1
|
Verdugo-Avello F, Wychowaniec JK, Villacis-Aguirre CA, D'Este M, Toledo JR. Bone microphysiological models for biomedical research. LAB ON A CHIP 2025; 25:806-836. [PMID: 39906932 DOI: 10.1039/d4lc00762j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Bone related disorders are highly prevalent, and many of these pathologies still do not have curative and definitive treatment methods. This is due to a complex interplay of multiple factors, such as the crosstalk between different tissues and cellular components, all of which are affected by microenvironmental factors. Moreover, these bone pathologies are specific, and current treatment results vary from patient to patient owing to their intrinsic biological variability. Current approaches in drug development to deliver new drug candidates against common bone disorders, such as standard two-dimensional (2D) cell culture and animal-based studies, are now being replaced by more relevant diseases modelling, such as three-dimension (3D) cell culture and primary cells under human-focused microphysiological systems (MPS) that can resemble human physiology by mimicking 3D tissue organization and cell microenvironmental cues. In this review, various technological advancements for in vitro bone modeling are discussed, highlighting the progress in biomaterials used as extracellular matrices, stem cell biology, and primary cell culture techniques. With emphasis on examples of modeling healthy and disease-associated bone tissues, this tutorial review aims to survey current approaches of up-to-date bone-on-chips through MPS technology, with special emphasis on the scaffold and chip capabilities for mimicking the bone extracellular matrix as this is the key environment generated for cell crosstalk and interaction. The relevant bone models are studied with critical analysis of the methods employed, aiming to serve as a tool for designing new and translational approaches. Additionally, the features reported in these state-of-the-art studies will be useful for modeling bone pathophysiology, guiding future improvements in personalized bone models that can accelerate drug discovery and clinical translation.
Collapse
Affiliation(s)
- Francisco Verdugo-Avello
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| | | | - Carlos A Villacis-Aguirre
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Jorge R Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción, Chile.
| |
Collapse
|
2
|
Liu L, Yang Y, Sun P. LINC00941 affects the proliferation, apoptosis and differentiation of osteoblasts by regulating the miR-335-5p/KAT7 axis. J Orthop Surg Res 2025; 20:75. [PMID: 39838460 PMCID: PMC11749574 DOI: 10.1186/s13018-025-05469-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Fractures are the prevalent traumatic conditions encountered in orthopedic practices. The rising incidence of fractures has emerged as a pressing global health concern. Although the majority of individuals with fractures experience complete recovery of bone structure and function, approximately 10% of those with fractures exhibit delayed fracture healing (DFH). The objective of this investigation was to explore the function and underlying mechanisms of LINC00941 in the advancement of DFH, as well as its involvement in the regulation of osteoblastic differentiation by regulating the miR-335-5p/KAT7 axis. METHODS The expression levels of LINC00941, miR-335-5p, KAT7 and osteoblast differentiation-related markers were assessed using RT-qPCR. The proliferation of MC3T3-E1 cells was evaluated through the CCK-8 assay, and cell apoptosis was analyzed via flow cytometry. The targeted regulatory relationships between LINC00941 and miR-335-5p, as well as between miR-335-5p and KAT7 were verified by a dual-luciferase reporter gene assay. RESULT The expression of LINC00941 was significantly up regulated, while miR-335-5p exhibited a notable downregulation in DFH patients, both of LINC00941 and miR-335-5p have been identified as potential predicted markers for DFH. Furthermore, LINC00941 has been demonstrated to inhibit osteoblast proliferation, promote apoptosis, and suppress osteoblast differentiation through the regulation of the miR-335-5p/KAT7 axis. CONCLUSION LINC00941/ miR-335-5p/KAT7 axis may be a therapeutic target for DFH.
Collapse
Affiliation(s)
- Longjin Liu
- Department of Orthopedic 2, Zhongxian People's Hospital of Chongqing, Chongqing, 404300, China
| | - Ye Yang
- Orthopedic Joint Trauma Ward, General Hospital of Southern Theater Command of PLA, Guangzhou, 510030, China
| | - Pengxiao Sun
- Department of Joint 1, Xi'An International Medical Center Hospital, No.777, Xitai Road, Gaoxin District, Xi'An, 710000, China.
