1
|
Li TY, Liang WL, Zhao YM, Chen WD, Zhu HX, Duan YY, Zou HB, Huang SS, Li XJ, Zhang WK. Alpha-Pinene-encapsulated lipid nanoparticles diminished inflammatory responses in THP-1 cells and imiquimod-induced psoriasis-like skin injury and splenomegaly in mice. Front Immunol 2024; 15:1390589. [PMID: 39534602 PMCID: PMC11554515 DOI: 10.3389/fimmu.2024.1390589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Psoriasis, a persistent skin condition caused by the disorder of the immune system, impacts approximately 1.25 million individuals globally. Nevertheless, the presence of adverse effects in conventional clinical drugs necessitates further exploration of novel medications or combination therapies to mitigate these reactions and enhance their effectiveness. Methods Hence, our intention here in this paper is to utilize the lipid nanoparticle delivery system for overcoming the volatility and hydrophobic properties of α-pinene, a naturally occurring compound renowned for its anti-inflammatory and antiviral effects, and further explore its potential pharmacological applications both in vitro and in vivo. Results The production of α-pinene lipid nanoparticles (APLNs) was achieved through the utilization of high pressure homogenization methods. APLNs was successfully fabricated with enhanced stability and water solubility. Meanwhile, the application of APLNs could drastically reduce the expression of lipopolysaccharide (LPS)-induced inflammation-related factors in THP-1 cells. Administration of APLNs to a mouse model of auricular swelling could effectively reduce redness and swelling in the auricles of mice as well. Furthermore, APLNs were also found to alleviate skin damage in mice with Imiquimod (IMQ)-induced psoriasis model, as well as decrease the levels of psoriasis-related protein nuclear factor kappa-B (NF-κB) and interleukin-17 (IL-17), interleukin-23 (IL-23), and other inflammation-related cytokines. More importantly, utilization of APLNs successfully mitigated the systemic inflammatory reactions in mice, resulting in the reduction of spleen-to-body ratio (wt%) and of inflammatory cytokines' expression in the serum. Discussion Overall, our results suggest that with the help of lipid nanoparticle encapsulation, APLNs possess a better pharmacological effect in anti-inflammation and could potentially serve as an anti-psoriasis drug.
Collapse
Affiliation(s)
- Tao-Yu Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Wan-Li Liang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yi-Ming Zhao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wan-Dong Chen
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Hong-Xia Zhu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yuan-Yuan Duan
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Han-Bo Zou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Sha-Sha Huang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wei Kevin Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu YN, Zhu HX, Li TY, Yang X, Li XJ, Zhang WK. Lipid nanoparticle encapsulated oleic acid induced lipotoxicity to hepatocytes via ROS overload and the DDIT3/BCL2/BAX/Caspases signaling in vitro and in vivo. Free Radic Biol Med 2024; 222:361-370. [PMID: 38945456 DOI: 10.1016/j.freeradbiomed.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND To date, Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disease associated with clinical complications. Dietary fatty acids have been suggested to be involved in preventing or reversing the accumulation of hepatic fat. However, contradicting roles of monounsaturated fatty acids to the liver have been implicated in various human and murine models, mainly due to the insolubility nature of fatty acids. METHODS High pressure homogenization methods were used to fabricate oleic acid embedded lipid nanoparticles (OALNs). The in vitro and in vivo models were used to validate the physiological effect of this OALNs via various cellular and molecular approaches including cell viability essay, fluorescent staining, electron microscope, RNAseq, qPCR, Western blots, and IHC staining. RESULTS We successfully fabricated OALNs with enhanced stability and solubility. More importantly, lipid accumulation was successfully induced in hepatocytes via the application of OALNs in a dose-dependent manner. Overload of OALNs resulted in ROS accumulation and apoptosis of hepatocytes dose-dependently. With the help of transcriptome sequencing and traditional experimental approaches, we demonstrated that the lipotoxic effect induced by OALNs was exerted via the DDIT3/BCL2/BAX/Caspases signaling. Moreover, we also verified that OALNs induced steatosis and subsequent apoptosis in the liver of mice via the activation of DDIT3 in vivo. CONCLUSIONS In all, our results established a potential pathogenic model of NAFLD for further studies and indicated the possible involvement of DDIT3 signaling in abnormal steatosis process of the liver.
