1
|
Li CX, Xu Q, Jiang ST, Liu D, Tang C, Yang WL. Anticancer effects of salvianolic acid A through multiple signaling pathways (Review). Mol Med Rep 2025; 32:176. [PMID: 40280109 PMCID: PMC12056544 DOI: 10.3892/mmr.2025.13541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/18/2025] [Indexed: 04/29/2025] Open
Abstract
Salvia miltiorrhiza Bunge (Salvia miltiorrhiza), commonly referred to as Danshen, is a well‑known herb in traditional Chinese medicine, the active ingredients of which are mostly categorized as water soluble and lipid soluble. Salvianolic acids are the major water‑soluble phenolic acid constituents of Danshen; salvianolic acid B is the most prevalent, with salvianolic acid A (SAA) being the next most predominant form. SAA offers a wide array of pharmacological benefits, including cardiovascular protection, and anti‑inflammatory, antioxidant, antiviral and anticancer activities. SAA is currently undergoing phase III clinical trials for diabetic peripheral neuropathy and has shown protective benefits against cardiovascular illnesses; furthermore, its safety and effectiveness are encouraging. By targeting several signaling pathways, preventing cell cycle progression, tumor cell migration, invasion and metastasis, normalizing the tumor vasculature and encouraging cell apoptosis, SAA can also prevent the growth of malignancies. In addition, it enhances sensitivity to chemotherapeutic drugs, and alleviates their toxicity and side effects. However, the broad therapeutic use of SAA has been somewhat limited by its low content in Salvia miltiorrhiza Bunge and the difficulty of its extraction techniques. Therefore, the present review focuses on the potential mechanisms of SAA in tumor prevention and treatment. With the anticipation that SAA will serve a notable role in clinical applications in the future, these discoveries may offer a scientific basis for the combination of SAA with conventional chemotherapeutic drugs in the treatment of cancer, and could establish a foundation for the development of SAA as an anticancer drug.
Collapse
Affiliation(s)
- Cheng-Xia Li
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Xu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shi-Ting Jiang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chao Tang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Li Yang
- Institute for Cancer Medicine, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Xiao L, Hou J, Liu H, Lu Q. Targeting drug cocktail hydrogel platform for inhibiting tumor growth and metastasis. Mater Today Bio 2025; 32:101798. [PMID: 40343161 PMCID: PMC12059701 DOI: 10.1016/j.mtbio.2025.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
The combination therapy could overcome the limitation of monotherapy to inhibit tumor recurrence and metastasis, but is usually constrained by complex fabrication processes. Here, a tunable hydrogel platform was developed using different silk nanocarriers, which independently achieve flexible functional optimization of various drugs. Silk nanorods (SNR) were modified with cRGDfK peptides to achieve targeting ability to tumor vessels and then loaded with hydrophobic vascular inhibitor Combretastatin A4 (CA4). The loading of CA4 and the targeted modification could be tuned to enhance the destruction of tumor vessels. Both hydrophilic doxorubicin (DOX) and hydrophobic paclitaxel (PTX) were co-loaded on silk nanofibers (SNF) to form injectable hydrogels with optimized combination chemotherapy. The drug-laden SNR and SNF were blended directly to form injectable hydrogels without the compromise of drug biological activity. Both the targeting modification of SNR and the optimized co-delivery of DOX and PTX improved the therapeutic efficiency in vitro and in vivo. The long-term inhibition of tumor recurrence and metastasis was achieved through the injectable silk nanocarriers, which are superior to previous combination chemotherapy systems of DOX and PTX. The gradual modular fabrication process and simple physical blending endowed the systems with high flexibility and tunability, suggesting a suitable platform for designing a drug cocktail system.
Collapse
Affiliation(s)
- Liying Xiao
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jianwen Hou
- Department of Trauma Orthopedics, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang 222023, People's Republic of China
| | - Hongxiang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, People's Republic of China
| | - Qiang Lu
- Institutes for Translational Medicine, Soochow University, Suzhou, 215123, People's Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, People's Republic of China
| |
Collapse
|
3
|
Naz Z, Fareed M, Chaudhary ARH, Snigdha NT, Zafar A, Alsaidan OA, Mangu K, Ahmad S, Aslam M, Rizwanullah M. Exploring the therapeutic potential of ligand-decorated nanostructured lipid carriers for targeted solid tumor therapy. Int J Pharm 2025; 678:125687. [PMID: 40348302 DOI: 10.1016/j.ijpharm.2025.125687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/19/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Solid tumors present significant therapeutic challenges due to their complex pathophysiology, including poor vascularization, dense extracellular matrix, multidrug resistance, and immune evasion. Conventional treatment strategies, such as chemotherapy, radiotherapy, and surgical interventions, are often associated with systemic toxicity, suboptimal drug accumulation at the tumor site, and chemoresistance. Nanostructured lipid carriers (NLCs) have emerged as a promising approach to enhance anticancer therapy. NLCs offer several advantages, including high drug loading capacity, improved bioavailability, controlled release, and enhanced stability. Recent advancements in active targeting strategies have led to the development of ligand-decorated NLCs, which exhibit selective tumor targeting, improved cellular uptake, and reduced systemic toxicity. By functionalizing NLCs with different targeting ligands, site-specific drug delivery can be achieved for better therapeutic efficacy. This review comprehensively explores the potential of ligand-decorated NLCs in solid tumor therapy, highlights their design principles, and mechanisms of tumor targeting. Furthermore, it discusses various receptor-targeted NLCs for the effective treatment of solid tumors. The potential of ligand-decorated NLCs in combination therapy, gene therapy, photothermal therapy, and photodynamic therapy is also explored. Overall, ligand-decorated NLCs represent a versatile and effective strategy to achieve better therapeutic outcomes in solid tumor therapy.
