1
|
Aasy NKA, Sallam MA, Ragab D, Abdelmonsif DA, Aly RG, Abdelfattah EZA, Elkhodairy KA. CD44-targeted hyaluronic acid coated imiquimod lipid nanocapsules foster the efficacy against skin cancer: Attempt to conquer unfavorable side effects. Int J Biol Macromol 2025; 290:138895. [PMID: 39701268 DOI: 10.1016/j.ijbiomac.2024.138895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
This study was executed to mitigate imiquimod (IMQ)-side effects and promote its anticancer potential against skin cancer via encapsulation in hyaluronic acid-coated lipid nanocapsules (HA-LNCs) for targeted topical delivery. The LNCs were prepared using the phase inversion technique. Optimized LNCs formulation was gained following 22 factorial design experiment to adjust the IMQ and CTAB concentrations. The two variables were found to significantly influence the dependent responses. The encapsulation efficiency of IMQ exceeded 97 %. HA coating provided a sustained release of IMQ from LNCs, with 63.81 ± 2.45 % of IMQ released after 24 h. Moreover, the ex-vivo human skin permeation study showed that 7.9-fold more IMQ was localized in all skin layers than that permeated. In vitro anticancer activity indicated that IMQ-HA-LNCs had higher cytotoxicity (IC50 = 22.39 μg/mL) compared to free IMQ (IC50 = 97.94 μg/mL). Further, in vivo studies revealed that encapsulation of IMQ in HA-LNCs enhanced its immunostimulatory potential and promoted its anti-tumor activity in competing skin cancer even in low doses compared to the untreated group and group treated with a brand product with no topical or systemic toxicity. The present study suggested that HA-LNCs with their mixed polymeric/lipophilic nature epitomize a promising strategy for safe topical delivery of poorly water-soluble candidates.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, University of Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, University of Alexandria, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
2
|
Heydari M, Saifi M, Ghanbari-Movahed M, Salari N, Faghihi SH, Mohammadi M. Recent advances in improved efficacies of gold nano-formulations in treatment of skin cancer: a systematic review. Arch Dermatol Res 2025; 317:301. [PMID: 39833557 DOI: 10.1007/s00403-025-03817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Skin cancer is the commonest malignancy for the population. Conventional skin cancer treatments include chemotherapy and surgery, but a large number of the chemotherapeutic drugs applied currently have undesirable possessions. The aim of this study is to provide a complete and acute assessment of the antitumor capability of gold nano-formulations in skin cancer as a new and more effectual delivery system for targeted therapy. In this systematic review, we conducted our first search in December 2021. In order to find related studies, 3 databases PubMed, Scopus and ScienceDirect. In order to maintain comprehensiveness in the search, no time limit was considered in the search process and finally the information obtained from the search was transferred to the information management software (EndNote). In order to maximize the number of articles that were related to our topic, a list of references identified in relevant articles was also manually searched and reviewed. Our final search was updated in late December 2021. There was evidence for a correlation between anticancer activities and treatment with gold nano-formulations. Additionally, studies shown that specific functionalization of the gold nanoparticles (Au NPs) which increase targetability to specific populations of cells could increase the application of Au NPs to the effective delivery of drugs to tumor cells. Our study demonstrated that gold nano-formulations are possible candidates for skin cancer treatment and might provide additional support for the clinical use of these anticancer agents in the future.
Collapse
Affiliation(s)
- Mohammadbagher Heydari
- Department of General Surgery, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Saifi
- Department of General Surgery, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Ghanbari-Movahed
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nader Salari
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sayed Hassan Faghihi
- Department Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Mohammadi
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
3
|
Abo Aasy NK, Ragab D, Sallam MA, Elkhodairy KA. Follicular mediated etodolac phosalosomal gel for contact dermatitis alleviation, insights from optimization to in-vivo appraisal. Sci Rep 2024; 14:21744. [PMID: 39289408 PMCID: PMC11408589 DOI: 10.1038/s41598-024-71456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Despite its long history as a preferential cyclooxygenase-2 inhibitor, the topical application of etodolac in inflammatory disorders does not achieve the desired clinical efficiency because of its poor water solubility and poor skin permeation. In the ongoing study, phosalosomes were designed to mitigate the etodolac drawbacks and to enhance its skin localization. Hyaluronic acid was utilized to prepare a dermal gel for the alleviation of skin inflammation. Etodolac loaded hyaluronic acid phosalosomal gel had a sustainable release profile and 10.59-fold enhanced skin retention compared to free etodolac, with boosted skin tolerability on histopathological examination after acute and chronic applications. Confocal laser microscopy imaging indicated that the etodolac amounts accumulated in the liver and kidney following dermal application were 29 and 5.7-fold lower than those following the systemic dose, respectively. For in vivo studies, etodolac loaded hyaluronic acid phosalosomal gel presented superior anti-oedemic and significant anti-nociception potential. The promising homogenous localization highlighted its potential for the delivery of lipophilic drugs for the targeted treatment of other localized skin disorders.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt.