Collapse
Affiliation(s)
- Ya-Nan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, No 182 Minzu Avenue, Wuhan, 430064, China.
| | - Hong-Xia Zhu
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Tao-Yu Li
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| | - Xinzhou Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, No 182 Minzu Avenue, Wuhan, 430064, China.
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, No 182 Minzu Avenue, Wuhan, 430064, China.
| | - Wei Kevin Zhang
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
3
|
Al-Fatlawi INAA, Pouresmaeil V, Davoodi-Dehaghani F, Pouresmaeil A, Akhtari A, Tabrizi MH. Effects of solid lipid nanocarrier containing methyl urolithin A by coating folate-bound chitosan and evaluation of its anti-cancer activity. BMC Biotechnol 2024; 24:18. [PMID: 38600497 PMCID: PMC11005287 DOI: 10.1186/s12896-024-00845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/24/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Nanotechnology-based drug delivery systems have received much attention over the past decade. In the present study, we synthesized Methyl Urolithin A-loaded solid lipid nanoparticles decorated with the folic acid-linked chitosan layer called MuSCF-NPs and investigated their effects on cancer cells. METHODS MuSCF-NPs were prepared using a high-pressure homogenization method and characterized using FTIR, FESEM, DLS, and zeta potential methods. Drug encapsulation was assessed by spectrophotometry and its cytotoxic effect on various cancer cells (MDA-MB231, MCF-7, PANC, AGS, and HepG2) by the MTT method. Antioxidant activity was assessed by the ABTS and DPPH methods, followed by expression of genes involved in oxidative stress and apoptosis by qPCR and flow cytometry. RESULTS The results showed the formation of monodisperse and stable round nanoparticles with a size of 84.8 nm. The drug loading efficiency in MuSCF-NPs was reported to be 88.6%. MuSCF-NPs exhibited selective cytotoxicity against MDA-MB231 cells (IC50 = 40 μg/mL). Molecular analysis showed a significant increase in the expression of Caspases 3, 8, and 9, indicating that apoptosis was occurring in the treated cells. Moreover, flow cytometry results showed that the treated cells were arrested in his SubG1 phase, confirming the pro-apoptotic effect of the nanoparticles. The results indicate a high antioxidant effect of the nanoparticles with IC50 values of 45 μg/mL and 1500 μg/mL against ABTS and DPPH, respectively. The reduction of catalase gene expression confirmed the pro-oxidant effect of nanoparticles in cancer cells treated at concentrations of 20 and 40 μg/mL. CONCLUSIONS Therefore, our findings suggest that the MuSCF-NPs are suitable candidates, especially for breast cancer preclinical studies.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Aida Pouresmaeil
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Akhtari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
4
|
Nakamura M, Mochizuki C, Kuroda C, Shiohama Y, Nakamura J. Size effect of fluorescent thiol-organosilica particles on their distribution in the mouse spleen. Colloids Surf B Biointerfaces 2023; 228:113397. [PMID: 37348267 DOI: 10.1016/j.colsurfb.2023.113397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
We investigated the distribution of intravenously administered thiol-organosilica particle (thiol-OS) in the spleen to evaluate their size effect in mice. A single administration of particles of thiol-OS containing rhodamine B (Rh) (90, 280, 340, 450, 630, 1110, 1670, and 3030 nm in diameter) was performed. After 24 h, we conducted a combination analysis using histological studies by fluorescent microscopy and quantitative inductively coupled plasma optical emission spectrometry (ICP-OES), which revealed no clear correlation between the particle size and spleen uptake of particle weight and number per tissue weight, and the injection dose. Moreover, Rh with 450 nm diameter (Rh450) showed the highest uptake, and Rh with 340 nm diameter (Rh340) showed the lowest uptake. Histologically, large fluorescent areas in the marginal zone (MZ) and red pulp (RP) of the spleen were observed for all particle sizes, but less in the follicle of white pulp. Using combination analysis using the particle weights of ICP-OES and the fluorescent area, we compared