Collapse
Affiliation(s)
- Zrien Naz
- Department of Pharmaceutics, College of Pharmacy, Al Asmarya University, Zliten 218521, Libya
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | | | - Niher Tabassum Snigdha
- Department of Dental Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 602105 Tamil Nadu, India
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka-72341, Al-Jouf, Saudi Arabia
| | - Karthik Mangu
- Kogniverse Education and Research, Bionest, Avishkaran (NIPER), Hyderabad-500037, Telangana, India
| | - Shahnawaz Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001 Kurdistan Region, Iraq
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401 Punjab, India.
| |
Collapse
|
4
|
Horta M, Soares P, Sarmento B, Leite Pereira C, Lima RT. Nanostructured lipid carriers for enhanced batimastat delivery across the blood-brain barrier: an in vitro study for glioblastoma treatment. Drug Deliv Transl Res 2025:10.1007/s13346-024-01775-8. [PMID: 39760929 DOI: 10.1007/s13346-024-01775-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment. NLCs were prepared by ultrasonicator-assisted hot homogenization, followed by surface functionalization with EGF and the construct though carbodiimide chemistry. The construct was successfully conjugated with an efficiency of 81%. Two functionalized NLC formulations, fMbat and fNbat, differing in the surfactant amount, were characterized. fMbat had a size of 302 nm, a polydispersity index (PDI) of 0.298, a ζ-potential (ZP) of -27.1 mV and an 85% functionalization efficiency (%FE), whereas fNbat measured 285 nm, with a PDI of 0.249, a ZP of -28.6 mV and a %FE of 92%. Both formulations achieved a drug loading of 0.42 μg/mg. In vitro assays showed that fNbat was cytotoxic and failed to cross the BBB, while fMbat showed cytocompatibility at concentrations 10 times higher than the drug's IC50. Additionally, fMbat inhibited MMP-2 activity between 11 and 62% across different cell lines and achieved a three-fold increase in BBB penetration upon functionalization. Our results suggest that the fMbat formulation has potential for enhancing GB treatment by overcoming current drug delivery limitations and may be combined with other therapeutic strategies for improved outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Paula Soares
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Catarina Leite Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| | - Raquel T Lima
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135, Porto, Portugal
- FMUP - Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| |
Collapse
|
5
|
Verma R, Kumar K, Bhatt S, Yadav M, Kumar M, Tagde P, Rajinikanth PS, Tiwari A, Tiwari V, Nagpal D, Mittal V, Kaushik D. Untangling Breast Cancer: Trailing Towards Nanoformulations-based Drug Development. RECENT PATENTS ON NANOTECHNOLOGY 2025; 19:76-98. [PMID: 37519201 DOI: 10.2174/1872210517666230731091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
All over the world, cancer death and prevalence are increasing. Breast cancer (BC) is the major cause of cancer mortality (15%) which makes it the most common cancer in women. BC is defined as the furious progression and quick division of breast cells. Novel nanotechnology-based approaches helped in improving survival rate, metastatic BC is still facing obstacles to treat with an expected overall 23% survival rate. This paper represents epidemiology, classification (non-invasive, invasive and metastatic), risk factors (genetic and non-genetic) and treatment challenges of breast cancer in brief. This review paper focus on the importance of nanotechnology-based nanoformulations for treatment of BC. This review aims to deliver elementary insight and understanding of the novel nanoformulations in BC treatment and to explain to the readers for enduring designing novel nanomedicine. Later, we elaborate on several types of nanoformulations used in tumor therapeutics such as liposomes, dendrimers, polymeric nanomaterials and many others. Potential research opportunities for clinical application and current challenges related to nanoformulations utility for the treatment of BC are also highlighted in this review. The role of artificial intelligence is elaborated in detail. We also confer the existing challenges and perspectives of nanoformulations in effective tumor management, with emphasis on the various patented nanoformulations approved or progression of clinical trials retrieved from various search engines.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127021, India
| | - Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Shailendra Bhatt
- Shrinathji Institute of Pharmacy, Shrinathji Society for Higher Education, Upali Oden, Nathdwara, Rajasmand, Rajasthan, India
| | - Manish Yadav
- Department of Pharmacy, G.D. Goenka University, Sohna Road, Gurugram, 122103, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, 142024, Punjab, India
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, 462026, Madhya Pradesh, India
- PRISAL Foundation, Pharmaceutical Royal International Society, New Dehli, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Amebdkar University, Lucknow, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur Rajput, Moradabad, U.P., 244102, India
| | - Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
6
|
Naseem N, Kushwaha P, Haider F. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:449-468. [PMID: 39196394 DOI: 10.1007/s00210-024-03408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and proliferation, continues to be a major global health concern. Breast cancer, the most commonly diagnosed cancer among women, remains a leading cause of cancer-related deaths worldwide. Conventional treatment modalities such as surgery, radiation, and chemotherapy have made significant strides in improving patient outcomes. However, these approaches often face challenges such as limited efficacy, systemic toxicity, and multidrug resistance. Nanotechnology has emerged as a promising avenue for revolutionizing cancer therapy, offering targeted drug delivery, enhanced efficacy, and reduced side effects. Among the various nanocarrier systems, nanostructured lipid carriers (NLCs) have gained considerable attention for their unique advantages. Comprising a blend of solid and liquid lipids, NLCs offer improved drug loading capacity, enhanced stability, sustained release, and biocompatibility. This manuscript provides a comprehensive overview of the role of NLCs in breast cancer management, covering their formulation, methods of preparation, advantages, and disadvantages. Additionally, several studies are presented to illustrate the efficacy of NLCs in delivering anticancer drugs to breast tumors. These studies demonstrate the ability of NLCs to enhance drug cytotoxicity, improve tumor suppression, and minimize systemic toxicity. This manuscript aims to contribute to the existing literature by consolidating current knowledge and providing insights into the future directions of NLC-based therapeutics in breast cancer management.
Collapse
Affiliation(s)
- Nazish Naseem
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Faheem Haider
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| |
Collapse
|
7
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
8
|
Jing Y, Wang C, Li C, Wei Z, Lei D, Chen A, Li X, He X, Cen L, Sun M, Liu B, Xue B, Li R. Development of a manganese complex hyaluronic acid hydrogel encapsulating stimuli-responsive Gambogic acid nanoparticles for targeted Intratumoral delivery. Int J Biol Macromol 2024; 270:132348. [PMID: 38750838 DOI: 10.1016/j.ijbiomac.2024.132348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Gambogic acid is a natural compound with anticancer properties and is effective for many tumors. But its low water solubility and dose-dependent side effects limit its clinical application. This study aims to develop a novel drug delivery system for intratumoral delivery of gambogic acid. In our experimental study, we propose a new method for encapsulating gambogic acid nanoparticles using a manganese composite hyaluronic acid hydrogel as a carrier, designed for targeted drug delivery to tumors. The hydrogel delivery system is synthesized through the coordination of hyaluronic acid-dopamine (HA-DOPA) and manganese ions. The incorporation of manganese ions serves three purposes:1.To form cross-linked hydrogels, thereby improving the mechanical properties of HA-DOPA.2.To monitor the retention of hydrogels in vivo in real-time using magnetic resonance imaging (MRI).3.To activate the body's immune response. The experimental results show that the designed hydrogel has good biosafety, in vivo sustained release effect and imaging tracking ability. In the mouse CT26 model, the hydrogel drug-loaded group can better inhibit tumor growth. Further immunological analysis shows that the drug-loaded hydrogel group can stimulate the body's immune response, thereby better achieving anti-tumor effects. These findings indicate the potential of the developed manganese composite hyaluronic acid hydrogel as an effective and safe platform for intratumoral drug delivery. The amalgamation of biocompatibility, controlled drug release, and imaging prowess positions this system as a promising candidate for tumor treatment.
