1
|
Chen W, Pan Y, Chu CH, Dong S, Wang M, Wang L, Wang L, Lin X, Tang C. Microenvironment-responsive nanoparticles functionalized titanium implants mediate redox balance and immunomodulation for enhanced osseointegration. Mater Today Bio 2025; 31:101628. [PMID: 40124346 PMCID: PMC11930443 DOI: 10.1016/j.mtbio.2025.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
Various pathological conditions (e.g., diabetes, osteoporosis) are accompanied by persistent oxidative stress, which compromises the immune microenvironment and poses substantial challenges for osseointegration. Reactive oxygen species (ROS) play a "double-edged sword" role in bone tissue. Therefore, developing responsive biomaterials to maintain redox balance dynamically is crucial for enhanced osseointegration. Herein, the microenvironment-responsive coordination nanoparticles (C-Ca-SalB NPs) composed of salvianolic acid B (SalB), catechol-conjugated chitosan (CS-C), and Ca2+ are constructed and further covalently immobilized onto titanium implant surfaces. The resulting implants achieve on-demand antioxidant and immunomodulatory effects in a microenvironment-responsive manner, thus facilitating bone regeneration under both normal and oxidative conditions. Under physiological conditions, the functionalized implants display modest immunomodulatory properties without affecting oxidative balance, while C-Ca-SalB NPs remain relatively stable. However, the modified implants enable rapid decomposition of C-Ca-SalB NPs under acidic oxidative conditions, displaying robust ROS-scavenging, anti-inflammatory, and osteoinductive capacities, ultimately remodeling the pathological microenvironment into a regenerative one. Overall, smart implants with controlled bioactive agent release in this study present a comprehensive solution for enhancing bone-implant integration, particularly in the challenging context of oxidative stress.
Collapse
Affiliation(s)
- Wei Chen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Yifei Pan
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| | - Catherine Huihan Chu
- Department of Orthodontic, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuo Dong
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing, 210029, China
| | - Mingxi Wang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Long Wang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lingxu Wang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuyang Lin
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chunbo Tang
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, China
- State Key Laboratory Cultivation Base of Research, Prevention, and Treatment for Oral Diseases, Nanjing, 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, 210029, China
| |
Collapse
|
2
|
Berthelot R, Variola F. Investigating the interplay between environmental conditioning and nanotopographical cueing on the response of human MG63 osteoblastic cells to titanium nanotubes. Biomater Sci 2025; 13:946-968. [PMID: 39404078 DOI: 10.1039/d4bm00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Titanium nanotubular surfaces have been extensively studied for their potential use in biomedical implants due to their ability to promote relevant phenomena associated with osseointegration, among other functions. However, despite the large body of literature on the subject, potential synergistic/antagonistic effects resulting from the combined influence of environmental variables and nanotopographical cues remain poorly investigated. Specifically, it is still unclear whether the nanotube-induced variations in cellular activity are preserved across different biochemical contexts. To bridge this gap, this study systematically evaluates the combined influence of nanotopographical cues and environmental factors on human MG63 osteoblastic cells. To this end, we capitalized on a triphasic anodization protocol to create nanostructured surfaces characterized by an average nanotube inner diameter of 25 nm (NT1) and 82 nm (NT2), as well as a two-tiered honeycomb (HC) architecture. A variable glucose content was chosen as the environmental modifier due to its well-known ability to affect specific functions of MG63 cells. Alkaline phosphatase (ALP), viability/metabolic activity and proliferation were quantified to identify the suitable preconditioning window required for dictating a change in behaviour without significantly damaging cells. Successively, a combination of immunofluorescence, colorimetric assays, live cell imaging and western blots quantified viability/metabolic activity and cell proliferation, migration and differentiation as a function of the combined effects exerted by the nanostructured substrates and the glucose content. To achieve a thorough understanding of MG63 cell adaptation and response, a comparative analysis table that includes and systematically cross-analyzes all variables from this study was used for interpretation and discussion of the results. Taken together, we have demonstrated that all surfaces mitigate the negative effects of high glucose. However, nanotubular topographies, particularly NT2, elicit a more beneficial outcome in high glucose in respect to untreated titanium. In addition, while NT1 surfaces are associated with the most stable cellular response across varying glucose levels, the NT2 and HC substrates exhibit the strongest enhancement of cell migration, viability/metabolism and differentiation. Moreover, shorter-term processes such as adhesion and proliferation are favored on untreated titanium, while anodized samples support later-term events. Lastly, the role of anodized surfaces is dominant over the effects of environmental glucose, underscoring the importance of carefully considering nanoscale surface features in the design and development of cell-instructive titanium surfaces.
Collapse
Affiliation(s)
- Ryan Berthelot
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Fabio Variola
- Faculty of Engineering, Department of Mechanical Engineering, University of Ottawa, Canada.
- Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
- Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
3
|
Zhou X, Chen S, Pich A, He C. Advanced Bioresponsive Drug Delivery Systems for Promoting Diabetic Vascularized Bone Regeneration. ACS Biomater Sci Eng 2025; 11:182-207. [PMID: 39666445 DOI: 10.1021/acsbiomaterials.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The treatment of bone defects in diabetes mellitus (DM) patients remains a major challenge since the diabetic microenvironments significantly impede bone regeneration. Many abnormal factors including hyperglycemia, elevated oxidative stress, increased inflammation, imbalanced osteoimmune, and impaired vascular system in the diabetic microenvironment will result in a high rate of impaired, delayed, or even nonhealing events of bone tissue. Stimuli-responsive biomaterials that can respond to endogenous biochemical signals have emerged as effective therapeutic systems to treat diabetic bone defects via the combination of microenvironmental regulation and enhanced osteogenic capacity. Following the natural bone healing processes, coupling of angiogenesis and osteogenesis by advanced bioresponsive drug delivery systems has proved to be of significant approach for promoting bone repair in DM. In this Review, we have systematically summarized the mechanisms and therapeutic strategies of DM-induced impaired bone healing, outlined the bioresponsive design for drug delivery systems, and highlighted the vascularization strategies for promoting bone regeneration. Accordingly, we then overview the recent advances in developing bioresponsive drug delivery systems to facilitate diabetic vascularized bone regeneration by remodeling the microenvironment and modulating multiple regenerative cues. Furthermore, we discuss the development of adaptable drug delivery systems with unique features for guiding DM-associated bone regeneration in the future.
Collapse
Affiliation(s)
- Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Andrij Pich
- Institute for Technical and Macromolecular Chemistry, Functional and Interactive Polymers, RWTH Aachen University, Aachen 52074, Germany
- DWI - Leibniz Institute for Interactive Materials, RWTH Aachen University, Aachen 52074, Germany
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Ma A, Zhang Y, Chen J, Sun L, Hong G. Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes. J Dent Sci 2024; 19:S26-S37. [PMID: 39807437 PMCID: PMC11725137 DOI: 10.1016/j.jds.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background/purpose Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters. Materials and methods TNT structures were fabricated by anodizing titanium foil at voltages ranging from 15V to 70V and annealed at 450 °C. Surface morphology and wettability were characterized using field emission scanning electron microscopy and water contact angle measurements, respectively. MC3T3-E1 and Saos-2 cells were cultured to evaluate biocompatibility. Early cell morphology and adhesion were visualized by scanning electron microscopy. Cell proliferation was quantified using CCK-8 assays, and differentiation was assessed through alkaline phosphatase assays. Osteogenesis-related gene expression was analyzed by real-time polymerase chain reaction (PCR), measuring runt-related transcription factor 2 (Runx-2), alkaline phosphatase (ALP), collagen type 1 (COL-1), osteocalcin (OCN), and Osteopontin (OPN) gene levels. Results Our results found that Saos-2 cells may be more suitable for TNT-related studies compared to MC3T3-E1 cells. Notably, the 65V nanotube group, with a diameter of 135.9 ± 15.83 nm, demonstrated the most significant osteogenic effect in our assays. Conclusion We propose that the use and screening of multiple cell lines prior to the evaluation of biomaterials can lead to more accurate in vitro experiments, thereby enhancing the reliability of biomaterial research.
Collapse
Affiliation(s)
- Aobo Ma
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yiding Zhang
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Junduo Chen
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lu Sun
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Prosthodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
5
|
Xiang Y, Lin D, Zhou Q, Luo H, Zhou Z, Wu S, Xu K, Tang X, Ma P, Cai C, Shen X. Elucidating the Mechanism of Large-Diameter Titanium Dioxide Nanotubes in Protecting Osteoblasts Under Oxidative Stress Environment: The Role of Fibronectin and Albumin Adsorption. Int J Nanomedicine 2024; 19:10639-10659. [PMID: 39464678 PMCID: PMC11512530 DOI: 10.2147/ijn.s488154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Background Large-diameter titanium dioxide nanotubes (TNTs) have shown promise in preserving osteoblast function under oxidative stress (OS) in vitro. However, their ability to enhance osteogenesis in vivo under OS conditions and the underlying mechanisms remain unclear. Purpose This study aimed to evaluate the osteogenic potential of 110 nm TNTs (TNT110) compared to 30 nm TNTs (TNT30) in an aging rat model exhibiting OS, and to investigate the mechanisms involved. Methods Surface properties of TNTs were characterized, and in vitro and in vivo experiments were conducted to assess their osteoinductive effects under OS. Transcriptomic, proteomic analyses, and Western blotting were performed to investigate the protective mechanisms of TNT110 on osteoblasts. Protein adsorption studies focused on the roles of fibronectin (FN) and albumin (BSA) in modulating osteoblast behavior on TNT110. Results In both in vitro and in vivo experiments, TNT110 significantly improved new bone formation and supported osteoblast survival under OS conditions. Subsequent ribonucleic acid sequencing results indicated that TNT110 tended to attenuate inflammatory responses and reactive oxygen species (ROS) expression while promoting endoplasmic reticulum (ER) stress and extracellular matrix receptor interactions, all of which are crucial for osteoblast survival and functionality. Further confirmation indicated that the cellular behavior changes of osteoblasts in the TNT110 group could only occur in the presence of serum. Moreover, proteomic analysis under OS conditions revealed the pivotal roles of FN and BSA in augmenting TNT110's resistance to OS. Surface pretreatment of TNT110 with FN/BSA alone could beneficially influence the early adhesion, spreading, ER activity, and ROS expression of osteoblasts, a trend not observed with TNT30. Conclusion TNT110 effectively protects osteoblast function in the OS microenvironment by modulating protein adsorption, with FN and BSA synergistically enhancing osteogenesis. These findings suggest TNT110's potential for use in implants for elderly patients.