the distributions of each particle in each region. Rh450 had the largest accumulated weight in the MZ and RP. Particles larger than Rh450 showed negative correlations between their sizes and accumulated weight in the MZ and RP. Simultaneous dual administration of particles using Rhs and thiol-OS containing fluorescein (90 nm in diameter) showed the size-dependent difference in cellular distribution and intracellular localization. Immunohistochemical staining against macrophage markers, CD169, and F4/80 showed various colocalization patterns with macrophages that uptook particles, indicating differences in particle uptake in each macrophage may have novel significance.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan; Core Clusters for Research Initiatives of Yamaguchi University, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Chika Kuroda
- Yamaguchi University Faculty of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yasuo Shiohama
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
5
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Mechanisms of solid lipid nanoparticles-triggered signaling pathways in eukaryotic cells. Colloids Surf B Biointerfaces 2022; 220:112863. [DOI: 10.1016/j.colsurfb.2022.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
7
|
Tabatabaeain SF, Karimi E, Hashemi M. Satureja khuzistanica Essential Oil-Loaded Solid Lipid Nanoparticles Modified With Chitosan-Folate: Evaluation of Encapsulation Efficiency, Cytotoxic and Pro-apoptotic Properties. Front Chem 2022; 10:904973. [PMID: 35815210 PMCID: PMC9257980 DOI: 10.3389/fchem.2022.904973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
The study aimed to synthesize Satureja khuzistanica essential oil-loaded SLN nanoparticles and to modify the surface of nanoparticles with folate-bound chitosan (SEO-SCF-NPs), and finally to investigate the effects of its toxicity and pro-apoptosis. For this purpose, the SEO-SLN nanoparticles were prepared using stearic acid, lecithin, tween 80, and water by high-pressure homogenization method. After characterization by FTIR, SEM, DLS, and ZETA potential methods, its toxicity effect against normal (HFF) and cancer (MCF-7) cells were evaluated by MTT assay. The occurrence of apoptosis in MCF-7 cells was assessed by flow cytometry and molecular analysis. The obtained results revealed the formation of round nanoparticles with a size of 279.40 nm, single dispersed (PDI: 0.3) and stable (ζ–potential: +31.69 mV). SEO-SCF-NPs indicated the effect of selective toxicity against MCF-7 cells (IC50: 88 μg/ml). Molecular analysis showed that SEO-SCF-NPs could inhibit cancer cells by activating the internal pathway of apoptosis as well as cell cycle disruption. Our finding suggests that SEO-SCF-NPs is a suitable candidate for preclinical cancer studies.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- *Correspondence: Ehsan Karimi,
| | - Mehrdad Hashemi
- Department Genetics, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Nakamura M, Nakamura J, Mochizuki C, Kuroda C, Kato S, Haruta T, Kakefuda M, Sato S, Tamanoi F, Sugino N. Analysis of cell-nanoparticle interactions and imaging of in vitro labeled cells showing barcorded endosomes using fluorescent thiol-organosilica nanoparticles surface-functionalized with polyethyleneimine. NANOSCALE ADVANCES 2022; 4:2682-2703. [PMID: 36132282 PMCID: PMC9417756 DOI: 10.1039/d1na00839k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Biomedical imaging using cell labeling is an important technique to visualize cell dynamics in the body. To label cells, thiol-organosilica nanoparticles (thiol-OS) containing fluorescein (thiol-OS/Flu) and rhodamine B (thiol-OS/Rho) were surface-functionalized with polyethyleneimine (PEI) (OS/Flu-PEI and OS/Rho-PEI) with 4 molecular weights (MWs). We hypothesized PEI structures such as brush, bent brush, bent lie-down, and coiled types on the surface depending on MWs based on dynamic light scattering and thermal gravimetric analyses. The labeling efficacy of OS/Flu-PEIs was dependent on the PEI MW and the cell type. A dual-particle administration study using thiol-OS and OS-PEIs revealed differential endosomal sorting of the particles depending on the surface of the NPs. The endosomes in the labeled cells using OS/Flu-PEI and thiol-OS/Rho revealed various patterns of fluorescence termed barcoded endosomes. The cells labeled with OS-PEI in vitro were administrated to mice intraperitoneally after in situ labeling of peritoneal cells using thiol-OS/Rho. The in vitro labeled cells were detected and identified in cell aggregates in vivo seamlessly. The labeled cells with barcoded endosomes were also identified in cell aggregates. Biomedical imaging of in vitro OS-PEI-labeled cells combined with in situ labeled cells showed high potential for observation of cell dynamics.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chika Kuroda