Collapse
Affiliation(s)
- Yuanhao Jing
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Chun Wang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Chunhua Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Zijian Wei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Dan Lei
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Anni Chen
- Nanjing International Hospital, The Affiliated Hospital of Nanjing University Medical School, China
| | - Xiang Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xiaowen He
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lanqi Cen
- Department of Oncology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China. 210000
| | - Mengna Sun
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210008, China.
| | - Rutian Li
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China; The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School & Clinical Cancer Institute of Nanjing University, Nanjing, China.
| |
Collapse
|
9
|
Zou J, Li M, Liu Z, Luo W, Han S, Xiao F, Tao W, Wu Q, Xie T, Kong N. Unleashing the potential: integrating nano-delivery systems with traditional Chinese medicine. NANOSCALE 2024; 16:8791-8806. [PMID: 38606497 DOI: 10.1039/d3nr06102g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review explores the potential of integrating nano-delivery systems with traditional Chinese herbal medicine, acupuncture, and Chinese medical theory. It highlights the intersections and potential of nano-delivery systems in enhancing the effectiveness of traditional herbal medicine and acupuncture treatments. In addition, it discusses how the integration of nano-delivery systems with Chinese medical theory can modernize herbal medicine and make it more readily accessible on a global scale. Finally, it analyzes the challenges and future directions in this field.
Collapse
Affiliation(s)
- Jianhua Zou
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, USA
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
10
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
11
|
He R, Jia B, Peng D, Chen W. Caged Polyprenylated Xanthones in Garcinia hanburyi and the Biological Activities of Them. Drug Des Devel Ther 2023; 17:3625-3660. [PMID: 38076632 PMCID: PMC10710250 DOI: 10.2147/dddt.s426685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.
Collapse
Affiliation(s)
- Ruixi He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Buyun Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
12
|
Deepak P, Kumar P, Pandey P, Arya DK, Jaiswal S, Kumar A, Sonkar AB, Ali D, Alarifi S, Ramar M, Rajinikanth PS. Pentapeptide cRGDfK-Surface Engineered Nanostructured Lipid Carriers as an Efficient Tool for Targeted Delivery of Tyrosine Kinase Inhibitor for Battling Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7021-7046. [PMID: 38046236 PMCID: PMC10693281 DOI: 10.2147/ijn.s438307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023] Open
Abstract
Background Antitumor research aims to efficiently target hepatocarcinoma cells (HCC) for drug delivery. Nanostructured lipid carriers (NLCs) are promising for active tumour targeting. Cell-penetrating peptides are feasible ligands for targeted cancer treatment. Methods In this study, we optimized gefitinib-loaded NLCs (GF-NLC) for HCC treatment. The NLCs contained cholesterol, oleic acid, Pluronic F-68, and Phospholipon 90G. The NLC surface was functionalized to enhance targeting with the cRGDfK-pentapeptide, which binds to the αvβ3 integrin receptor overexpressed on hepatocarcinoma cells. Results GF-NLC formulation was thoroughly characterized for various parameters using differential scanning calorimetry and X-ray diffraction analysis. In-vitro and in-vivo studies on the HepG2 cell line showed cRGDfK@GF-NLC's superiority over GF-NLC and free gefitinib. cRGDfK@GF-NLC exhibited significantly higher cytotoxicity, growth inhibition, and cellular internalization. Biodistribution studies demonstrated enhanced tumour site accumulation without organ toxicity. The findings highlight cRGDfK@GF-NLC as a highly efficient carrier for targeted drug delivery, surpassing non-functionalized NLCs. These functionalized NLCs offer promising prospects for improving hepatocarcinoma therapy outcomes by specifically targeting HCC cells. Conclusion Based on these findings, cRGDfK@GF-NLC holds immense potential as a highly efficient carrier for targeted drug delivery of anticancer agents, surpassing the capabilities of non-functionalized NLCs. This research opens up new avenues for effective treatment strategies in hepatocarcinoma.
Collapse
Affiliation(s)
- Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
- S.D College of Pharmacy and Vocational Studies, Muzaffarnagar, Uttar Pradesh, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Shweta Jaiswal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Archana Bharti Sonkar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Connecticut, Storrs, CT, 02903, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Yan J, Ma X, Liang D, Ran M, Zheng D, Chen X, Zhou S, Sun W, Shen X, Zhang H. An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer. Nat Commun 2023; 14:6905. [PMID: 37903795 PMCID: PMC10616286 DOI: 10.1038/s41467-023-42740-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Collapse
Affiliation(s)
- Jiaqi Yan
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Xiaodong Ma
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Danna Liang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Meixin Ran
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Xiaodong Chen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shichong Zhou
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xian Shen
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Hongbo Zhang
- Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
14
|
Dang W, Xing B, Jia X, Zhang Y, Jia B, Yu C, He J, Li Z, Li H, Liu Z. Subcellular Organelle-Targeted Nanostructured Lipid Carriers for the Treatment of Metastatic Breast Cancer. Int J Nanomedicine 2023; 18:3047-3068. [PMID: 37312934 PMCID: PMC10259594 DOI: 10.2147/ijn.s413680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/21/2023] [Indexed: 06/15/2023] Open
Abstract
Background Subcellular organelle targeted nano-formulations for cancer treatment are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. The nucleus and mitochondria, as the main subcellular organelles, are the significant organelles responsible for maintaining cell operation and metabolism. They can be involved in many essential physiological and pathological processes such as cell proliferation, organism metabolism, intracellular transportation, and play a critical role in regulating cell biology. Meanwhile, breast cancer metastasis is one of the leading causes of death in breast cancer patients. With the development of nanotechnology, nanomaterials have been widely used in tumor therapy. Methods We designed a subcellular organelle targeted nanostructured lipid carriers (NLC) to deliver paclitaxel (PTX) and gambogic acid (GA) to tumor tissues. Results Due to the surface of NLC being modified by subcellular organelle targeted peptide, the PTX and GA co-loaded NLC can accurately release PTX and GA in tumor cells. This property makes NLC able to easy to enter tumor site and target the specific subcellular organelle. The modified NLC can efficiently inhibit the growth of 4T1 primary tumor and lung metastasis, which may be related to the down-regulation of matrix metalloproteinase-9 (MMP-9) and BCL-2 levels, up-regulation of E-cadherin level, and antagonized PTX-induced increase of C-C chemokine ligand 2 (CCL-2) levels by GA. Meanwhile, the synergistic anti-tumor effect of GA and PTX has also been verified in vitro and in vivo experiments. Conclusion The subcellular organelle targeted peptide modified PTX+GA multifunctional nano-drug delivery system has a good therapeutic effect on tumors, and this study provides significant insights into the role of different subcellular organelles in inhibiting tumor growth and metastasis and inspires researchers to develop highly effective cancer therapeutic strategies through subcellular organelle targeted drugs.