Collapse
Affiliation(s)
- Yun Xiang
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Dini Lin
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Qiang Zhou
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Hongyu Luo
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Zixin Zhou
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Shuyi Wu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Keyuan Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Xiaoting Tang
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Pingping Ma
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Chunyuan Cai
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| | - Xinkun Shen
- Wenzhou Key Laboratory for the Diagnosis and Prevention of Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People’s Hospital), Wenzhou, 325016, People’s Republic of China
| |
Collapse
|
6
|
Hosseini Hooshiar M, Mozaffari A, Hamed Ahmed M, Abdul Kareem R, Jaber Zrzo A, Salah Mansoor A, H Athab Z, Parhizgar Z, Amini P. Potential role of metal nanoparticles in treatment of peri-implant mucositis and peri-implantitis. Biomed Eng Online 2024; 23:101. [PMID: 39396020 PMCID: PMC11470642 DOI: 10.1186/s12938-024-01294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/14/2024] Open
Abstract
Peri-implantitis (PI), a pathological condition associated with plaque, affects the tissues around dental implants. In addition, peri-implant mucositis (PIM) is a precursor to the destructive inflammatory PI and is an inflammation of the soft tissues surrounding the dental implant. It is challenging to eradicate and regulate the PI treatment due to its limited effectiveness. Currently, there is a significant interest in the development and research of additional biocompatible materials to prevent the failure of dental implants. Nanotechnology has the potential to address or develop solutions to the significant challenge of implant failure caused by cytotoxicity and biocompatibility in dentistry. Nanoparticles (NPs) may be used as carriers for the release of medicines, as well as to make implant coatings and supply appropriate materials for implant construction. Furthermore, the bioactivity and therapeutic efficacy of metal NPs in peri-implant diseases (PID) are substantiated by a plethora of in vitro and in vivo studies. Furthermore, the use of silver (Ag), gold (Au), zinc oxide, titanium oxide (TiO2), copper (Cu), and iron oxide NPs as a cure for dental implant infections brought on by bacteria that have become resistant to several medications is the subject of recent dentistry research. Because of their unique shape-dependent features, which enhance bio-physio-chemical functionalization, antibacterial activity, and biocompatibility, metal NPs are employed in dental implants. This study attempted to provide an overview of the application of metal and metal oxide NPs to control and increase the success rate of implants while focusing on the antimicrobial properties of these NPs in the treatment of PID, including PIM and PI. Additionally, the study reviewed the potential benefits and drawbacks of using metal NPs in clinical settings for managing PID, with the goal of advancing future treatment strategies for these conditions.
Collapse
Affiliation(s)
| | - Asieh Mozaffari
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Athmar Jaber Zrzo
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Zahra Parhizgar
- Resident of Periodontology, Department of Periodontics, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Parisa Amini
- Department of Periodontology, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Li M, Zhao Z, Yi J. Biomaterials Designed to Modulate Reactive Oxygen Species for Enhanced Bone Regeneration in Diabetic Conditions. J Funct Biomater 2024; 15:220. [PMID: 39194658 DOI: 10.3390/jfb15080220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Diabetes mellitus, characterized by enduring hyperglycemia, precipitates oxidative stress, engendering a spectrum of complications, notably increased bone vulnerability. The genesis of reactive oxygen species (ROS), a byproduct of oxygen metabolism, instigates oxidative detriment and impairs bone metabolism in diabetic conditions. This review delves into the mechanisms of ROS generation and its impact on bone homeostasis within the context of diabetes. Furthermore, the review summarizes the cutting-edge progress in the development of ROS-neutralizing biomaterials tailored for the amelioration of diabetic osteopathy. These biomaterials are engineered to modulate ROS dynamics, thereby mitigating inflammatory responses and facilitating bone repair. Additionally, the challenges and therapeutic prospects of ROS-targeted biomaterials in clinical application of diabetic bone disease treatment is addressed.
Collapse
Affiliation(s)
- Mingshan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Yu X, Xu R, Huang X, Chen H, Zhang Z, Wong I, Chen Z, Deng F. Size-Dependent Effect of Titania Nanotubes on Endoplasmic Reticulum Stress to Re-establish Diabetic Macrophages Homeostasis. ACS Biomater Sci Eng 2024; 10:4323-4335. [PMID: 38860558 DOI: 10.1021/acsbiomaterials.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In patients with diabetes, endoplasmic reticulum stress (ERS) is a crucial disrupting factor of macrophage homeostasis surrounding implants, which remains an obstacle to oral implantation success. Notably, the ERS might be modulated by the implant surface morphology. Titania nanotubes (TNTs) may enhance diabetic osseointegration. However, a consensus has not been achieved regarding the tube-size-dependent effect and the underlying mechanism of TNTs on diabetic macrophage ERS. We manufactured TNTs with small (30 nm) and large diameters (100 nm). Next, we assessed how the different titanium surfaces affected diabetic macrophages and regulated ERS and Ca2+ homeostasis. TNTs alleviated the inflammatory response, oxidative stress, and ERS in diabetic macrophages. Furthermore, TNT30 was superior to TNT100. Inhibiting ERS abolished the positive effect of TNT30. Mechanistically, topography-induced extracellular Ca2+ influx might mitigate excessive ERS in macrophages by alleviating ER Ca2+ depletion and IP3R activation. Furthermore, TNT30 attenuated the peri-implant inflammatory response and promoted osseointegration in diabetic rats. TNTs with small nanodiameters attenuated ERS and re-established diabetic macrophage hemostasis by inhibiting IP3R-induced ER Ca2+ depletion.