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Shigeki Kato
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | | | - Mayu Kakefuda
- EM Application Group, EM Business Unit, JEOL Ltd. Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles CA 90095 USA
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
9
|
Sharifalhoseini M, Es‐haghi A, Vaezi G, Shajiee H. Biosynthesis and characterisation of solid lipid nanoparticles and investigation of toxicity against breast cancer cell line. IET Nanobiotechnol 2021; 15:654-663. [PMID: 34694719 PMCID: PMC8675850 DOI: 10.1049/nbt2.12062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) comprise non-toxic surface-active lipidic agents combined with appropriate ratios of drugs or essential oils. The goal of this research was to investigate the effects of the SLN synthesised using essential oils of Foeniculum vulgare on the MCF-7 breast cancer cell line. SLNs were prepared by homogenisation and ultrasound techniques and characterised by dynamic light scattering (DLS), zeta potential assessment, and transmission electron microscopy (TEM). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT assay), flow-cytometry, and Acridine-Orange assay were employed for assessing the biological activities of the SLNs. The average particle size was 55.43 nm and the net surface charge was -29.54 ± 11.67 mV. TEM showed that the mean particle size was 33.55 nm and the synthesised SLNs had a uniform round morphology. The MTT assay showed that the prepared SLNs had high toxicity against MCF-7 cells and low toxicity against normal HUVECs cells. Flow-cytometry revealed a noteworthy rise in the subG1 peak of the cell cycle in the cancer cells treated with SLNs compared to the controls, indicating apoptosis in cancer cells. The results also showed discolouration in SLNs-treated cells, which further confirmed the induction of apoptosis and the toxicity of the SLNs against MCF-7 cells.
Collapse
Affiliation(s)
| | - Ali Es‐haghi
- Department of BiologyMashhad BranchIslamic Azad UniversityMashhadIran
| | | | - Hooman Shajiee
- Department of BiologyDamghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
10
|
1-Nitropyrene Induced Reactive Oxygen Species-Mediated Apoptosis in Macrophages through AIF Nuclear Translocation and AMPK/Nrf-2/HO-1 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9314342. [PMID: 34336119 PMCID: PMC8294986 DOI: 10.1155/2021/9314342] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 11/18/2022]
Abstract
1-Nitropyrene (1-NP), one of the most abundant nitropolycyclic aromatic hydrocarbons (nitro-PAHs), is generated from the incomplete combustion of carbonaceous organic compounds. 1-NP is a specific marker of diesel exhaust and is an environmental pollutant and a probable carcinogen. Macrophages participate in immune defense against the invasive pathogens in heart, lung, and kidney infection diseases. However, no evidence has indicated that 1-NP induces apoptosis in macrophages. In the present study, 1-NP was found to induce concentration-dependent changes in various cellular functions of RAW264.7 macrophages including cell viability reduction; apoptosis generation; mitochondrial dysfunction; apoptosis-inducing factor (AIF) nuclear translocation; intracellular ROS generation; activation of the AMPK/Nrf-2/HO-1 pathway; changes in the expression of BCL-2 family proteins; and depletion of antioxidative enzymes (AOE), such as glutathione peroxidase (GPx), catalase (CAT), and superoxide dismutase (SOD) These results indicate that 1-NP induced apoptosis in macrophages through AIF nuclear translocation and ROS generation due to mitochondrial dysfunction and to the depletion of AOE from the activation of the AMPK/Nrf-2/HO-1 pathway.