Collapse
Affiliation(s)
- Wenli Dang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Xintao Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Bei Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Changxiang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Jiachen He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Huihui Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
15
|
Sanati M, Afshari AR, Aminyavari S, Kesharwani P, Jamialahmadi T, Sahebkar A. RGD-engineered nanoparticles as an innovative drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2023; 84:104562. [DOI: 10.1016/j.jddst.2023.104562] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
16
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
17
|
Viegas C, Patrício AB, Prata JM, Nadhman A, Chintamaneni PK, Fonte P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics 2023; 15:1593. [PMID: 37376042 PMCID: PMC10305282 DOI: 10.3390/pharmaceutics15061593] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Solid-lipid nanoparticles and nanostructured lipid carriers are delivery systems for the delivery of drugs and other bioactives used in diagnosis, therapy, and treatment procedures. These nanocarriers may enhance the solubility and permeability of drugs, increase their bioavailability, and extend the residence time in the body, combining low toxicity with a targeted delivery. Nanostructured lipid carriers are the second generation of lipid nanoparticles differing from solid lipid nanoparticles in their composition matrix. The use of a liquid lipid together with a solid lipid in nanostructured lipid carrier allows it to load a higher amount of drug, enhance drug release properties, and increase its stability. Therefore, a direct comparison between solid lipid nanoparticles and nanostructured lipid carriers is needed. This review aims to describe solid lipid nanoparticles and nanostructured lipid carriers as drug delivery systems, comparing both, while systematically elucidating their production methodologies, physicochemical characterization, and in vitro and in vivo performance. In addition, the toxicity concerns of these systems are focused on.
Collapse
Affiliation(s)
- Cláudia Viegas
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana B. Patrício
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João M. Prata
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University, Hayatabad, Peshawar 25000, Pakistan
| | - Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM-Hyderabad Campus, Hyderabad 502329, Telangana, India
| | - Pedro Fonte
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
18
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
19
|
Seo Y, Lim H, Park H, Yu J, An J, Yoo HY, Lee T. Recent Progress of Lipid Nanoparticles-Based Lipophilic Drug Delivery: Focus on Surface Modifications. Pharmaceutics 2023; 15:772. [PMID: 36986633 PMCID: PMC10058399 DOI: 10.3390/pharmaceutics15030772] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Numerous drugs have emerged to treat various diseases, such as COVID-19, cancer, and protect human health. Approximately 40% of them are lipophilic and are used for treating diseases through various delivery routes, including skin absorption, oral administration, and injection. However, as lipophilic drugs have a low solubility in the human body, drug delivery systems (DDSs) are being actively developed to increase drug bioavailability. Liposomes, micro-sponges, and polymer-based nanoparticles have been proposed as DDS carriers for lipophilic drugs. However, their instability, cytotoxicity, and lack of targeting ability limit their commercialization. Lipid nanoparticles (LNPs) have fewer side effects, excellent biocompatibility, and high physical stability. LNPs are considered efficient vehicles of lipophilic drugs owing to their lipid-based internal structure. In addition, recent LNP studies suggest that the bioavailability of LNP can be increased through surface modifications, such as PEGylation, chitosan, and surfactant protein coating. Thus, their combinations have an abundant utilization potential in the fields of DDSs for carrying lipophilic drugs. In this review, the functions and efficiencies of various types of LNPs and surface modifications developed to optimize lipophilic drug delivery are discussed.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hayeon Lim
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hyunjun Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jiyun Yu
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeongyun An
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun 2-Gil, Jongno-Gu, Seoul 03016, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Republic of Korea
| |
Collapse
|
20
|
Chen X, Zhang S, Li J, Huang X, Ye H, Qiao X, Xue Z, Yang W, Wang T. Influence of Elasticity of Hydrogel Nanoparticles on Their Tumor Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202644. [PMID: 35981891 PMCID: PMC9561785 DOI: 10.1002/advs.202202644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/25/2022] [Indexed: 05/28/2023]
Abstract
Polymeric nanocarriers have a broad range of clinical applications in recent years, but an inefficient delivery of polymeric nanocarriers to target tissues has always been a challenge. These results show that tuning the elasticity of hydrogel nanoparticles (HNPs) improves their delivery efficiency to tumors. Herein, a microfluidic system is constructed to evaluate cellular uptake of HNPs of different elasticity under flow conditions. It is found that soft HNPs are more efficiently taken up by cells than hard HNPs under flow conditions, owing to the greater adhesion between soft HNPs and cells. Furthermore, in vivo imaging reveals that soft HNPs have a more efficient tumor delivery than hard HNPs, and the greater targeting potential of soft HNPs is associated with both prolonged blood circulation and a high extent of cellular adhesion.
Collapse
Affiliation(s)
- Xiangyu Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Shuwei Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Department of OrthopedicsChinese PLA General HospitalBeijing100853P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xiaobin Huang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
| | - Zhenjie Xue
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130022P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Analytical Chemistry for Living BiosystemsInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100049P. R. China
- Life and Health Intelligent Research InstituteTianjin University of TechnologyTianjin300384P. R. China
| |
Collapse
|
21
|
Zhang B, Zhang Y, Dang W, Xing B, Yu C, Guo P, Pi J, Deng X, Qi D, Liu Z. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A. J Nanobiotechnology 2022; 20:425. [PMID: 36153589 PMCID: PMC9509648 DOI: 10.1186/s12951-022-01628-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Poor in vivo targeting of tumors by chemotherapeutic drugs reduces their anti-cancer efficacy in the clinic. The discovery of over-expressed components on the tumor cell surface and their specific ligands provide a basis for targeting tumor cells. However, the differences in the expression levels of these receptors on the tumor cell surface limit the clinical application of anti-tumor preparations modified by a single ligand. Meanwhile, toxicity of chemotherapeutic drugs leads to poor tolerance to anti-tumor therapy. The discovery of natural active products antagonizing these toxic side effects offers an avenue for relieving cancer patients’ pain during the treatment process. Since the advent of nanotechnology, interventions, such as loading appropriate drug combinations into nano-sized carriers and multiple tumor-targeting functional modifications on the carrier surface to enhance the anti-tumor effect and reduce toxic and side effects, have been widely used for treating tumors.