| |
Collapse
|
3
|
Vermeulen S, Balmayor ER. Discovering the nucleus in a world of biomaterials. BIOMATERIALS AND BIOSYSTEMS 2024; 14:100096. [PMID: 38974419 PMCID: PMC11225202 DOI: 10.1016/j.bbiosy.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
The nucleus serves as the central hub for cellular activity, driving cell identity and behavior. Despite its crucial role, understanding how biomaterials influence the nucleus remains an underexplored area of research. In our opinion, this is an overlooked opportunity, particularly in regenerative medicine - a field where cellular control is not just beneficial, but essential. As such, we emphasize the need to recognize nuclear characteristics as a key metric for evaluating material functionality. In this leading opinion article, we discuss how state-of-the-art technologies can help reveal biomaterial-driven nuclear alterations, offering crucial insights that will advance the field of regenerative medicine.
Collapse
Affiliation(s)
- Steven Vermeulen
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Elizabeth Rosado Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Wu J, Huang X, Li X, Zhou H, Chen X, Chen Y, Guo Y, Huang J, Huang H, Huang Z, Chen G, Yang Z, Zhang J, Su W. Suppression of the long non-coding RNA LINC01279 triggers autophagy and apoptosis in lung cancer by regulating FAK and SIN3A. Discov Oncol 2024; 15:3. [PMID: 38168833 PMCID: PMC10761653 DOI: 10.1007/s12672-023-00855-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Long non-coding RNAs play critical roles in the development of lung cancer by functioning as tumor suppressors or oncogenes. Changes in the expression of LINC01279 have been associated with cell differentiation and human diseases. However, the mechanism underlying LINC01279 activity in tumorigenesis is not clear. Here, we analyzed the function of LINC01279 in lung adenocarcinoma using clinical samples, xenografts, and non-small-cell lung cancer cell lines. We found that LINC01279 is highly expressed in lung adenocarcinoma and may be considered as a predictive factor for this cancer. Knockdown of LINC01279 prevents tumor growth in xenografts and in cancer cell lines by activating autophagy and apoptosis. Molecularly, we revealed that LINC01279 regulates the expression of focal adhesion kinase and extracellular-regulated kinase signaling. In addition, it complexes with and stabilizes the transcriptional co-repressor SIN3A protein. Suppression of focal adhesion kinase and SIN3A also induces apoptosis and prevents tumor progression, suggesting that they may at least in part mediate the oncogenic activity of LINC01279. These results identify LINC01279 as a possible oncogene that plays an important role in the development of lung cancer. Our findings provide insights into the mechanism underlying LINC01279-mediated oncogenesis of lung adenocarcinoma. They may help to discover potential therapeutic targets for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Jiancong Wu
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaobi Huang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaofang Li
- Center for Pathological Diagnosis and Research, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Honglian Zhou
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaorao Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yongyang Chen
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yudong Guo
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jian Huang
- Department of Thoracic Surgery, Maoming People's Hospital, Maoming, China
| | - Hanqing Huang
- Department of Thoracic Surgery, Maoming People's Hospital, Maoming, China
| | - Zhong Huang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiong Yang
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
5
|
Li S, Deng Q, Si Q, Li J, Zeng H, Chen S, Guo T. TiO 2nanotubes promote osteogenic differentiation of human bone marrow stem cells via epigenetic regulation of RMRP/ DLEU2/EZH2 pathway. Biomed Mater 2023; 18:055027. [PMID: 37437580 DOI: 10.1088/1748-605x/ace6e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
TiO2nanotubes (TNTs) significantly promote osteogenic differentiation and bone regeneration of cells. Nevertheless, the biological processes by which they promote osteogenesis are currently poorly understood. Long non-coding RNAs (lncRNAs) are essential for controlling osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Epigenetic chromatin modification is one of the pathways in which lncRNAs regulate osteogenic differentiation. Here, we reported that TNTs could upregulate lncRNARMRP, and inhibition of lncRNARMRPin human BMSCs (hBMSCs) grown on TNTs could decrease runt-related transcription factor 2 (RUNX2), alkaline phosphatase, osteopontin, and osteocalcin (OCN) expression. Furthermore, we discovered that inhibiting lncRNARMRPelevated the expression of lncRNADLEU2, and lncRNADLEU2knockdown promoted osteogenic differentiation in hBMSCs. RNA immunoprecipitation experiments showed that lncRNADLEU2could interact with EZH2 to induce H3K27 methylation in the promoter regions of RUNX2 and OCN, suppressing gene expression epigenetically. According to these results, lncRNARMRPis upregulated by TNTs to promote osteogenic differentiation throughDLEU2/EZH2-mediated epigenetic modifications.