Collapse
Affiliation(s)
- Xiaoran Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Ruogu Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Xiaoqiong Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Hongcheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zhengchuan Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Iohong Wong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, PR China
| |
Collapse
|
9
|
Marasli C, Katifelis H, Gazouli M, Lagopati N. Nano-Based Approaches in Surface Modifications of Dental Implants: A Literature Review. Molecules 2024; 29:3061. [PMID: 38999015 PMCID: PMC11243276 DOI: 10.3390/molecules29133061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material-tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization.
Collapse
Affiliation(s)
- Chrysa Marasli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
10
|
Deng J, Van Duyn C, Cohen DJ, Schwartz Z, Boyan BD. Strategies for Improving Impaired Osseointegration in Compromised Animal Models. J Dent Res 2024; 103:467-476. [PMID: 38616679 PMCID: PMC11055505 DOI: 10.1177/00220345241231777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Implant osseointegration is reduced in patients with systemic conditions that compromise bone quality, such as osteoporosis, disuse syndrome, and type 2 diabetes. Studies using rodent models designed to mimic these compromised conditions demonstrated reduced bone-to-implant contact (BIC) or a decline in bone mineral density. These adverse effects are a consequence of disrupted intercellular communication. A variety of approaches have been developed to compensate for the altered microenvironment inherent in compromised conditions, including the use of biologics and implant surface modification. Chemical and physical modification of surface properties at the microscale, mesoscale, and nanoscale levels to closely resemble the surface topography of osteoclast resorption pits found in bone has proven to be a highly effective strategy for improving implant osseointegration. The addition of hydrophilicity to the surface further enhances osteoblast response at the bone-implant interface. These surface modifications, applied either alone or in combination, improve osseointegration by increasing proliferation and osteoblastic differentiation of osteoprogenitor cells and enhancing angiogenesis while modulating osteoclast activity to achieve net new bone formation, although the specific effects vary with surface treatment. In addition to direct effects on surface-attached cells, the communication between bone marrow stromal cells and immunomodulatory cells is sensitive to these surface properties. This article reports on the advances in titanium surface modifications, alone and in combination with novel therapeutics in animal models of human disease affecting bone quality. It offers clinically translatable perspectives for clinicians to consider when using different surface modification strategies to improve long-term implant performance in compromised patients. This review supports the use of surface modifications, bioactive coatings, and localized therapeutics as pragmatic approaches to improve BIC and enhance osteogenic activity from both structural and molecular standpoints.
Collapse
Affiliation(s)
- J. Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - C. Van Duyn
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - D. J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Z. Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - B. D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Wang B, Huang Y, Cai Q, Du Z, Li X. Biomaterials for diabetic bone repair: Influencing mechanisms, multi-aspect progress and future prospects. COMPOSITES PART B: ENGINEERING 2024; 274:111282. [DOI: 10.1016/j.compositesb.2024.111282] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
|
12
|
Valdez-Salas B, Castillo-Uribe S, Beltran-Partida E, Curiel-Alvarez M, Perez-Landeros O, Guerra-Balcazar M, Cheng N, Gonzalez-Mendoza D, Flores-Peñaloza O. Recovering Osteoblast Functionality on TiO2 Nanotube Surfaces Under Diabetic Conditions. Int J Nanomedicine 2022; 17:5469-5488. [PMID: 36426372 PMCID: PMC9680990 DOI: 10.2147/ijn.s387386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Titanium (Ti) and its alloys (eg, Ti6Al4V) are exceptional treatments for replacing or repairing bones and damaged surrounding tissues. Although Ti-based implants exhibit excellent osteoconductive performance under healthy conditions, the effectiveness and successful clinical achievements are negatively altered in diabetic patients. Concernedly, diabetes mellitus (DM) contributes to osteoblastic dysfunctionality, altering efficient osseointegration. This work investigates the beneficial osteogenic activity conducted by nanostructured TiO2 under detrimental microenvironment conditions, simulated by human diabetic serum. Methods We evaluated the bone-forming functional properties of osteoblasts on synthesized TiO2 nanotubes (NTs) by anodization and Ti6Al4V non-modified alloy surfaces under detrimental diabetic conditions. To simulate the detrimental environment, MC3T3E-1 preosteoblasts were cultured under human diabetic serum (DS) of two diagnosed and metabolically controlled patients. Normal human serum (HS) was used to mimic health conditions and fetal bovine serum (FBS) as the control culture environment. We characterized the matrix mineralization under the detrimental conditions on the control alloy and the NTs. Moreover, we applied immunofluorescence of osteoblasts differentiation markers on the NTs to understand the bone-expression stimulated by the biochemical medium conditions. Results The diabetic conditions depressed the initial osteoblast growth ability, as evidenced by altered early cell adhesion and reduced proliferation. Nonetheless, after three days, the diabetic damage was suppressed by the NTs, enhancing the osteoblast activity. Therefore, the osteogenic markers of bone formation and the differentiation of osteoblasts were reactivated by the nanoconfigured surfaces. Far more importantly, collagen secretion and bone-matrix mineralization were stimulated and conducted to levels similar to those of the control of FBS conditions, in comparison to the control alloy, which was not able to reach similar levels of bone functionality than the NTs. Conclusion Our study brings knowledge for the potential application of nanostructured biomaterials to work as an integrative platform under the detrimental metabolic status present in diabetic conditions.
