enhanced shoot and root dry biomass by 32.3-56.5% and 42.3-71.9%, respectively, in comparison to non-inoculated plants (control). In addition, plants individually treated with Sc, St and Sr resulted in 46.1, 60.0, and 69.1% increase in seed yield, respectively, when compared to control plants. Thus, the synergetic combination of strains had greater effects on S. bigelovii biomass (62.2 and 77.9% increase in shoot and root dry biomass, respectively) and seed yield (79.7% increase), compared to the control treatment. Our results also showed significant (P < 0.05) increases in the levels of photosynthetic pigments, endogenous auxins and PA, but a reduction in the levels of ACC in tissues of plants inoculated with Sc/St/Sr. We conclude that the consortium of isolates was the most effective treatment on S. bigelovii growth; thus confirmed by principal component and correlation analyses. To this best of our knowledge, this is the first report about halotolerant rhizosphere-competent PGP actinobacteria thriving in saline soils that can potentially contribute to promoting growth and increasing yield of S. bigelovii. These halotolerant actinobacterial strains could potentially be exploited as biofertilizers to sustain crop production in arid coastal areas.
Collapse
Affiliation(s)
- Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yaser Torky
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Abdel-Hamid I. Mourad
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food, Nutrition and Health Sciences, College of Food and Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|