Collapse
Affiliation(s)
- Shuangqin Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qing Deng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| | - Qiqi Si
- School of Life and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - JinSheng Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Huanghe Zeng
- School of Life and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Song Chen
- Department of Orthopedics of the General Hospital of Western Theater Command, Chengdu, Sichuan 610086, People's Republic of China
| | - Tailin Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Li Z, Li Y, Xu W, Yu J, Tong S, Zhang X, Ye X. 3D-printed polyether-ether-ketone/n-TiO 2 composite enhances the cytocompatibility and osteogenic differentiation of MC3T3-E1 cells by downregulating miR-154-5p. Open Med (Wars) 2023; 18:20230636. [PMID: 36760721 PMCID: PMC9885016 DOI: 10.1515/med-2023-0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 01/30/2023] Open
Abstract
The object was to enhance the bioactivity of pure polyether-ether-ketone (PEEK) by incorporating nano-TiO2 (n-TiO2) and investigate its potential mechanism. PEEK/n-TiO2 composite was manufactured using a 3D PEEK printer and characterized by scanning electron microscopy (SEM), 3D profiler, energy-dispersive spectroscopy, and Fourier-transform infrared (FT-IR) analyses. Cytocompatibility was tested using SEM, fluorescence, and cell counting kit-8 assays. Osteogenic differentiation was evaluated by osteogenic gene and mineralized nodule levels. The expression of the candidate miRNAs were detected in composite group, and its role in osteogenic differentiation was studied. As a results the 3D-printed PEEK/n-TiO2 composite (Φ = 25 mm, H = 2 mm) was successfully fabricated, and the TiO2 nanoparticles were well distributed and retained the nanoscale size of the powder. The Ra value of the composite surface was 2.69 ± 0.29, and Ti accounted for 22.29 ± 12.09% (in weight), and FT-IR analysis confirmed the characteristic peaks of TiO2. The cells in the composite group possessed better proliferation and osteogenic differentiation abilities than those in the PEEK group. miR-154-5p expression was decreased in the composite group, and the inhibition of miR-154-5p significantly enhanced the proliferation and osteogenic differentiation abilities. In conclusion, 3D-printed PEEK/n-TiO2 composite enhanced cytocompatibility and osteogenic induction ability by downregulating miR-154-5p, which provides a promising solution for improving the osteointegration of PEEK.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Yifan Li
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Wei Xu
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 XianXia Road, Shanghai 200336, People’s Republic of China
| | - Jimin Yu
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, People’s Republic of China
| | - Shichao Tong
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Xiangyang Zhang
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| | - Xiaojian Ye
- Department of Orthopedics, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200336, People’s Republic of China
| |
Collapse
|
7
|
Zhao W, Zhao X, Xu M, Cheng Z, Zhang Z. Knockdown of LINC01279 Suppresses Gastric Cancer Proliferation and Migration by Inhibiting PI3K/Akt/mTOR Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:6228982. [PMID: 36397761 PMCID: PMC9666029 DOI: 10.1155/2022/6228982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To explore the functional and molecular mechanism of long noncoding RNA LINC01279 in gastric cancer (GC). METHODS The LINC01279 expression in GC and tissues of para-carcinoma was detected by qPCR (real-time fluorescent quantitative PCR), and the association between the LINC01279 expression and clinicopathological features of patients with GC was investigated. The colony formation, CCK-8, transwell assays, and cell cycle detection kit were used for detection of the effect of LINC01279 on GC cell proliferation, cell cycle, colony formation, and invasion. The effect of LINC01279 on PI3K/AKT/mTOR in the GC signaling pathway was identified by the Western blotting technique. The effect of LINC01279 on GC cell proliferation in vivo was evaluated by subcutaneous xenograft tumors in the nude mice. RESULTS The results of qPCR displayed the expression of LINC01279 was higher in tissues of GC patients. Furthermore, the tumor size, TNM stage, and metastasis of lymph nodes were also closely related to LINC01279 expression. The experiments on cell function showed that the LINC01279 knockdown significantly inhibited the colony formation, invasion, and proliferation of GC cells and induced the cell cycle arrest in G0 and G1 phases. The Western blotting technique also showed that LINC01279 knockdown significantly inhibited the phosphorylation of PI3K, Akt, and mTOR in GC cells. Furthermore, in vivo experiments displayed that the LINC01279 knockdown significantly inhibited the GC growth. CONCLUSION Knockdown of LINC01279 plays a significant role in inhibiting the PI3K/AKT/mTOR signaling pathway which affects the GC invasion and proliferation. The LINC01279 expression can be utilized as a biomarker for the prediction of the GC prognosis.