Collapse
Affiliation(s)
- Benjamin Valdez-Salas
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Sandra Castillo-Uribe
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Ernesto Beltran-Partida
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
- Correspondence: Ernesto Beltran-Partida, Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal, Mexicali, Baja California, C.P. 21280, México, Email
| | - Mario Curiel-Alvarez
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Oscar Perez-Landeros
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Minerva Guerra-Balcazar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Daniel Gonzalez-Mendoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Olivia Flores-Peñaloza
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| |
Collapse
|
13
|
Lee Y, Huang J, Bing Z, Yuan K, Yang J, Cai M, Zhou S, Yang B, Teng W, Li W, Wang Y. pH-responsive cinnamaldehyde-TiO 2 nanotube coating: fabrication and functions in a simulated diabetes condition. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:63. [PMID: 36065035 PMCID: PMC9444834 DOI: 10.1007/s10856-022-06683-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Current evidence has suggested that diabetes increases the risk of implanting failure, and therefore, appropriate surface modification of dental implants in patients with diabetes is crucial. TiO2 nanotube (TNT) has an osteogenic nanotopography, and its osteogenic properties can be further improved by loading appropriate drugs. Cinnamaldehyde (CIN) has been proven to have osteogenic, anti-inflammatory, and anti-bacterial effects. We fabricated a pH-responsive cinnamaldehyde-TiO2 nanotube coating (TNT-CIN) and hypothesized that this coating will exert osteogenic, anti-inflammatory, and anti-bacterial functions in a simulated diabetes condition. TNT-CIN was constructed by anodic oxidation, hydroxylation, silylation, and Schiff base reaction to bind CIN, and its surface characteristics were determined. Conditions of diabetes and diabetes with a concurrent infection were simulated using 22-mM glucose without and with 1-μg/mL lipopolysaccharide, respectively. The viability and osteogenic differentiation of bone marrow mesenchymal stem cells, polarization and secretion of macrophages, and resistance to Porphyromonas gingivalis and Streptococcus mutans were evaluated. CIN was bound to the TNT surface successfully and released better in low pH condition. TNT-CIN showed better osteogenic and anti-inflammatory effects and superior bacterial resistance than TNT in a simulated diabetes condition. These findings indicated that TNT-CIN is a promising, multifunctional surface coating for patients with diabetes needing dental implants. Graphical abstract.
Collapse
Affiliation(s)
- Yichen Lee
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Jingyan Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Zhaoxia Bing
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Kaiting Yuan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Jinghong Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Min Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Shiqi Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Bo Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Wei Teng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Weichang Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| |
Collapse
|
14
|
Hu W, Yie KHR, Liu C, Zhu J, Huang Z, Zhu B, Zheng D, Yang B, Huang B, Yao L, Liu J, Shen X, Deng Z. Improving the valence self-reversible conversion of cerium nanoparticles on titanium implants by lanthanum doping to enhance ROS elimination and osteogenesis. Dent Mater 2022; 38:1362-1375. [PMID: 35752471 DOI: 10.1016/j.dental.2022.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
Equipped with anti-oxidative properties, cerium oxide nanoparticles (CNPs) are gradually being adopted over the years in the field of oxidative stress research. However, the effects of CNPs may be diminished when under the influence of prolonged and substantially elevated levels of oxidative stress. Therefore, it is imperative to enhance the efficacy of CNPs to resist oxidative stress. In this study, our approach involves the fabrication of titanium surface CNPs coatings doped with different concentrations of lanthanum ions (La3+) and the investigation of their local anti-oxidative stress potential. The physicochemical characterization showed that the La-CNPs groups had a substantial increase in the generation of oxygen vacancies within the CNPs structure with the increase of La doping concentration. In vitro findings proofed that the cytocompatibility of different La-CNPs coatings showed a trend of increasing first and then decreasing with the increase of La doping concentration under oxidative stress microenvironment. Among these groups, the 30 % La-CNPs group presented the best cell proliferation and osteogenic differentiation which could activate the FoxO1 pathway, then upregulated the expression of SOD1 and CAT, and finally resulted in the inhibition of ROS production. In vivo results further confirmed that the 30 % La-CNPs group showed significant osteogenic effects in two rat models (osteoporosis and diabetes models). In conclusion, we believe that the 30 % La-CNPs coating holds promising potential for its implant applications in patients with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Wenjia Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Kendrick Hii Ru Yie
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Chongxing Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinlei Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Huang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingbing Zhu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Dongyang Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Bingqian Yang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Benheng Huang
- School and Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lili Yao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| | - Xinkun Shen
- Science and Education Division, The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), Wenzhou 325016, China.