| | - Doaa Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Marwa Ahmed Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| | - Kadria A Elkhodairy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Post Office, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
4
|
Meng YW, Liu JY. Pathological and pharmacological functions of the metabolites of polyunsaturated fatty acids mediated by cyclooxygenases, lipoxygenases, and cytochrome P450s in cancers. Pharmacol Ther 2024; 256:108612. [PMID: 38369063 DOI: 10.1016/j.pharmthera.2024.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
Oxylipins have garnered increasing attention because they were consistently shown to play pathological and/or pharmacological roles in the development of multiple cancers. Oxylipins are the metabolites of polyunsaturated fatty acids via both enzymatic and nonenzymatic pathways. The enzymes mediating the metabolism of PUFAs include but not limited to lipoxygenases (LOXs), cyclooxygenases (COXs), and cytochrome P450s (CYPs) pathways, as well as the down-stream enzymes. Here, we systematically summarized the pleiotropic effects of oxylipins in different cancers through pathological and pharmacological aspects, with specific reference to the enzyme-mediated oxylipins. We discussed the specific roles of oxylipins on cancer onset, growth, invasion, and metastasis, as well as the expression changes in the associated metabolic enzymes and the associated underlying mechanisms. In addition, we also discussed the clinical application and potential of oxylipins and related metabolic enzymes as the targets for cancer prevention and treatment. We found the specific function of most oxylipins in cancers, especially the underlying mechanisms and clinic applications, deserves and needs further investigation. We believe that research on oxylipins will provide not only more therapeutic targets for various cancers but also dietary guidance for both cancer patients and healthy humans.
Collapse
Affiliation(s)
- Yi-Wen Meng
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Chongqing 400016, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
5
|
Viglianisi G, Polizzi A, Grippaudo C, Cocuzza S, Leonardi R, Isola G. Chemopreventive and Biological Strategies in the Management of Oral Potentially Malignant and Malignant Disorders. Bioengineering (Basel) 2024; 11:65. [PMID: 38247942 PMCID: PMC10813134 DOI: 10.3390/bioengineering11010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Oral potentially malignant disorders (OPMD) and oral squamous cell carcinoma (OSCC) represent a significant global health burden due to their potential for malignant transformation and the challenges associated with their diagnosis and treatment. Chemoprevention, an innovative approach aimed at halting or reversing the neoplastic process before full malignancy, has emerged as a promising avenue for mitigating the impact of OPMD and OSCC. The pivotal role of chemopreventive strategies is underscored by the need for effective interventions that go beyond traditional therapies. In this regard, chemopreventive agents offer a unique opportunity to intercept disease progression by targeting the molecular pathways implicated in carcinogenesis. Natural compounds, such as curcumin, green tea polyphenols, and resveratrol, exhibit anti-inflammatory, antioxidant, and anti-cancer properties that could make them potential candidates for curtailing the transformation of OPMD to OSCC. Moreover, targeted therapies directed at specific molecular alterations hold promise in disrupting the signaling cascades driving OSCC growth. Immunomodulatory agents, like immune checkpoint inhibitors, are gaining attention for their potential to harness the body's immune response against early malignancies, thus impeding OSCC advancement. Additionally, nutritional interventions and topical formulations of chemopreventive agents offer localized strategies for preventing carcinogenesis in the oral cavity. The challenge lies in optimizing these strategies for efficacy, safety, and patient compliance. This review presents an up to date on the dynamic interplay between molecular insights, clinical interventions, and the broader goal of reducing the burden of oral malignancies. As research progresses, the synergy between early diagnosis, non-invasive biomarker identification, and chemopreventive therapy is poised to reshape the landscape of OPMD and OSCC management, offering a glimpse of a future where these diseases are no longer insurmountable challenges but rather preventable and manageable conditions.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Cristina Grippaudo
- Head and Neck Department, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Salvatore Cocuzza
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, Via S. Sofia 68, 95124 Catania, Italy;
| | - Rosalia Leonardi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 68, 95124 Catania, Italy; (G.V.); (A.P.); (R.L.); (G.I.)
