1
|
Omidian H, Wilson RL. PLGA Implants for Controlled Drug Delivery and Regenerative Medicine: Advances, Challenges, and Clinical Potential. Pharmaceuticals (Basel) 2025; 18:631. [PMID: 40430452 PMCID: PMC12114454 DOI: 10.3390/ph18050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Poly(lactide-co-glycolide) (PLGA) implants have become a cornerstone in drug delivery and regenerative medicine due to their biocompatibility, tunable degradation, and capacity for sustained, localized therapeutic release. Recent innovations in polymer design, fabrication methods, and functional modifications have expanded their utility across diverse clinical domains, including oncology, neurology, orthopedics, and ophthalmology. This review provides a comprehensive analysis of PLGA implant properties, fabrication strategies, and biomedical applications, while addressing key challenges such as burst release, incomplete drug release, manufacturing complexity, and inflammatory responses. Emerging solutions-such as 3D printing, in situ forming systems, predictive modeling, and patient-specific customization-are improving implant performance and clinical translation. Emphasis is placed on scalable production, long-term biocompatibility, and personalized design to support the next generation of precision therapeutics.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
2
|
Baek EJ, Nguyen HD, Ngo HV, Gil MC, Lee BJ. Long-term controlled release with reduced initial burst release utilizing calcium ion-triggering nanoaggregates of pasireotide-loaded fattigated albumin nanoparticles. Int J Pharm 2025; 673:125401. [PMID: 40010529 DOI: 10.1016/j.ijpharm.2025.125401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The aim of this study was to investigate the long-term controlled release of peptide-loaded fattigated albumin nanoparticles via calcium ion-triggering nanoaggregation with minimal initial burst release. Fattigated albumin nanoparticles were prepared via sonication by the self-assembly of human serum albumin (HSA)-oleic acid conjugates (AOC) with three different substitution ratios of oleic acid (OA) to modulate hydrophobicity. Then, pasireotide pamoate (PAS) as a model peptide was encapsulated into the hydrophobic core of HSA-OA nanoparticles (PAS-AONs). The critical micelle concentration of AOC decreased as OA substitution ratio increased. The loading efficiency of PAS increased owing to the strong hydrophobic-hydrophobic interactions between PAS and the hydrophobic block in the AONs. The release rate was also delayed, whereas the initial burst release was minimized, as the hydrophobicity of AOC increased. Interestingly, calcium ions triggered the formation of nanoaggregates of negatively charged PAS-AONs via electrostatic interactions, resulting in a further decrease in the release rate for one month via a reduced surface area while minimizing the initial burst release in a calcium ion concentration-dependent manner. The modulation of OA substitutions and calcium ion concentration of AONs could provide the potential for long-term delivery of peptide drugs while minimizing the initial huge burst release and controlling the release rate.
Collapse
Affiliation(s)
- Eun Jin Baek
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hy Dinh Nguyen
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hai Van Ngo
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | | | - Beom-Jin Lee
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
3
|
Eltabeeb MA, Abdellatif MM, El-Nabarawi MA, Teaima MH, A Hamed MI, Darwish KM, Hassan M, Hamdan AME, Hamed RR. Chitosan decorated oleosomes loaded propranolol hydrochloride hydrogel repurposed for Candida albicans-vaginal infection. Nanomedicine (Lond) 2024; 19:1369-1388. [PMID: 38900630 PMCID: PMC11318686 DOI: 10.1080/17435889.2024.2359364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024] Open
Abstract
Aim: Our investigation aims to estimate the antifungal effect of propranolol hydrochloride (PNL). Methods: Oleosomes (OLs) were fabricated by thin-film hydration and evaluated for entrapment efficiency (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and amount of drug released after 6 h Q6h (%). Results: The optimal OL showed a rounded shape with optimum characteristics. The ex-vivo permeation and confocal laser scanning microscopy verified the prolonged release and well deposition of PNL-loaded OLs-gel. The in-silico assessment demonstrated the good stability of PNL with OLs' ingredients. In vivo evaluations for PNL-loaded OLs-gel showed a good antifungal impact against Candida albicans with good safety. Conclusion: This work highlights the potential of PNL-loaded OLs-gel as a potential treatment for candida vaginal infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mohammed I A Hamed
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
| | - Ahmed ME Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, 74191, Saudi Arabia
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science & Technology, Giza, Egypt
| |
Collapse
|
4
|
Gomaa E, Eissa NG, Ibrahim TM, El-Bassossy HM, El-Nahas HM, Ayoub MM. Development of depot PLGA-based in-situ implant of Linagliptin: Sustained release and glycemic control. Saudi Pharm J 2023; 31:499-509. [PMID: 37063437 PMCID: PMC10102447 DOI: 10.1016/j.jsps.2023.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