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
15
|
Liu S, Chen X, Yu M, Li J, Liu J, Xie Z, Gao F, Liu Y. Applications of Titanium Dioxide Nanostructure in Stomatology. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123881. [PMID: 35745007 PMCID: PMC9229536 DOI: 10.3390/molecules27123881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Breakthroughs in the field of nanotechnology, especially in nanochemistry and nanofabrication technologies, have been attracting much attention, and various nanomaterials have recently been developed for biomedical applications. Among these nanomaterials, nanoscale titanium dioxide (nano-TiO2) has been widely valued in stomatology due to the fact of its excellent biocompatibility, antibacterial activity, and photocatalytic activity as well as its potential use for applications such as dental implant surface modification, tissue engineering and regenerative medicine, drug delivery carrier, dental material additives, and oral tumor diagnosis and treatment. However, the biosafety of nano-TiO2 is controversial and has become a key constraint in the development of nano-TiO2 applications in stomatology. Therefore, in this review, we summarize recent research regarding the applications of nano-TiO2 in stomatology, with an emphasis on its performance characteristics in different fields, and evaluations of the biological security of nano-TiO2 applications. In addition, we discuss the challenges, prospects, and future research directions regarding applications of nano-TiO2 in stomatology that are significant and worthy of further exploration.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Xingzhu Chen
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Mingyue Yu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Jinyao Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Zunxuan Xie
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130000, China
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| | - Yuyan Liu
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun 130000, China; (S.L.); (X.C.); (M.Y.); (J.L.); (J.L.); (Z.X.)
- Correspondence: (F.G.); (Y.L.); Tel.: +86-13756189633 (F.G.); +86-13756466950 (Y.L.)
| |
Collapse
|
16
|
A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections. Mater Today Bio 2022; 15:100330. [PMID: 35789634 PMCID: PMC9250043 DOI: 10.1016/j.mtbio.2022.100330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/08/2023] Open
Abstract
In clinical work, the main challenges for titanium (Ti) implantation are bacterial infection and aseptic loosening, which severely affect the survival rate of implants. The first 4 weeks post-operation is the infection peak phase of implants. Inhibiting implant infection caused by bacteria adhesion and proliferation during the early phase as well as promoting subsequent osteointegration is essential for implant success. Herein, we constructed a quaternary ammonium carboxymethyl chitosan (QCMC), collagen (COL Ⅰ) and hydroxyapatite (HAP) multilayers coating on Ti substrates via a modified layer-by-layer (LBL) technique and polymerization of dopamine. The QCMC/COL/HAP coating exhibited a multi-antibacterial property with a two-phase function: (1) At the first 4 weeks post-operation, the covalently bonded QCMC could be slowly degraded and demonstrated both contact-killing and release-killing properties during the infection peak phase; (2) At the second phase, osteogenesis and osseointegration-promotion capabilities were enhanced by HAP under the effective control of infection. The multifilm coating was degraded for more than 45 days under the action of collagenase Ⅰ, and displayed good biocompatibility in vivo and in vitro. Most importantly, the coating exhibited a long-lasting antibacterial activity for more than 3 months, against the main pathogenic bacteria of peri-implant infections. Both in vitro studies and in vivo animal models revealed a desirable osteogenic differentiation capacity of Ti-CCH. Therefore, our study reports a two-phase, long-lasting multi-antibacterial coating on Ti-CCH and indicates potential applications of the modified LBL strategy in orthopaedic fields, which is enlightening for developing practical implant and scaffold materials. Developing a QCMC/COL/HAP multifilm coating via modified layer-by-layer technique and self-polymerization of dopamine. The QCMC/COL/HAP coating exhibited desirable mechanical properties and excellent biocompatibility. The release kinetics endowed the QCMC/COL/HAP coating with multi-antibacterial activity at the first phase after operation. The QCMC/COL/HAP coating could improve osseointegration at the second phase of post-operation.
Collapse
|
17
|
Abdulhameed EA, Al-Rawi NH, Omar M, Khalifa N, Samsudin AR. Titanium dioxide dental implants surfaces related oxidative stress in bone remodeling: a systematic review. PeerJ 2022; 10:e12951. [PMID: 35261818 PMCID: PMC8898546 DOI: 10.7717/peerj.12951] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
Background Titanium dioxide dental implants have a controversial effect on reactive oxygen species (ROS) production. ROS is necessary for cellular signal transmission and proper metabolism, but also has the ability to cause cell death as well as DNA, RNA, and proteins damage by excessive oxidative stress. This study aimed to systematically review the effect of titanium dioxide dental implant-induced oxidative stress and its role on the osteogenesis-angiogenesis coupling in bone remodeling. Methods This systematic review was performed conforming to preferred reporting items for systematic review and meta-analysis (PRISMA) model. Four different databases (PubMed, Science Direct, Scopus and Medline databases) as well as manual searching were adopted. Relevant studies from January 2000 till September 2021 were retrieved. Critical Appraisal Skills Programme (CASP) was used to assess the quality of the selected studies. Results Out of 755 articles, only 14 which met the eligibility criteria were included. Six studies found that titanium dioxide nanotube (TNT) reduced oxidative stress and promoted osteoblastic activity through its effect on Wnt, mitogen-activated protein kinase (MAPK) and forkhead box protein O1 (FoxO1) signaling pathways. On the other hand, three studies confirmed that titanium dioxide nanoparticles (TiO2NPs) induce oxidative stress, reduce ostegenesis and impair antioxidant defense system as a significant negative correlation was found between decreased SIR3 protein level and increased superoxide (O2 •-). Moreover, five studies proved that titanium implant alloy enhances the generation of ROS and induces cytotoxicity of osteoblast cells via its effect on NOX pathway. Conclusion TiO2NPs stimulate a wide array of oxidative stress related pathways. Scientific evidence are in favor to support the use of TiO2 nanotube-coated titanium implants to reduce oxidative stress and promote osteogenesis in bone remodeling. To validate the cellular and molecular cross talk in bone remodeling of the present review, well-controlled clinical trials with a large sample size are required.