Collapse
|
11
|
Chen G, Mo S, Yuan D. Upregulation Mitochondrial Carrier 1 (MTCH1) Is Associated with Cell Proliferation, Invasion, and Migration of Liver Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9911784. [PMID: 34195286 PMCID: PMC8203356 DOI: 10.1155/2021/9911784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Among the primary causes of cancer-associated death in the world, liver hepatocellular carcinoma (LIHC) ranks the third. LIHC is defined as the sixth most frequently diagnosed carcinoma. The gene mitochondrial carrier 1 (MTCH1) is a protein-coding gene. Recent research suggests that MTCH1 may be associated with some diseases. Here, our study attempts to explore the role and implication of MTCH1 in LIHC. Kaplan Meier Plotter and GEPIA (Gene Expression Profiling Interactive Analysis) databases were employed to determine the expression of MTCH1 and its correlation with prognostic status in LIHC patients. For the first time, our results suggested that MTCH1 was aberrantly expressed in human pan-cancer and highly expressed in LIHC. Its high expression was closely associated with metastasis of tumor, stage of cancer, and poor survival of patients. Then, through enrichment analysis, MTCH1 was found to be closely related to RNA splicing in LIHC. Subsequently, we conducted a series of functional experiments. PCR data showed that LIHC cell lines and samples are highly expressed MTCH1. CCK-8 (Cell Counting Kit-8) assays and Transwell assays indicated that silencing MTCH1 certainly suppressed cell proliferation, migration, and invasion. These findings shed the clue that MTCH1 could be regarded as the potential prognosis biomarker of LIHC and a promising therapeutic target for LIHC.
Collapse
Affiliation(s)
- Guolin Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Mo
- Pharmacy Department of Heilongjiang Sailors General Hospital, Harbin, China
| | - Di Yuan
- Clinical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Tao J, Diao L, Chen F, Shen A, Wang S, Jin H, Cai D, Hu Y. pH-Sensitive Nanoparticles Codelivering Docetaxel and Dihydroartemisinin Effectively Treat Breast Cancer by Enhancing Reactive Oxidative Species-Mediated Mitochondrial Apoptosis. Mol Pharm 2020; 18:74-86. [PMID: 33084332 DOI: 10.1021/acs.molpharmaceut.0c00432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis are the major causes of high mortality in breast cancer. We previously constructed pH-sensitive nanoparticles (D/D NPs) for the codelivery of docetaxel (DTX) and dihydroartemisinin (DHA) and demonstrated that D/D NPs showed anticancer activity in breast cancer cells in vitro. The present study further investigated the therapeutic effect of D/D NPs on orthotopic breast cancer in vivo and examined the antitumor mechanism of D/D NPs. D/D NPs significantly increased the apoptosis of 4T1 cells with a synergistic effect of DTX and DHA. D/D NPs increased reactive oxygen species, reduced mitochondrial membrane potential, increased the expression of p53, and induced cytochrome c release into the cytoplasm to activate caspase-3. In an orthotopic metastatic breast cancer mouse model derived from 4T1 cells, D/D NPs inhibited tumor growth and prevented lung metastasis due to the synergistic effect of DTX and DHA. No distinct changes were observed in the histology of major organs. These results indicate that pH-sensitive D/D NP-based combination therapy may be a promising strategy for the treatment of metastatic breast cancers via the ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Jin Tao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lu Diao
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fangcheng Chen
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ao Shen
- The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Shutian Wang
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Hongyan Jin
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Danwei Cai
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China
| | - Ying Hu
- Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
13
|
Liang WL, Wen Y, Huang F, Hu Q, Li XJ, Zhang WK, Yang X. Chrysanthemum ethanol extract induced loss of Kupffer cells via the mitochondria-dependent apoptotic pathway. Food Funct 2020; 11:8866-8877. [PMID: 32985639 DOI: 10.1039/d0fo00695e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chrysanthemum has been viewed as an important traditional Chinese medicine (TCM) with a long history. Research studies indicated many potential pharmaceutical effects of chrysanthemum extract. However, hardly any investigation has been performed to describe its toxicity. In this study, acute application of chrysanthemum ethanol extract (CEE, 300 mg kg-1) was found to induce apoptosis of hepatic Kupffer cells in vivo. CEE was also observed to induce apoptosis of RAW264.7 cells in a dose- and time-dependent manner. Further analysis using flow cytometry and western blotting revealed that CEE induced apoptosis of RAW264.7 cells via a mitochondria-dependent pathway. After a HPLC combined screening assay, we narrowed down the toxicity caused by the petroleum extract of CEE (CEE-PE, 66 μg mL-1). In vivo effects of CEE-PE were also tested in mice. Additionally, nine potential toxic compounds were isolated and identified from CEE-PE. In all, we found that components with small polarities in CEE could induce apoptosis of Kupffer cells and macrophages via a mitochondrial dependent pathway, which might draw attention to the safety issues of everyday use of chrysanthemum.