Collapse
Affiliation(s)
- Weidong Zhao
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiaohan Zhao
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Menglin Xu
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhengwu Cheng
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zhengxiang Zhang
- Department of Oncology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
8
|
Mechanical Cues Regulate Histone Modifications and Cell Behavior. Stem Cells Int 2022; 2022:9179111. [PMID: 35599845 PMCID: PMC9117061 DOI: 10.1155/2022/9179111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/19/2022] [Indexed: 11/17/2022] Open
Abstract
Change of biophysical factors in tissue microenvironment is an important step in a chronic disease development process. A mechanical and biochemical factor from cell living microniche can regulate cell epigenetic decoration and, therefore, further induce change of gene expression. In this review, we will emphasize the mechanism that biophysical microenvironment manipulates cell behavior including gene expression and protein decoration, through modifying histone amino acid residue modification. The influence given by different mechanical forces, including mechanical stretch, substrate surface stiffness, and shear stress, on cell fate and behavior during chronic disease development including tumorigenesis will also be teased out. Overall, the recent work summarized in this review culminates on the hypothesis that a mechanical factor stimulates the modification on histone which could facilitate disease detection and potential therapeutic target.
Collapse
|
9
|
Cai J, Li C, Li S, Yi J, Wang J, Yao K, Gan X, Shen Y, Yang P, Jing D, Zhao Z. A Quartet Network Analysis Identifying Mechanically Responsive Long Noncoding RNAs in Bone Remodeling. Front Bioeng Biotechnol 2022; 10:780211. [PMID: 35356768 PMCID: PMC8959777 DOI: 10.3389/fbioe.2022.780211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mechanical force, being so ubiquitous that it is often taken for granted and overlooked, is now gaining the spotlight for reams of evidence corroborating their crucial roles in the living body. The bone, particularly, experiences manifold extraneous force like strain and compression, as well as intrinsic cues like fluid shear stress and physical properties of the microenvironment. Though sparkled in diversified background, long noncoding RNAs (lncRNAs) concerning the mechanotransduction process that bone undergoes are not yet detailed in a systematic way. Our principal goal in this research is to highlight the potential lncRNA-focused mechanical signaling systems which may be adapted by bone-related cells for biophysical environment response. Based on credible lists of force-sensitive mRNAs and miRNAs, we constructed a force-responsive competing endogenous RNA network for lncRNA identification. To elucidate the underlying mechanism, we then illustrated the possible crosstalk between lncRNAs and mRNAs as well as transcriptional factors and mapped lncRNAs to known signaling pathways involved in bone remodeling and mechanotransduction. Last, we developed combinative analysis between predicted and established lncRNAs, constructing a pathway–lncRNA network which suggests interactive relationships and new roles of known factors such as H19. In conclusion, our work provided a systematic quartet network analysis, uncovered candidate force-related lncRNAs, and highlighted both the upstream and downstream processes that are possibly involved. A new mode of bioinformatic analysis integrating sequencing data, literature retrieval, and computational algorithm was also introduced. Hopefully, our work would provide a moment of clarity against the multiplicity and complexity of the lncRNA world confronting mechanical input.