| |
Collapse
|
6
|
Aasy NKA, El-Lakany SA, Masanga PM, Kamoun EA, EL-Moslamy SH, Abu-Serie M, Aly RG, Elgindy NA. Concurrent Tissue Engineering for Wound Healing in Diabetic Rats Utilizing Dual Actions of Green Synthesized CuO NPs Prepared from Two Plants Grown in Egypt. Int J Nanomedicine 2023; 18:1927-1947. [PMID: 37064292 PMCID: PMC10103783 DOI: 10.2147/ijn.s397045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
Purpose Diabetes mellitus is among the disrupting factors of orchestrated events in wound healing. This necessitates the urge for tailored medications, which are continually offered by nano-sized materials. Herein, we present greenly synthesized copper oxide nanoparticles (CuO NPs), obtained from either Punica granatum L. (PG) or Pisidium guajava L. (GV) extract, to function as potent bactericidal and fungicidal materials that promote regeneration and healing of the targeted diabetic wounded tissues. Methods PG or GV plant extracts were compared as source of reducing agents for CuO NPs synthesis process. The yield and photocatalytic degradation potential were compared. NPs obtained from the superior extract, PG, were characterized using particles size, zeta potential, XRD, TEM, SEM, and EDX. The antimicrobial effects were evaluated on multidrug-resistant human pathogens and then the percentage biofilm inhibitory concentration was determined. The cytotoxicity and wound scratch study were conducted on a normal human skin cell line. In-vivo wound healing activity in diabetic rats was assessed along with histopathological and immunohistochemical examination of CD45 and α-SMA. Results The greenly synthesized CuO NPs are spherical in shape having a diameter of 233nm. CuO NPs (250µg/mL) acted as promising biocontrol agent against a variety of multidrug-resistant human pathogens. They significantly exhibited 29.460±0.811% healing of the scratched wound compared to only 2.001±0.155% for the control. Wound healing experiments revealed the safety of a low CuO NPs concentration in a diabetic animal model as well as on human normal skin fibroblast cell line. The treated group with a dose of 2mg/cm2 showed superior results with a WC50 value of 7.2 days, and 92% wound contraction after 13-days. Immunohistochemical investigation of the same group demonstrated well-established fibrous tissue (5.7±3.7/HPF), and an amplified granulation tissue of recently developed blood vessels (70±1.5/HPF). Conclusion Green synthesized CuO NPs could overcome drug resistance and promote wound healing process effectively.
Collapse
Affiliation(s)
- Noha Khalifa Abo Aasy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sarah A El-Lakany
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Elbadawy A Kamoun
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt
| | - Shahira H EL-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa Abu-Serie
- Medical Biotechnology Department (MBD), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-city), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nazik A Elgindy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Development of novel cyanopyridines as PIM-1 kinase inhibitors with potent anti-prostate cancer activity: Synthesis, biological evaluation, nanoparticles formulation and molecular dynamics simulation. Bioorg Chem 2022; 129:106122. [PMID: 36084418 DOI: 10.1016/j.bioorg.2022.106122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Recently, inhibition of PIM-1 enzyme is found as an effective route in the fight against proliferation of cancer. Herein, new cyano pyridines that target PIM-1 kinase were designed, synthesized, and biologically evaluated. Two prostate cell lines were used to examine each of the new compounds in vitro for anticancer activity, namely, PC-3 and DU-145. The cyanopyridine derivatives 2b, 3b, 4b, and 5b with an N,N-dimethyl phenyl group at the pyridine ring's 4-position showed considerable antitumor effect on the tested cell lines. Additionally, the high selectivity index revealed that these compounds were less cytotoxic to normal WI-38 cells. Furthermore, they exhibited strong inhibitory effect on PIM-1 having IC50 = 0.248, 0.13, 0.326 and 0.245 μM, respectively. The most powerful derivatives2b, 3b, 4b, and 5b, were chosen for further examination of their inhibitory potential on both kinases (PIM-2 and PIM-3). Interestingly, upon loading compound 3b in a cubosomes formulation with nanometric size, improvements in cytotoxicity and inhibitory effect on PIM-1 kinase were observed. In silico ADME parameters study revealed that compound 3b is orally bioavailable without penetration to the blood-brain barrier. Further, the docking simulations revealed the ability of our potent compounds to well accommodate the PIM-1 kinase active site forming stable complexes. In a 150 ns MD simulation, the most powerful PIM-1 inhibitor 3b produced stable complex with the PIM-1 enzyme (RMSD = 1.76). Furthermore, the 3b-PIM-1 complex has the low binding free energy (-242.2 kJ/mol) according to the MM-PBSA calculations.