Collapse
Affiliation(s)
- Wan-Li Liang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, No. 182, Minyuan Road, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Hong J, Chen XZ, Peng YG, Zhang WK, Tang HB, Li YS. Nanoparticle-Encapsulated Liushenwan Could Treat Nanodiethylnitrosamine-Induced Liver Cancer in Mice by Interfering With Multiple Critical Factors for the Tumor Microenvironment. Front Pharmacol 2020; 11:1052. [PMID: 32754037 PMCID: PMC7365909 DOI: 10.3389/fphar.2020.01052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/29/2020] [Indexed: 11/23/2022] Open
Abstract
We previously isolated an ethanol fraction of LSW (Liushenwan pill, a traditional Chinese medicine) which has been shown to prevent and treat liver cancer induced by nanodiethylnitrosamine (nanoDEN) in mice. In the present study, we utilized a high-pressure microfluidics technique to generate LSW lipid nanoparticles (nano-LSW) to reduce its toxicity, and enhance its inhibitory effect on tumor growth, and further evaluate its therapeutic effect using a nanoDEN-induced mouse model of liver cancer. Our in vitro results indicated that nano-LSW-low could induce apoptosis in HepG2 cells, but exhibited low toxicity in L02 cells. Furthermore, the in vivo results indicated that nano-LSW-low exerted minimal or no damage to normal hepatocytes, kidney, and small intestine tissues. In addition, our results showed that at the 20th week, the inflammatory infiltration in the mice in the model group increased severely, and partial pimelosis and fibrosis occurred. In contrast, the liver tissues in the mice treated with nano-LSW exhibited only slight inflammatory infiltration, without pimelosis and fibrosis. At the 30th week, 4 out of 5 liver tissues in the model group showed hyperplastic nodules by hematoxylin and eosin (H&E) staining. However, the liver tissues in the nano-LSW treatment group did not showed hyperplastic nodules. Immunohistochemical staining showed that, in contrast to the model group, the levels of COX-2, PCNA, β-catenin, and HMGB1 protein expressions were significantly lower in the nano-LSW-low group at the 20th and 30th week. Compared to model group, the COX-2, TNF-α, Smad-2, and TGF-β1 mRNA levels obviously decreased in the liver tissue after the nano-LSW-low treatment. Taken together, nano-LSW-low may serve as a potent therapeutic agent for preventing liver cancer by interfering with multiple critical factors for the tumor microenvironment during oncogenesis.