Results
Nanocarriers containing doxorubicin hydrochloride (DOX) and salvianolic acid A (Sal A) are spherical with a diameter of about 18 nm; the encapsulation efficiency of both DOX and salvianolic acid A is greater than 80%. E-[c(RGDfK)2]/folic acid (FA) co-modification enabled nanostructured lipid carriers (NLC) to efficiently target a variety of tumor cells, including 4T1, MDA-MB-231, MCF-7, and A549 cells in vitro. Compared with other preparations (Sal A solution, NLC-Sal A, DOX solution, DOX injection, Sal A/DOX solution, NLC-DOX, NLC-Sal A/DOX, and E-[c(RGDfK)2]/FA-NLC-Sal A/DOX) in this experiment, the prepared E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had the best anti-tumor effect. Compared with the normal saline group, it had the highest tumor volume inhibition rate (90.72%), the highest tumor weight inhibition rate (83.94%), led to the highest proportion of apoptosis among the tumor cells (61.30%) and the lowest fluorescence intensity of proliferation among the tumor cells (0.0083 ± 0.0011). Moreover, E-[c(RGDfK)2]/FA-NLC-Sal A/DOX had a low level of nephrotoxicity, with a low creatinine (Cre) concentration of 52.58 μmoL/L in the blood of mice, and no abnormalities were seen on pathological examination of the isolated kidneys at the end of the study. Sal A can antagonize the nephrotoxic effect of DOX. Free Sal A reduced the Cre concentration of the free DOX group by 61.64%. In NLC groups, Sal A reduced the Cre concentration of the DOX group by 42.47%. The E-[c(RGDfK)2]/FA modification reduced the side effects of the drug on the kidney, and the Cre concentration was reduced by 46.35% compared with the NLC-Sal A/DOX group. These interventions can potentially improve the tolerance of cancer patients to chemotherapy.
Conclusion
The E-[c(RGDfK)2]/FA co-modified DOX/Sal A multifunctional nano-drug delivery system has a good therapeutic effect on tumors and low nephrotoxicity and is a promising anti-cancer strategy.
Graphical Abstract
Collapse
|
22
|
Gupta U, Saren BN, Khaparkhuntikar K, Madan J, Singh PK. Applications of lipid-engineered nanoplatforms in the delivery of various cancer therapeutics to surmount breast cancer. J Control Release 2022; 348:1089-1115. [PMID: 35640765 DOI: 10.1016/j.jconrel.2022.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022]
Abstract
Breast cancer (BC) is the most extensively accounted malignancy among the women across the globe and is treatable in 70-80% of patients with early-stage, non-metastatic cancer. The current available therapies have been found to be less effective to treat distant organ metastases and advanced breast cancers. The clinical efficacy hugely suffers from chemoresistance, non-specific toxicity, relapse and other associated adverse effects. Furthermore, lack of controlled delivery and effective temporospatial presence of chemotherapeutics has resulted in suboptimal therapeutic response. Nanotechnology based approaches have been widely used over the period as they are nanometric, offer controlled and site-specific drug release along with reduced toxicity, improved half-life, and stability. Lipid-based nanoplatforms have grabbed a tremendous attention for delivering cancer therapeutics as they are cost-effective, scalable and provide better entrapment efficiency. In this review, all the promising applications of lipid-engineered nanotechnological tools for breast cancer will be summarized and discussed. Subsequently, BC therapy achieved with the aid of chemotherapeutics, phytomedicine, genes, peptides, photosensitizers, diagnostic and immunogenic agents etc. will be reviewed and discussed. This review gives tabular information on all the results obtained pertaining to the physicochemical properties of the lipidic nanocarrier, in vitro studies conferring to mechanistic drug release profile, cell viability, cellular apoptosis and in vivo studies referring to cellular internalisation, reduction of tumor volume, PK-PD profile, bioavailability achieved and anti-tumor activity in detail. It also gives complete information on the most relevant clinical trials done on lipidic nanoplatforms over two decades in tabular form. The review highlights the current status and future prospects of lipidic nanoplatforms with streamlined focus on cancer nanotherapeutics.
Collapse
Affiliation(s)
- Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kedar Khaparkhuntikar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
23
|
Wang L, Zhu S, Zou C, Kou H, Xu M, Li J. Preparation and evaluation of the anti-cancer properties of RGD-modified curcumin-loaded chitosan/perfluorohexane nanocapsules in vitro. Heliyon 2022; 8:e09931. [PMID: 35865990 PMCID: PMC9294197 DOI: 10.1016/j.heliyon.2022.e09931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Curcumin (Cur) encapsulation in nanocapsules (NCs) could improve its availability and therapeutic antitumor efficacy. Cur-loaded chitosan/perfluorohexane (CS/PFH) nanocapsules (CS/PFH-Cur-NCs) were thus synthesized via a nanoemulsion process. To further enhance the selective tumor targeting ability of Cur-loaded NCs, a novel CS/PFH-Cur-NCs with conjugation of Arg-Gly-Asp (RGD) peptide (RGD-CS/PFH-Cur-NCs) were prepared in this study. The properties of these NCs were then explored through in vitro release experiments and confocal laser scanning microscopy-based analyses of the ability of these NCs to target MDA-MB-231 breast cancer cells. In addition, an MTT assay-based approach was used to compare the relative cytotoxic impact of CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs on these breast cancer cells. It was found that both CS/PFH-Cur-NCs and RGD-CS/PFH-Cur-NCs were smooth, relatively uniform, spheroid particles, with the latter being 531.20 ± 68.97 nm in size. These RGD-CS/PFH-Cur-NCs can be ideal for contrast imaging studies, and were better able to target breast cancer cells in comparison to CS/PFH-Cur-NCs. In addition, RGD-CS/PFH-Cur-NCs were observed to induce cytotoxic MDA-MB-231 cell death more swiftly in comparison to CS/PFH-Cur-NCs. These findings suggest that NC encapsulation and RGD surface modification can remarkably improve the anti-tumor efficacy of Cur. These novel NCs may thus manifest a significant potential value in the realm of image-guided cancer therapy, underscoring an important direction for future research.