Collapse
Affiliation(s)
- Jingyi Cai
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chaoyuan Li
- Department of Oral Implantology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, China
| | - Shun Li
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Yao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Pu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dian Jing
- Department of Orthodontics, China Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Dian Jing, ; Zhihe Zhao,
| |
Collapse
|
10
|
Wu J, Lin T, Gao Y, Li X, Yang C, Zhang K, Wang C, Zhou X. Long noncoding RNA ZFAS1 suppresses osteogenic differentiation of bone marrow-derived mesenchymal stem cells by upregulating miR-499-EPHA5 axis. Mol Cell Endocrinol 2022; 539:111490. [PMID: 34655661 DOI: 10.1016/j.mce.2021.111490] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Emerging evidence suggests that the shift between osteogenic and adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) determines bone mass. Our study was aimed at testing whether a long noncoding RNA called zinc finger antisense 1 (ZFAS1) participates in the differentiation commitment of BMSCs during osteoporosis. We found that ZFAS1 expression was downregulated during osteogenic differentiation and upregulated during adipogenic differentiation. ZFAS1 knockdown facilitated osteogenic differentiation and suppressed adipogenic differentiation. Furthermore, ZFAS1 knockdown suppressed cell senescence and promoted autophagy. Ovariectomized mice injected with a ZFAS1 knockdown construct showed increased bone mass. Mechanismly, ZFAS1 affected the osteogenic and adipogenic differentiation of BMSCs through sponging miR-499 thereby upregulating ephrin type-A receptor 5 (EPHA5). Taken together, our results revealed that the ZFAS1-miR-499-EPHA5 axis may be important for the osteoporosis-related switch between the osteogenesis and adipogenesis of BMSCs, indicating that ZFAS1 represents a plausible therapeutic target for reversing osteoporotic bone loss.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Yang Gao
- National Clinical Research Center for Orthopaedics, Department of Orthopedic, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Xiaoming Li
- Department of Orthopaedics, No. 98 Hospital of PLA, Huzhou, 313000, China
| | - Chen Yang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ke Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
11
|
Man K, Brunet MY, Louth S, Robinson TE, Fernandez-Rhodes M, Williams S, Federici AS, Davies OG, Hoey DA, Cox SC. Development of a Bone-Mimetic 3D Printed Ti6Al4V Scaffold to Enhance Osteoblast-Derived Extracellular Vesicles' Therapeutic Efficacy for Bone Regeneration. Front Bioeng Biotechnol 2021; 9:757220. [PMID: 34765595 PMCID: PMC8576375 DOI: 10.3389/fbioe.2021.757220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular Vesicles (EVs) are considered promising nanoscale therapeutics for bone regeneration. To date, EVs are typically procured from cells on 2D tissue culture plastic, an artificial environment that limits cell growth and does not replicate in situ biochemical or biophysical conditions. This study investigated the potential of 3D printed titanium scaffolds coated with hydroxyapatite to promote the therapeutic efficacy of osteoblast-derived EVs. Ti6Al4V titanium scaffolds with different pore sizes (500 and 1000 µm) and shapes (square and triangle) were fabricated by selective laser melting. A bone-mimetic nano-needle hydroxyapatite (nnHA) coating was then applied. EVs were procured from scaffold-cultured osteoblasts over 2 weeks and vesicle concentration was determined using the CD63 ELISA. Osteogenic differentiation of human bone marrow stromal cells (hBMSCs) following treatment with primed EVs was evaluated by assessing alkaline phosphatase activity, collagen production and calcium deposition. Triangle pore scaffolds significantly increased osteoblast mineralisation (1.5-fold) when compared to square architectures (P ≤ 0.001). Interestingly, EV yield was also significantly enhanced on these higher permeability structures (P ≤ 0.001), in particular (2.2-fold) for the larger pore structures (1000 µm). Furthermore osteoblast-derived EVs isolated from triangular pore scaffolds significantly increased hBMSCs mineralisation when compared to EVs acquired from square pore scaffolds (1.7-fold) and 2D culture (2.2-fold) (P ≤ 0.001). Coating with nnHA significantly improved osteoblast mineralisation (>2.6-fold) and EV production (4.5-fold) when compared to uncoated scaffolds (P ≤ 0.001). Together, these findings demonstrate the potential of harnessing bone-mimetic culture platforms to enhance the production of pro-regenerative EVs as an acellular tool for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Mathieu Y. Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Sophie Louth
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Thomas E. Robinson
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Maria Fernandez-Rhodes
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Soraya Williams
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Angelica S. Federici
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - Owen G. Davies
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - Sophie C. Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
12
|
Anodic TiO 2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. NANOMATERIALS 2021; 11:nano11092359. [PMID: 34578675 PMCID: PMC8466263 DOI: 10.3390/nano11092359] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.