Collapse
Affiliation(s)
- Elaf Akram Abdulhameed
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia,Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Natheer H. Al-Rawi
- Oral and Craniofacial Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Marzuki Omar
- School of Dental Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nadia Khalifa
- Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - A.B. Rani Samsudin
- Oral and Craniofacial Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
18
|
Li Y, He Y, Chen G, Huang Z, Yi C, Zhang X, Deng F, Yu D. Selenomethionine protects oxidative-stress-damaged bone-marrow-derived mesenchymal stem cells via an antioxidant effect and the PTEN/PI3K/AKT pathway. Exp Cell Res 2021; 408:112864. [PMID: 34626586 DOI: 10.1016/j.yexcr.2021.112864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Dental implant surgery is currently a routine therapy for the repair of missing dentition or dentition defects. Both clinical and basic research have elucidated that oxidative stress caused by the accumulation of reactive oxygen species (ROS) for various reasons impairs the process of osteointegration after dental implantation. Therefore, the osteogenic micro-environment must be ameliorated to decrease the damage caused by oxidative stress. Selenomethionine (SEMET) has been reported to play an important role in alleviating oxidative stress and accelerating cell viability and growth. However, it remains unclear whether it exerts protective effects on bone-marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress. In this study, we explored the influence of selenomethionine on the viability and osteogenic differentiation of BMSCs under oxidative stress and the underlying mechanisms. Results showed that 1 μM selenomethionine was the optimum concentration for BMSCs under H2O2 stimulation. H2O2-induced oxidative stress suppressed the viability and osteogenic differentiation of BMSCs, manifested by the increases in ROS production and cell apoptosis rates, and by the decrease of osteogenic differentiation-related markers. Notably, the aforementioned oxidative damage and osteogenic dysfunction induced by H2O2 were rescued by selenomethionine. Furthermore, we found that the PTEN expression level was suppressed and its downstream PI3K/AKT pathway was activated by selenomethionine. However, when PTEN was stimulated, the PI3K/AKT pathway was down-regulated, and the protective effects of selenomethionine on BMSC osteogenic differentiation diminished, while the inhibition of PTEN up-regulated the protective effects of selenomethionine. Together, these results revealed that selenomethionine could attenuate H2O2-induced BMSC dysfunction through an antioxidant effect, modulated via the PTEN/PI3K/AKT pathway, suggesting that selenomethionine is a promising antioxidant candidate for reducing oxidative stress during the process of dental implant osteointegration.
Collapse
Affiliation(s)
- Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| |
Collapse
|
19
|
Vijay R, Mendhi J, Prasad K, Xiao Y, MacLeod J, Ostrikov K(K, Zhou Y. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2977. [PMID: 34835740 PMCID: PMC8625459 DOI: 10.3390/nano11112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Dental implants are used broadly in dental clinics as the most natural-looking restoration option for replacing missing or highly diseased teeth. However, dental implant failure is a crucial issue for diabetic patients in need of dentition restoration, particularly when a lack of osseointegration and immunoregulatory incompetency occur during the healing phase, resulting in infection and fibrous encapsulation. Bio-inspired or biomimetic materials, which can mimic the characteristics of natural elements, are being investigated for use in the implant industry. This review discusses different biomimetic dental implants in terms of structural changes that enable antibacterial properties, drug delivery, immunomodulation, and osseointegration. We subsequently summarize the modification of dental implants for diabetes patients utilizing carbon nanomaterials, which have been recently found to improve the characteristics of biomimetic dental implants, including through antibacterial and anti-inflammatory capabilities, and by offering drug delivery properties that are essential for the success of dental implants.