Collapse
Affiliation(s)
- Liang Wang
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China.,Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shixia Zhu
- Department of Ultrasound, Wenzhou Seventh People's Hospital, Wenzhou 325005, China
| | - Chunpeng Zou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hongju Kou
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Maosheng Xu
- Department of Ultrasound, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Jie Li
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
24
|
Evaluation of liver specific ionizable lipid nanocarrierin the delivery of siRNA. Chem Phys Lipids 2022; 246:105207. [PMID: 35623403 DOI: 10.1016/j.chemphyslip.2022.105207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022]
Abstract
Hepcidin, a key regulator of iron homeostasis, has been implicated in the pathogenesis of various iron-related diseases. Although small interfering RNA (siRNA) are potent to modulate the expression of hepcidin, their bioavailability remains a major issue. The β-galactopyranoside-conjugated liposomes (GAL-liposome) targeting liver synthesized hepcidin were prepared by thin lipid film hydration method to encapsulate siRNA and the conjugation of β-galactopyranoside to the lipid nanocarrier was achieved by covalent chemistry. The prepared siRNA loaded GAL-lip were spherical with around 50 nm radius in size as observed by HR-TEM. The zeta potential and polydispersity index of the prepared liposomes were -19.9±0.96 mV and 0.44±0.05, respectively. The encapsulation efficiency as determined by dialysis bag method was around 91.76±1.74%. The cell viability and cellular uptake analysis was examined in HepG2 cells by MTT assay and flow cytometry, respectively. The stability and cumulative release of siRNA was also assessed. The hepcidin mRNA expression on administration of siRNA loaded GAL-lip was determined in HepG2 cells and in lipopolysaccharide-induced mice model followed by examining itsin vivo biodistribution by fluorescence microscopy. The results suggested thatsiRNA loaded GAL-lip reduced the hepcidin levels, thus, highlighting a novel ligand conjugated ionizable lipid-based nanocarrier for inducing RNA interference.
Collapse
|
25
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
26
|
Wei D, Yang H, Zhang Y, Zhang X, Wang J, Wu X, Chang J. Nano-traditional Chinese medicine: a promising strategy and its recent advances. J Mater Chem B 2022; 10:2973-2994. [PMID: 35380567 DOI: 10.1039/d2tb00225f] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Traditional Chinese Medicine (TCM) has been applied to the prevention and treatment of numerous diseases and has an irreplaceable role in rehabilitation and health care. However, the application of TCMs is drastically limited by their defects, such as single administration, poor water solubility, low bioavailability, and weak targeting capability. Recently, nanoparticles have been extensively used in resolving pharmaceutical obstacles in consideration of their large specific surface area, strong targeting capability, good sustained-release effect, etc. In this review, we first describe the limitations of TCM ingredients and two significant forms of nanotechnology applied in TCM, nanometerization of TCMs and nano-drug delivery systems for TCMs. Then, we discuss the preparation methods of nanometerization: mechanical crushing, spray drying, and high-pressure homogenization, which have been utilized to conquer the various weaknesses of TCMs. Then, recent advances in nano-drug delivery systems for TCM ingredients are discussed, including lipid-based nanocarriers, polymeric nanoparticles, inorganic nanocarriers, hybrid nanoparticles, and TCM self-assembled nanoparticles. Finally, the future challenges and perspectives of TCM formula complexity and the limitations of nanocarriers are also discussed. Better understanding the function of nanotechnology in TCM will help to modernize Chinese medicine and broaden the application of nano-TCM in the clinic.
Collapse
Affiliation(s)
- Daohe Wei
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Han Yang
- School of Life and Health Science, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518100, China
| | - Yue Zhang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xinhui Zhang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jian Wang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Xiaoli Wu
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro Nano Biomaterials and Detection Treatment Technology, and Collaborative Innovation Center of Chemical Science and Engineering, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
27
|
Dang W, Guo P, Song X, Zhang Y, Li N, Yu C, Xing B, Liu R, Jia X, Zhang Q, Feng X, Liu Z. Nuclear Targeted Peptide Combined With Gambogic Acid for Synergistic Treatment of Breast Cancer. Front Chem 2022; 9:821426. [PMID: 35155383 PMCID: PMC8832139 DOI: 10.3389/fchem.2021.821426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
As a natural compound, gambogic acid (GA) emerged a shining multi-target antitumor activity in a variety of tumors. Whereas its poor solubility and non-specific effect to tumor blocked the clinical application of this drug. Herein, we reported a simple and effective strategy to construct liposome modified with nuclear targeted peptide CB5005N (VQRKRQKLMPC) via polyethylene glycol (PEG) linker to decrease the inherent limitations of GA and promote its anti-tumor activity. In this study, liposomes were prepared by thin film hydration method. The characterization of formulations contained particle size, Zeta potential, morphology and encapsulation efficiency. Further, in vitro cytotoxicity and uptake tests were investigated by 4T1 and MDA-MB-231 cells, and nuclear targeting capability was performed on MDA-MB-231 cells. In addition, the in vivo antitumor effect and biological distribution of formulations were tested in BALB/c female mice. The GA-loaded liposome modified by CB5005N showed small size, good uniformity, better targeting, higher anti-tumor efficiency, better tumor inhibition rate and lower toxicity to normal tissues than other groups. In vitro and in vivo research proved that CB5005N-GA-liposome exhibited excellent anti-tumor activity and significantly reduced toxicities. As a result, CB5005N-GA-liposome nano drug delivery system enhanced the tumor targeting and antitumor effects of GA, which provided a basis for its clinical application.
Collapse
Affiliation(s)
- Wenli Dang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pan Guo
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xunan Song
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Li
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changxiang Yu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Xing
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Liu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xintao Jia
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingqing Zhang
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojiao Feng
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Heihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhidong Liu,
| |
Collapse
|
28
|
Khodaverdi H, Zeini MS, Moghaddam MM, Vazifedust S, Akbariqomi M, Tebyanian H. Lipid-Based Nanoparticles for Targeted Delivery of the Anti-Cancer Drugs: A Review. Curr Drug Deliv 2022; 19:1012-1033. [DOI: 10.2174/1567201819666220117102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.
Collapse
Affiliation(s)
- Hamed Khodaverdi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Shokrian Zeini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mostafa Akbariqomi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Li S, Xu Z, Alrobaian M, Afzal O, Kazmi I, Almalki WH, Altamimi ASA, Al-Abbasi FA, Alharbi KS, Altowayan WM, Singh T, Akhter MH, Gupta M, Rahman M, Beg S. EGF-functionalized lipid-polymer hybrid nanoparticles of 5-fluorouracil and sulforaphane with enhanced bioavailability and anticancer activity against colon carcinoma. Biotechnol Appl Biochem 2021; 69:2205-2221. [PMID: 34775646 DOI: 10.1002/bab.2279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/30/2021] [Indexed: 12/19/2022]
Abstract
The present research work describes development of dual drug-loaded lipid-polymer hybrid nanoparticles (LPHNPs) of anticancer therapeutics for the management of colon cancer. The epidermal growth factor (EGF)-functionalized LPHNPs coloaded with 5-fluorouracil (FU) and sulforaphane (SFN) were prepared by one-step nanoprecipitation method. Box-Behnken design was applied for optimizing the material attributes and process parameters. The optimized LPHNPs revealed particle size 198 nm, polydispersity index 0.3, zeta potential -25.3 mV, and drug loading efficiency 19-20.3% for 5-FU and SFN, respectively. EGF functionalization on LPHNPs was confirmed from positive magnitude of zeta potential to 21.3 mV as compared with the plain LPHNPs. In vitro drug release performance indicated sustained and non-Fickian mechanism release nature of the drugs from LPHNPs. Anticancer activity evaluation in HCT-15 colon cancer cells showed significant reduction (p < 0.001) in the cell growth and cytotoxicity of the investigated drugs from various treatments in the order: EGF-functionalized LPHNPs > plain LPHNPs > free drug suspensions. Overall, the research work corroborated improved treatment efficacy of EGF-functionalized LPHNPs for delivering chemotherapeutic agents for the management of colon carcinoma.