Collapse
|
13
|
Expression of long non-coding RNA LINC01279 in gastric adenocarcinoma and its clinical significance. Asian J Surg 2021; 45:1231-1236. [PMID: 34507839 DOI: 10.1016/j.asjsur.2021.08.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/03/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the expression of long non-coding RNA LINC01279 in gastric cancer and its relationship with the clinicopathological features and prognosis of gastric cancer patients. METHODS Serum, gastric cancer and adjacent tissue samples from 90-patients with gastric-cancer treated by surgery and serum samples from 90-healthy adults were collected. The expression level of LINC01279 was analyzed by RT-PCR. The clinical baseline data of gastric cancer patients were obtained. Correlation between the expression level of LINC01279 and the clinicopathological characteristics of gastric cancer patients was assessed. RESULTS LINC01279 was highly expressed in gastric cancer tissues and serum of gastric cancer patients (P < 0.05). The expression level of lncRNA 01279 was closely related to vascular invasion, nerve invasion, T-stage, lymph node metastasis, and advanced clinical-stage of gastric cancer (P < 0.05). The expression level was not correlated with gender, age, tumor size, location, and differentiation. There was a significant negative correlation between the expression of LINC01279 and the overall survival of gastric-cancer patients (P < 0.05). CONCLUSION LINC01279 is highly expressed in gastric-cancer tissues and serum, which is closely related to tumor-invasion. Serum LINC01279 is a better prognostic indicator of invasive cancer than current tumor markers.
Collapse
|
14
|
隋 昊, 张 陶. [The Role of Histone Demethylase in Osteogenic and Chondrogenic Differentiation of Mesenchymal Stem Cells: A Literature Review]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:364-372. [PMID: 34018352 PMCID: PMC10409206 DOI: 10.12182/20210560202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 02/05/2023]
Abstract
The proliferation and multi-directional differentiation potential of mesenchymal stem cells (MSCs) enabled its wide use in the development of new therapies for bone and cartilage repair. Although preliminary work has been done to verify the gene expression profile of MSCs osteogenic and chondrogenic differentiation, it is still unclear what key factors initiate the differentiation of MSCs, resulting in its limited application in bone and cartilage tissue engineering. The epigenetic mechanism mediated by histone demethylases (lysine [K]-specific histone demethylases, KDMs) is the key link in regulating MSCs lineage differentiation. The lysine-specific histone demethylase (LSD) family containing Tower domain and the histone demethylase family containing Jumonji C (JmjC) domain regulate the expression of various osteogenic-related genes, including Runt-related transcription factor 2 ( RUNX2), osterix ( OSX), osteocalcin ( OCN), to mediate MSCs osteogenic differentiation. The KDM2/4/6 subfamilies regulate the chondrogenic differentiation of MSCs through multiple pathways centered on SRY-related high-mobility-group-box gene 9 ( SOX9). In addition, nanotopology, mircoRNAs, etc. regulate the expression of a variety of osteogenic and chondrogenic transcription factors through up- and down-regulation of KDMs. In summary, the role of histone demethylase in the osteogenic and chondrogenic differentiation of mesenchymal stem cells will help us better understand the pathogenesis of bone and cartilage damage diseases, and establish the foundation of future clinical applications for bone and cartilage tissue engineering.
Collapse
Affiliation(s)
- 昊 隋
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陶 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Tang J, Yu H, Wang Y, Duan G, Wang B, Li W, Zhu Z. miR-27a promotes osteogenic differentiation in glucocorticoid-treated human bone marrow mesenchymal stem cells by targeting PI3K. J Mol Histol 2021; 52:279-288. [PMID: 33532936 DOI: 10.1007/s10735-020-09947-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 12/18/2020] [Indexed: 01/20/2023]
Abstract