Collapse
Affiliation(s)
- Jing Hong
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xi-Zhen Chen
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - You-Gong Peng
- Department of General Surgery, The Second People's Hospital of Jingmen, Jingmen, China
| | - Wei Kevin Zhang
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - He-Bin Tang
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yu-Sang Li
- Laboratory of Hepatopharmacology and Ethnopharmacology, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
15
|
Jiang L, Hou R. Tetrandrine Reverses Paclitaxel Resistance in Human Ovarian Cancer via Inducing Apoptosis, Cell Cycle Arrest Through β-Catenin Pathway. Onco Targets Ther 2020; 13:3631-3639. [PMID: 32431514 PMCID: PMC7200223 DOI: 10.2147/ott.s235533] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023] Open
Abstract
Background Paclitaxel (PTX) resistance is a great obstacle for the treatment of ovarian cancer. A previous study indicated that tetrandrine (TET) could induce the apoptosis of ovarian cancer cells. This study aimed to explore the effect of TET in combination with PTX on PTX resistance in ovarian cancer cells. Materials and Methods CCK-8 assay, flow cytometry and wound healing assays were used to detect the proliferation, apoptosis and migration of PTX-resistant SKOV3 cells (SKOV3/PTX). The expressions of Bax, Bcl-2, cleaved caspase 3, β-catenin, c-Myc, cyclin D1 and p21 in SKOV3/PTX cells were detected with Western blot. In vivo animal study was performed finally. Results In this study, the inhibitory effects of PTX on the proliferation and migration of SKOV3/PTX cells were markedly enhanced by TET. In addition, PTX-induced apoptosis in SKOV3/PTX cells was significantly enhanced by the treatment of TET via upregulating the levels of Bax and cleaved caspase 3, and downregulating the expression of Bcl-2. Moreover, combination of TET and PTX obviously induced cell cycle arrest in SKOV3/PTX cells via increasing the level of p21 and decreasing the levels of c-Myc and Cyclin D1. Meanwhile, combination of TET with PTX significantly decreased the expression of β-catenin in SKOV3/PTX cells. In vivo experiments further confirmed that TET enhanced the anti-tumor effect of PTX in SKOV3/PTX xenograft model. Conclusion We found that TET could enhance the sensitivity of SKOV3/PTX cells to PTX via inhibiting the β-catenin/c-Myc/Cyclin D1 signaling pathway. Therefore, PTX combined with TET might be considered as a potential approach for the treatment of PTX-resistant ovarian cancer.
Collapse
Affiliation(s)
- Luo Jiang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| |
Collapse
|
16
|
Zhang X, Huang Y, Li X, Wang Y, Yuan Y, Li M. Preparation of a new combination nanoemulsion-encapsulated MAGE1-MAGE3-MAGEn/HSP70 vaccine and study of its immunotherapeutic effect. Pathol Res Pract 2020; 216:152954. [PMID: 32321658 DOI: 10.1016/j.prp.2020.152954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND MAGE family genes have been studied as targets for tumor immunotherapy for a long time. Here, we combined MAGE1-, MAGE3- and MAGEn-derived peptides as a cancer vaccine and tested whether a new combination nanoemulsion-encapsulated vaccine could be used to inhibit the growth of tumor cells in humanized SCID mice. METHODS The nanoemulsion-encapsulated complex protein vaccine (MAGE1, MAGE3, and MAGEn/HSP70 fusion protein; M1M3MnH) was prepared using a magnetic ultrasonic technique. After screening, human PBMCs were injected into SCID mice to mimic the human immune system. Then, the humanized SCID mice were challenged with M3-HHCC cells and immunized with nanoemulsion-encapsulated MAGE1-MAGE3-MAGEn/HSP70 [NE(M1M3MnH)] or M1M3MnH. The cellular immune responses were detected by IFN-γ ELISPOT and cytotoxicity assays. Therapeutic and tumor challenge experiments were also performed. RESULTS The results showed that the immune responses elicited by NE(M1M3MnH) were apparently stronger than those elicited by M1M3MnH, NE(-) or PBS, suggesting that this novel nanoemulsion carrier induces potent antitumor immunity against the encapsulated antigens. The results of the therapeutic and tumor challenge experiments also indicated that the new vaccine had a definite effect on SCID mice bearing human hepatic cancer. CONCLUSION Our study indicated that the combination of several tumor antigen-derived peptides may be a relatively good strategy for peptide-based cancer immunotherapy. These results suggest that the complex nanoemulsion vaccine could have broader applications for both therapy and prevention mediated by antitumor effects in the future.
Collapse
Affiliation(s)
- Xiumin Zhang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yang Huang
- Department of Emergency, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Xia Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yanxia Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Yuan Yuan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|