Collapse
Affiliation(s)
- Shumin Li
- Department of Gastroenterology, Binzhou Central Hospital, Binzhou, Shandong Province, China
| | - Zhongkai Xu
- Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shangdong, China
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed M Altowayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| | | | - Manish Gupta
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies (UPES), Energy Acres, Bidholi, Via Premnagar, Dehradun, Uttarakhand, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
30
|
Ren L, Nie J, Wei J, Li Y, Yin J, Yang X, Chen G. RGD-targeted redox responsive nano micelle: co-loading docetaxel and indocyanine green to treat the tumor. Drug Deliv 2021; 28:2024-2032. [PMID: 34569890 PMCID: PMC8477929 DOI: 10.1080/10717544.2021.1977425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cancer, also known as a malignant tumor, has developed into a type of disease with the highest fatality rate, seriously threatening the lives and health of people. Chemotherapy is one of the most important methods for the treatment of cancer. However, chemotherapy drugs have some problems, such as low solubility and lack of targeting, which severely limit their clinical applications. To solve these problems, we designed a block copolymer that has a disulfide bond response. The polymer uses RGD peptide (arginine-glycine-aspartic acid) as the active targeting group, PEG (polyethylene glycol) as the hydrophilic end, and PCL (polycaprolactone) as the hydrophobic end. Then we utilized the amphiphilic polymer as a carrier to simultaneously deliver DOC (docetaxel) and ICG (indocyanine green), to realize the combined application of chemotherapy and photothermal therapy. The antitumor efficacy in vivo and histology analysis showed that the DOC/ICG-loaded micelle exhibited higher antitumor activity. The drug delivery system improved the solubility of DOC and the stability of ICG, realized NIR-guided photothermal therapy, and achieved an ideal therapeutic effect.
Collapse
Affiliation(s)
- Lili Ren
- School of Pharmacy, Nanjing Tech University, Nanjing, China.,Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Junfang Nie
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Jie Wei
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Yaning Li
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Jun Yin
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Xiaolong Yang
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| | - Guoguang Chen
- School of Pharmacy, Nanjing Tech University, Nanjing, China
| |
Collapse
|
31
|
Wang M, Li H, Huang B, Chen S, Cui R, Sun Z, Zhang M, Sun T. An Ultra-Stable, Oxygen-Supply Nanoprobe Emitting in Near-Infrared-II Window to Guide and Enhance Radiotherapy by Promoting Anti-Tumor Immunity. Adv Healthc Mater 2021; 10:e2100090. [PMID: 33885213 DOI: 10.1002/adhm.202100090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Currently, radiotherapy (RT) is the main method for cancer treatment. However, the hypoxic environment of solid tumors is likely to cause resistance or failure of RT. Moreover, high-dose radiation may cause side effects to surrounding normal tissues. In this study, a new type of nanozyme is developed by doping Mn (II) ions into Ag2 Se quantum dots (QDs) emitting in the second near-infrared window (NIR-II, 1000-1700 nm). Through the catalysis of Mn (II) ions, the nanozymes can trigger the rapid decomposition of H2 O2 and produce O2 . Conjugated with tumor-targeting arginine-glycine-aspartate (RGD) tripeptides and polyethylene glycol (PEG) molecules, the nanozymes are then constructed into in vivo nanoprobes for NIR-II imaging-guided RT of tumors. Owing to the radiosensitive activity of the element Ag, the nanoprobes can promote radiation energy deposition. The specific tumor-targeting and NIR-II emitting abilities of the nanoprobes facilitate the precise tumor localization, which enables precise RT with low side effects. Moreover, their ultra-stability in the living body ensures that the nanoprobes continuously produce oxygen and relieve the hypoxia of tumors to enhance RT efficacy. Guided by real-time and high-clarity imaging, the nanoprobe-mediated RT promotes anti-tumor immunity, which significantly inhibits the growth of tumors or even cures them completely.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology Wuhan 430070 P.R. China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 P.R. China
| | - Biao Huang
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P.R. China
| | - Song Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
| | - Ran Cui
- College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P.R. China
| | - Zhi‐Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology Wuhan University Wuhan 430079 P.R. China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P.R. China
- School of Chemistry Chemical Engineering and Life Science Wuhan University of Technology Wuhan 430070 P.R. China
| |
Collapse
|
32
|
Exploring the therapeutic potential of nanostructured lipid carrier approaches to tackling the inherent lacuna of chemotherapeutics and herbal drugs against breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Enhanced Anticancer Efficacy of Dual Drug-Loaded Self-Assembled Nanostructured Lipid Carriers Mediated by pH-Responsive Folic Acid and Human-Derived Cell Penetrating Peptide dNP2. Pharmaceutics 2021; 13:pharmaceutics13050600. [PMID: 33921919 PMCID: PMC8143576 DOI: 10.3390/pharmaceutics13050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
The poor ability of recognition and penetration of chemotherapeutic agents to tumor cells are still great challenges for targeted breast cancer treatment. Herein, we established a tumor-targeted nanostructured lipid carrier encapsulating gambogic acid (GA) and paclitaxel (PTX), which was co-modified with acid-cleavable folic acid (cFA) and a human-derived cell penetrating peptide dNP2 (CKIKKVKKKGRKKIKKVKKKGRK). The multi-functional nano-platform exhibited an enhanced targeting and penetrability to tumor tissues, which was accomplished by the combined action of cFA and dNP2. After intravenous injection, firstly, cFA could actively target the breast cancer tissues by the selective recognition of folate receptor (FR); then, upon arrival at the tumor microenvironment, the acid-cleavable FA and dNP2 dual modified nanostructured lipid carrier (cFA/dNP2-GA/PTX-NLC) exhibited sensitive cleavage of folic acid (FA), which could reduce the hindrance effect of FA to maximize the dNP2 cell-penetrating properties. The effect of different modification on cellular uptake, in vivo bio-distribution, and anticancer activity of NLCs proved our hypothesis that compared with NLCs modified by non-cleavable FA or a single ligand, cFA/dNP2-GA/PTX-NLC displayed more efficient intracellular delivery, stronger targeting ability in vivo, improved cytotoxicity on 4T1 cells, and produced the better therapeutic efficacy of GA and PTX. The strategy affords a feasible way to overcome the poor recognition and permeability of medicines in cancer treatment.