Collapse
Affiliation(s)
- Renjini Vijay
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Jayanti Mendhi
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Karthika Prasad
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2600, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya (Ken) Ostrikov
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
20
|
Gulati K, Zhang Y, Di P, Liu Y, Ivanovski S. Research to Clinics: Clinical Translation Considerations for Anodized Nano-Engineered Titanium Implants. ACS Biomater Sci Eng 2021; 8:4077-4091. [PMID: 34313123 DOI: 10.1021/acsbiomaterials.1c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Titania nanotubes (TNTs) fabricated on titanium orthopedic and dental implants have shown significant potential in "proof of concept" in vitro, ex vivo, and short-term in vivo studies. However, most studies do not focus on a clear direction for future research towards clinical translation, and there exists a knowledge gap in identifying key research challenges that must be addressed to progress to the clinical setting. This review focuses on such challenges with respect to anodized titanium implants modified with TNTs, including optimized fabrication on clinically utilized microrough surfaces, clinically relevant bioactivity assessments, and controlled/tailored local release of therapeutics. Further, long-term in vivo investigations in compromised animal models under loading conditions are needed. We also discuss and detail challenges and progress related to the mechanical stability of TNT-based implants, corrosion resistance/electrochemical stability, optimized cleaning/sterilization, packaging/aging, and nanotoxicity concerns. This extensive, clinical translation focused review of TNTs modified Ti implants aims to foster improved understanding of key research gaps and advances, informing future research in this domain.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| | - Yifan Zhang
- Department of Oral Implantology, Peking University School and Hospital of Stomatology and National Clinical Research Centre for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Ping Di
- Department of Oral Implantology, Peking University School and Hospital of Stomatology and National Clinical Research Centre for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Herston, Queensland 4006, Australia
| |
Collapse
|
21
|
Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, Cheng B, Wang Y. Bioadaptation of implants to In vitro and In vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater 2021; 6:3164-3176. [PMID: 33778196 PMCID: PMC7970012 DOI: 10.1016/j.bioactmat.2021.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Varieties of pathological conditions, including diabetes, are closely related to oxidative stress (OS), but the osseointegration or bioadaptation of implants to OS and the related mechanism remain poorly explored. In this study, the antioxidation and osteoimmune regeneration of titanium implants with micro/nanotopographies were evaluated under H2O2-, lipopolysaccharide (LPS)- and hyperglycemia-mediated cellular OS models and in diabetic rats as a representative animal model of OS. TiO2 nanotube (TNT) coating on titanium implants directly induced superior osteogenic differentiation of bone mesenchymal stem cells (MSCs) and osseointegration compared with microscale sand blasted-acid etched topography (SLA) under OS, attributed to higher superoxide dismutase 2 activity, the neutralization of intracellular reactive oxygen species (ROS), and less apoptosis. Mechanistically, the oxidation resistance on TNT is driven by upregulated forkhead box transcription factor O1 (FoxO1), which is abolished after knockdown of FoxO1 via shRNA in MSCs. Indirectly, TNT also alleviates OS in macrophages, therefore inducing a higher portion of the M2 phenotype under OS with increased secretion of the anti-inflammatory cytokine IL-10, further promoting the osseoimmunity capacity compared with SLA. The current study not only suggests the potential application of TiO2 nanotube-coated titanium implants in compromised conditions but also provides a systematic evaluation strategy for the future development of bone biomaterials. H2O2, lipopolysaccharide and hyperglycemia induced cellular oxidative stress models. TiO2 nanotubes promote oxidation resistance and osteogenesis under oxidative stress. TiO2 nanotubes activate forkhead box transcription factor O1 to enhance osteogenesis. TiO2-nanotube-coated implants promote osseointegration in diabetic rats. TiO2 nanotubes induce anti-inflammatory osteoimmunity under oxidative stress.
Collapse
Affiliation(s)
- Jingyan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Ruoqi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Jinghong Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Yichen Lee
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Anxun Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China
| |
Collapse
|
22
|
Yu M, Wan Y, Ren B, Wang H, Zhang X, Qiu C, Liu A, Liu Z. 3D Printed Ti-6Al-4V Implant with a Micro/Nanostructured Surface and Its Cellular Responses. ACS OMEGA 2020; 5:31738-31743. [PMID: 33344827 PMCID: PMC7745418 DOI: 10.1021/acsomega.0c04373] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) printing technology has been proved to be a powerful tool for the free-form fabrication of titanium (Ti) implants. However, the surface quality of 3D printed Ti implants is not suitable for clinical application directly. Therefore, surface modification of 3D printed Ti implants is required in order to achieve good biocompatibility and osseointegration. In this study, a novel surface modification method of 3D printed Ti-6Al-4V implants has been proposed, which combined acid etching with hydrothermal treatment to construct micro/nanostructures. Polished TC4 sheets (P), electron beam melting Ti sheets (AE), and micro/nanostructured Ti sheets (AMH) were used in this study to evaluate the effects of different surface morphologies on cellular responses. The surface morphology and 3D topography after treatment were detected via scanning electron microscopy and laser scanning microscopy. The results illustrated that a hierarchical structure comprising micro-valleys and nanowires with a surface roughness of 14.388 μm was successfully constructed. Compared with group P samples, the hydrophilicity of group AMH samples significantly increased with a reduced water contact angle from 54.9° to 4.5°. Cell culture experiments indicated that the micro/nanostructures on the material surface could enhance the cell adhesion and proliferation of MC3T3s. The microstructure could enhance bone-to-implant contact, and the nanostructure could directly interact with some cell membrane receptors. Overall, this study proposes a new strategy to construct micro/nanostructures on the surface of 3D printed Ti-6Al-4V implants and may further serve as a potential modification method for better osteogenesis ability.
Collapse
Affiliation(s)
- Mingzhi Yu
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Yi Wan
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Bing Ren
- Department
of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Hongwei Wang
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Xiao Zhang
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Cheng Qiu
- Cheeloo
College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Anqi Liu
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| | - Zhanqiang Liu
- Key
Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical
Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|