Collapse
|
8
|
Hafez DA, Abdelmonsif DA, Aly RG, Samy WM, Elkhodairy KA, Abo Aasy NK. Role of fennel oil/ quercetin dual nano-phytopharmaceuticals in hampering liver fibrosis: Comprehensive optimization and in vivo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
El-Sheridy NA, El-Moslemany RM, Ramadan AA, Helmy MW, El-Khordagui LK. Itraconazole for Topical Treatment of Skin Carcinogenesis: Efficacy Enhancement by Lipid Nanocapsule Formulations. J Biomed Nanotechnol 2022; 18:97-111. [PMID: 35180903 DOI: 10.1166/jbn.2022.3217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Itraconazole (ITC), an antifungal drug with anticancer activity, shows potential for oral treatment of skin cancer. There is clinical need for topical ITC for treating low-risk skin carcinogenesis. Our objective was to develop ITC nanoformulations with enhanced anticancer efficacy. Lipid nanocapsules (LNC), either unmodified (ITC/LNC) or modified with the amphiphiles miltefosine (ITC/MF-LNC) or the lipopeptide biosurfactant surfactin (ITC/SF-LNC) as bioactive additives were developed. LNC formulations showed high ITC entrapment efficiency (>98%), small diameter (42-45 nm) and sustained ITC release. Cytotoxicity studies using malignant SCC 9 cells and normal human fibroblasts (NHF) demonstrated significant enhancement of ITC anticancer activity and selectivity for cancer cells by the LNC formulations and a synergistic ITC-amphiphile interaction improving the combination performance. Treatment of intradermal tumor-bearing mice with the ITC nanoformulation gels compared with ITC and 5-FU gels achieved significant tumor growth inhibition that was remarkably enhanced by ITC/MF-LNC and ITC/SF-LNC as well as recovery of skin architecture. Molecularly, tumoral expression of Ki-67 and cytokeratin proliferative proteins was significantly suppressed by LNC formulations, the suppressive effect on cytokeratins was superior to that of 5-FU. These findings provide new evidence for effective topical treatment of low-risk skin carcinogenesis utilizing multiple approaches that involve drug repurposing, nanotechnology, and bioactive amphiphiles as formulation enhancing additives.
Collapse
Affiliation(s)
- Nabila A El-Sheridy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Beheira, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
10
|
Lalan M, Shah P, Barve K, Parekh K, Mehta T, Patel P. Skin cancer therapeutics: nano-drug delivery vectors—present and beyond. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00326-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Skin cancers are among the widely prevalent forms of cancer worldwide. The increasing industrialization and accompanied environmental changes have further worsened the skin cancer statistics. The stern topical barrier although difficult to breach is a little compromised in pathologies like skin cancer. The therapeutic management of skin cancers has moved beyond chemotherapy and surgery.
Main body of the abstract
The quest for a magic bullet still prevails, but topical drug delivery has emerged as a perfect modality for localized self-application with minimal systemic ingress for the management of skin cancers. Advances in topical drug delivery as evidenced by the exploration of nanocarriers and newer technologies like microneedle-assisted/mediated therapeutics have revolutionized the paradigms of topical treatment. The engineered nanovectors have not only been given the liberty to experiment with a wide-array of drug carriers with very distinguishing characteristics but also endowed them with target specificity. The biologicals like nucleic acid-based approaches or skin penetrating peptide vectors are another promising area of skin cancer therapeutics which has demonstrated potential in research studies. In this review, a panoramic view is presented on the etiology, therapeutic options, and emerging drug delivery modalities for skin cancer.
Short conclusion
Nanocarriers have presented innumerable opportunities for interventions in skin cancer therapeutics. Challenge persists for the bench to bedside translation of these highly potential upcoming therapeutic strategies.
Graphic abstract
Collapse
|
11
|
Self- assembled lactoferrin-conjugated linoleic acid micelles as an orally active targeted nanoplatform for Alzheimer's disease. Int J Biol Macromol 2020; 162:246-261. [DOI: 10.1016/j.ijbiomac.2020.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/22/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022]
|
12
|
TLC-Densitometric Determination of Five Coxibs in Pharmaceutical Preparations. Processes (Basel) 2020. [DOI: 10.3390/pr8050620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A class of drugs called coxibs (COX-2 inhibitors) were created to help relieve pain and inflammation of osteoarthritis and rheumatoid arthritis with the lowest amount of side effects possible. The presented paper describes a new developed, optimized and validated thin layer chromatographic (TLC)-densitometric procedure for the simultaneous assay of five coxibs: celecoxib, etoricoxib, firecoxib, rofecoxib and cimicoxib. Chromatographic separation was conducted on HPTLC F254 silica gel chromatographic plates as a stationary phase using chloroform–acetone–toluene (12:5:2, v/v/v) as a mobile phase. Densitometric detection was carried out at two wavelengths of 254 and 290 nm. The method was tested according to ICH guidelines for linearity, recovery and specificity. The presented method was linear in a wide range of concentrations for all analyzed compounds, with correlation coefficients greater than 0.99. The method is specific, precise (%RSD < 1) and accurate (more than 95%, %RSD < 2). Low-cost, simple and rapid, it can be used in laboratories for drug monitoring and quality control.
Collapse
|