Collapse
|
34
|
Wang L, Wang X, Shen L, Alrobaian M, Panda SK, Almasmoum HA, Ghaith MM, Almaimani RA, Ibrahim IAA, Singh T, Baothman AA, Choudhry H, Beg S. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed Pharmacother 2021; 138:111461. [PMID: 33706131 DOI: 10.1016/j.biopha.2021.111461] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022] Open
Abstract
The present work describes the systematic development of paclitaxel and naringenin-loaded solid lipid nanoparticles (SLNs) for the treatment of glioblastoma multiforme (GBM). So far only temozolomide therapy is available for the GBM treatment, which fails by large amount due to poor brain permeability of the drug and recurrent metastasis of the tumor. Thus, we investigated the drug combination containing paclitaxel and naringenin for the treatment of GBM, as these drugs have individually demonstrated significant potential for the management of a wide variety of carcinoma. A systematic product development approach was adopted where risk assessment was performed for evaluating the impact of various formulation and process parameters on the quality attributes of the SLNs. I-optimal response surface design was employed for optimization of the dual drug-loaded SLNs prepared by micro-emulsification method, where Percirol ATO5 and Dynasan 114 were used as the solid lipid and surfactant, while Lutrol F188 was used as the stabilizer. Drug loaded-SLNs were subjected to detailed in vitro and in vivo characterization studies. Cyclic RGD peptide sequence (Arg-Gly-Asp) was added to the formulation to obtain the surface modified SLNs which were also evaluated for the particle size and surface charge. The optimized drug-loaded SLNs exhibited particle size and surface charge of 129 nm and 23 mV, drug entrapment efficiency >80% and drug loading efficiency >7%. In vitro drug release study carried out by micro dialysis bag method indicated more than 70% drug was release observed within 8 h time period. In vivo pharmacokinetic evaluation showed significant improvement (p < 0.05) in drug absorption parameters (Cmax and AUC) from the optimized SLNs over the free drug suspension. Cytotoxicity evaluation on U87MG glioma cells indicated SLNs with higher cytotoxicity as compared to that of the free drug suspension (p < 0.05). Evaluation of uptake by florescence measurement indicated superior uptake of SLNs tagged with dye over the plain dye solution. Overall, the dual drug-loaded SLNs showed better chemoprotective effect over the plain drug solution, thus construed superior anticancer activity of the developed nanoformulation in the management of glioblastoma multiforme.
Collapse
Affiliation(s)
- Liying Wang
- Department of Neurology, Tangshan Workers' Hospital, Tangshan, Hebei 063000, China
| | - Xiangbo Wang
- Department of Oncological Radiotherapy, The People's Hospital of Zhangqiu, No.1920 Huiquan Road, Mingshui, Jinan, Shandong Province 250200, China
| | - Lina Shen
- Department of the Third Neurosurgery, Handan City No.1 Hospital, Handan, Hebei 056002, China
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sunil K Panda
- Research Director, Menovo Pharmaceuticals Research Lab, Ningbo, China
| | - Hussain A Almasmoum
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| | - Abdullah A Baothman
- Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Science (KSAU-HS), King Abdullah International Medical Research Center (KAIMARC), Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
35
|
Rajpoot K. Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications. Curr Cancer Drug Targets 2020; 20:271-287. [PMID: 31951180 DOI: 10.2174/1568009620666200115160805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
36
|
Ma Z, Li N, Zhang B, Hui Y, Zhang Y, Lu P, Pi J, Liu Z. Dual drug-loaded nano-platform for targeted cancer therapy: toward clinical therapeutic efficacy of multifunctionality. J Nanobiotechnology 2020; 18:123. [PMID: 32887626 PMCID: PMC7650261 DOI: 10.1186/s12951-020-00681-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Background Poor targeting and penetration of chemotherapy drugs in solid tumors, and the development of resistance to chemotherapeutic agents are currently hindering the therapy of breast cancer; meanwhile, breast cancer metastasis is one of the leading causes of death in breast cancer patients. With the development of nanotechnology, nanomaterials have been widely used in tumor therapy. Results A multi-functional nano-platform containing gambogic acid (GA) and paclitaxel (PTX) was characterized by a small size, high encapsulation efficiency, slow release, long systemic circulation time in vivo, showed good targeting and penetrability to tumor tissues and tumor cells, and exhibited higher anti-tumor effect and lower systemic toxicity in BALB/c mice bearing 4T1 tumor. GA not only overcame the multidrug resistance of PTX by inhibiting P-glycoprotein (P-gp) activity in MCF-7/ADR cells, but also inhibited MDA-MB-231 cells migration and invasion, playing a crucial role in preventing and treating the lung metastasis of breast cancer caused by PTX; meanwhile, the synergistic anti-tumor effect of GA and PTX has also been verified in vitro and in vivo experiments. Conclusion Our data described the better recognition and penetration of tumor cells of R9dGR-modified versatile nanosystems containing GA and PTX, which exerted one stone three birds clinical therapeutic efficacy of multifunctionality.![]()
Collapse
Affiliation(s)
- Zhe Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bing Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - YuYu Hui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Peng Lu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaxin Pi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China. .,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
37
|
Hatami E, Jaggi M, Chauhan SC, Yallapu MM. Gambogic acid: A shining natural compound to nanomedicine for cancer therapeutics. Biochim Biophys Acta Rev Cancer 2020; 1874:188381. [PMID: 32492470 DOI: 10.1016/j.bbcan.2020.188381] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
Abstract
The United States Food and Drug Administration has permitted number of therapeutic agents for cancer treatment. Most of them are expensive and have some degree of systemic toxicity which makes overbearing in clinical settings. Although advanced research continuously applied in cancer therapeutics, but drug resistance, metastasis, and recurrence remain unanswerable. These accounts to an urgent clinical need to discover natural compounds with precisely safe and highly efficient for the cancer prevention and cancer therapy. Gambogic acid (GA) is the principle bioactive and caged xanthone component, a brownish gamboge resin secreted from the of Garcinia hanburyi tree. This molecule showed a spectrum of biological and clinical benefits against various cancers. In this review, we document distinct biological characteristics of GA as a novel anti-cancer agent. This review also delineates specific molecular mechanism(s) of GA that are involved in anti-cancer, anti-metastasis, anti-angiogenesis, and chemo-/radiation sensitizer activities. Furthermore, recent evidence, development, and implementation of various nanoformulations of gambogic acid (nanomedicine) have been described.
Collapse
Affiliation(s)
- Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, USA.
| |
Collapse
|