MicroRNA-27a (miR-27a) modulates osteogenic differentiation (OD); however, the mechanism by which it influences osteoclastic activity in the glucocorticoid (GC)-elicited osteoporotic bone is still unclear. Bone marrow was obtained from the proximal femur of patients (n = 3) with a femoral neck fracture and those (n = 3) with steroid-related osteonecrosis of the femoral head (ONFH). GC was applied to an established ONFH cell model from human bone marrow mesenchymal stem cells (hBMSCs). The miR-27a expression profiles were found to be downregulated in ONFH samples and GC-induced hBMSCs using microarray analysis and real-time quantitative polymerase chain reaction, whereas the OD capacity of hBMSCs was significantly reduced in the GC group compared with the control group. Subsequent transfection of an miR-27a mimic in hBMSCs revealed that the OD capacity of cells was remarkably strengthened in the GC group compared with the miR-control group. Bioinformatics software (TargetScan) predicted that phosphoinositide 3-kinase (PI3K) might be a potential miR-27a target, which was indicated by dual-luciferase reporter assay. Compared with the control group, the GC group exhibited a significantly downregulated protein expression level of PI3K and its downstream protein kinase B (Akt) and mammalian target of rapamycin (mTOR) expression. Furthermore, administration of 10 μM 740 Y-P, a cell-permeable phosphopeptide activator of PI3K, to hBMSCs increased the expression of Akt and mTOR. Treatment with 740 Y-P reversed the effect of miR-27a on OD in hBMSCs. In conclusion, miR-27a is thought to relieve ONFH and the OD repression in GC-induced hBMSCs by targeting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jinshan Tang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
- Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Huaixi Yu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
- Department of Orthopedics, The Second People's Hospital of Huai'an, Huai'an, Jiangsu, China
| | - Yunqing Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Gang Duan
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Bin Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Wenbo Li
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, 221006, Jiangsu, China
| | - Ziqiang Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
16
|
Zhang W, Yang Y, Cui B. New perspectives on the roles of nanoscale surface topography in modulating intracellular signaling. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100873. [PMID: 33364912 PMCID: PMC7751896 DOI: 10.1016/j.cossms.2020.100873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The physical properties of biomaterials, such as elasticity, stiffness, and surface nanotopography, are mechanical cues that regulate a broad spectrum of cell behaviors, including migration, differentiation, proliferation, and reprogramming. Among them, nanoscale surface topography, i.e. nanotopography, defines the nanoscale shape and spatial arrangement of surface elements, which directly interact with the cell membranes and stimulate changes in the cell signaling pathways. In biological systems, the effects of nanotopography are often entangled with those of other mechanical and biochemical factors. Precise engineering of 2D nanopatterns and 3D nanostructures with well-defined features has provided a powerful means to study the cellular responses to specific topographic features. In this Review, we discuss efforts in the last three years to understand how nanotopography affects membrane receptor activation, curvature-induced cell signaling, and stem cell differentiation.
Collapse
Affiliation(s)
| | | | - Bianxiao Cui
- Department of Chemistry, Stanford University, ChEM-H/Wu Tsai Neuroscience Research Complex, S285, 290 Jane Stanford Way, Stanford, CA, 94305, United States
| |
Collapse
|
17
|
Osteogenic differentiation of rat bone mesenchymal stem cells modulated by MiR-186 via SIRT6. Life Sci 2020; 253:117660. [PMID: 32294474 DOI: 10.1016/j.lfs.2020.117660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 11/20/2022]
Abstract
AIMS Osteoporosis has been known to generally result from an imbalance between bone formation and resorption. Osteogenesis is the process of differentiation of mesenchymal stem cells (MSCs) into osteoblasts. Sirtuin6 (SIRT6) has been reported to mediate osteogenic differentiation (OD) in rat bone MSCs (rBMSCs). The present study aimed to assess the influence of microRNA miR-186 on the proliferation and OD potential of rBMSCs. MAIN METHODS OD was performed and evaluated through Alizarin red S staining, alkaline phosphatase (ALP) activity, and specific marker expression. KEY FINDINGS miR-186 downregulation was observed during OD. rBMSCs with miR-186 overexpression were generated via transfection. Compared with vehicle negative controls, miR-186 upregulation significantly repressed rBMSCs' OD, as evidenced by a reduced ALP activity and decreased mRNA levels of osteogenic markers [osteocalcin, Runx2, BSP, and ALP]. Furthermore, bioinformatic prediction and dual-luciferase reporter assay demonstrated that miR-186 targeted SIRT6 3'-UTR for silencing. SIRT6 overexpression reversed the inhibitory effect of miR-186 on the OD of rBMSCs. Additionally, further examination showed that the activation of nuclear factor-kappa B (NFκB) pathway was involved in the miR-186/SIRT6 signal axis, and phorbol 12-myristate 13-acetate, a NFκB activator, also inhibited the OD of rBMSCs. SIGNIFICANCE The present study results may demonstrate a novel mechanism of rBMSCs OD via miR-186-SIRT6 interaction.
Collapse
|
18
|
Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2019; 8:763-775. [PMID: 31808476 DOI: 10.1039/c9bm01526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the development of nanotechnology, nanomaterials are increasingly being applied in health fields, such as biomedicine, pharmaceuticals, and cosmetics. Concerns have therefore been raised over their toxicity and numerous studies have been carried out to assess their safety. Most studies on the toxicity and therapeutic mechanisms of nanomaterials have revealed the effects of nanomaterials on cells at the transcriptome and proteome levels. However, epigenetic modifications, for example DNA methylation, histone modification, and noncoding RNA expression induced by nanomaterials, which play an important role in the regulation of gene expression, have not received sufficient attention. In this review, we therefore state the importance of studying epigenetic effects induced by nanomaterials; then we review the progress of nanomaterial epigenetic research in the assessment of toxicity, therapeutic, and other mechanisms. We also clarify the possible study directions for future nanomaterial epigenetic research. Finally, we discuss the future development and challenges of nanomaterial epigenetics that must still be addressed. We hope to understand the potential toxicity of nanomaterials and clearly understand the therapeutic mechanism through a thorough investigation of nanomaterial epigenetics.
Collapse
Affiliation(s)
- Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
19
|
Jin Z, Yan X, Shen K, Fang X, Zhang C, Ming Q, Lai M, Cai K. TiO2 nanotubes promote osteogenic differentiation of mesenchymal stem cells via regulation of lncRNA CCL3-AS. Colloids Surf B Biointerfaces 2019; 181:416-425. [DOI: 10.1016/j.colsurfb.2019.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 02/09/2023]
|
20
|
Xie ZY, Wang P, Wu YF, Shen HY. Long non-coding RNA: The functional regulator of mesenchymal stem cells. World J Stem Cells 2019; 11:167-179. [PMID: 30949295 PMCID: PMC6441937 DOI: 10.4252/wjsc.v11.i3.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a subset of multipotent stroma cells residing in various tissues of the body. Apart from supporting the hematopoietic stem cell niche, MSCs possess strong immunoregulatory ability and multiple differentiation potentials. These powerful capacities allow the extensive application of MSCs in clinical practice as an effective treatment for diseases. Therefore, illuminating the functional mechanism of MSCs will help to improve their curative effect and promote their clinical use. Long noncoding RNA (LncRNA) is a novel class of noncoding RNA longer than 200 nt. Recently, multiple studies have demonstrated that LncRNA is widely involved in growth and development through controlling the fate of cells, including MSCs. In this review, we highlight the role of LncRNA in regulating the functions of MSCs and discuss their participation in the pathogenesis of diseases and clinical use in diagnosis and treatment.
Collapse
Affiliation(s)
- Zhong-Yu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| | - Yan-Feng Wu
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong Province, China
| | - Hui-Yong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, Guangdong Province, China
| |
Collapse
|
21
|
Mettl3 Regulates Osteogenic Differentiation and Alternative Splicing of Vegfa in Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030551. [PMID: 30696066 PMCID: PMC6387109 DOI: 10.3390/ijms20030551] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/20/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Bone mesenchymal stem cells (BMSCs) can be a useful cell resource for developing biological treatment strategies for bone repair and regeneration, and their therapeutic applications hinge on an understanding of their physiological characteristics. N6-methyl-adenosine (m6A) is the most prevalent internal chemical modification of mRNAs and has recently been reported to play important roles in cell lineage differentiation and development. However, little is known about the role of m6A modification in the cell differentiation of BMSCs. To address this issue, we investigated the expression of N6-adenosine methyltransferases (Mettl3 and Mettl14) and demethylases (Fto and Alkbh5) and found that Mettl3 was upregulated in BMSCs undergoing osteogenic induction. Furthermore, we knocked down Mettl3 and demonstrated that Mettl3 knockdown decreased the expression of bone formation-related genes, such as Runx2 and Osterix. The alkaline phosphatase (ALP) activity and the formation of mineralized nodules also decreased after Mettl3 knockdown. RNA sequencing analysis revealed that a vast number of genes affected by Mettl3 knockdown were associated with osteogenic differentiation and bone mineralization. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that the phosphatidylinositol 3-kinase/AKT (PI3K-Akt) signaling pathway appeared to be one of the most enriched pathways, and Western blotting results showed that Akt phosphorylation was significantly reduced after Mettl3 knockdown. Mettl3 has been reported to play an important role in regulating alternative splicing of mRNA in previous research. In this study, we found that Mettl3 knockdown not only reduced the expression of Vegfa but also decreased the level of its splice variants, vegfa-164 and vegfa-188, in Mettl3-deficient BMSCs. These findings might contribute to novel progress in understanding the role of epitranscriptomic regulation in the osteogenic differentiation of BMSCs and provide a promising perspective for new therapeutic strategies for bone regeneration.
Collapse
|