High percentage of diabetic people are diagnosed as type 2 who require daily dosing of an antidiabetic drug such as Linagliptin (Lina) to manage their blood glucose levels. This study aimed to develop injectable Lina-loaded biodegradable poly (lactic-co-glycolic acid) (PLGA) in-situ implants (ISIs) to deliver a desired burst effect of Lina followed by a sustained release over several days for controlling the blood glucose levels over prolonged time periods. The morphological, pharmacokinetic, and pharmacodynamic assessments of the Lina-loaded ISIs were performed. Scanning electron microscopy (SEM) study revealed the rapid exchange between the water miscible solvent (N-methyl-2-pyrrolidone; NMP) and water during the ISI preparation, hence enhancing the initial burst Lina release. While, triacetin of lower water affinity could lead to formation of more compact and dense ISI structure with slower drug release. By comparing various ISI formulations containing different solvents and different PLGA concentrations, the ISI containing 40 % PLGA and triacetin was selected for its sustained release of Lina (93.06 ± 1.50 %) after 21 days. The pharmacokinetic results showed prolonged half life (t1/2) and higher area under the curve (AUC) values of the selected Lina-loaded ISI when compared to those of oral Lina preparation. The single Lina-ISI injection produced a hypoglycemic control in the diabetic rats very similar to the daily oral administration of Lina after 7 and 14 days. In conclusion, PLGA-based ISIs confirmed their suitability for prolonging Lina release in patients receiving long-term antidiabetic therapy, thereby achieving more enhanced patient compliance and reduced dosing frequency.
Collapse
Affiliation(s)
- Eman Gomaa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Noura G. Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Hanan M. El-Nahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Margrit M. Ayoub
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
5
|
Investigation of Alogliptin-Loaded In Situ Gel Implants by 23 Factorial Design with Glycemic Assessment in Rats. Pharmaceutics 2022; 14:pharmaceutics14091867. [PMID: 36145615 PMCID: PMC9501034 DOI: 10.3390/pharmaceutics14091867] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to design injectable long-acting poly (lactide-co-glycolide) (PLGA)-based in situ gel implants (ISGI) loaded with the anti-diabetic alogliptin. Providing sustained therapeutic exposures and improving the pharmacological responses of alogliptin were targeted for achieving reduced dosing frequency and enhanced treatment outputs. In the preliminary study, physicochemical characteristics of different solvents utilized in ISGI preparation were studied to select a proper solvent possessing satisfactory solubilization capacity, viscosity, water miscibility, and affinity to PLGA. Further, an optimization technique using a 23 factorial design was followed. The blood glucose levels of diabetic rats after a single injection with the optimized formulation were compared with those who received daily oral alogliptin. N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO), as highly water-miscible and low viscous solvents, demonstrated their effectiveness in successful ISGI preparation and controlling the burst alogliptin release. The impact of increasing lactide concentration and PLGA amount on reducing the burst and cumulative alogliptin release was represented. The optimized formulation comprising 312.5 mg of PLGA (65:35) and DMSO manifested a remarkable decrease in the rats’ blood glucose levels throughout the study period in comparison to that of oral alogliptin solution. Meanwhile, long-acting alogliptin-loaded ISGI systems demonstrated their feasibility for treating type 2 diabetes with frequent dosage reduction and patient compliance enhancement.
Collapse
|
6
|
Zhang Y, Cheng H, Chen H, Xu P, Ren E, Jiang Y, Li D, Gao X, Zheng Y, He P, Lin H, Chen B, Lin G, Chen A, Chu C, Mao J, Liu G. A pure nanoICG-based homogeneous lipiodol formulation: toward precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. Eur J Nucl Med Mol Imaging 2022; 49:2605-2617. [PMID: 34939176 DOI: 10.1007/s00259-021-05654-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To surmount the critical issues of indocyanine green (ICG), and thus achieving a precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. METHODS In this study, a facile and green pure-nanomedicine formulation technology is developed to construct carrier-free indocyanine green nanoparticles (nanoICG), and which subsequently dispersed into lipiodol via a super-stable homogeneous lipiodol formulation technology (SHIFT nanoICG) for transcatheter arterial embolization combined near-infrared fluorescence-guided precise hepatectomy. RESULTS SHIFT nanoICG integrates excellent anti-photobleaching capacity, great optical imaging property, and specific tumoral deposition to recognize tumor regions, featuring entire-process enduring fluorescent-guided precise hepatectomy, especially in resection of the indiscoverable satellite lesions (0.6 mm × 0.4 mm) in rabbit bearing VX2 orthotopic hepatocellular carcinoma models. CONCLUSION Such a simple and effective strategy provides a promising avenue to address the clinical issue of clinical hepatectomy and has excellent potential for a translational pipeline.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Peiyao Xu
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yonghe Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xing Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yating Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Biaoqi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Aizheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- Amoy Hopeful Biotechnology Co., Ltd, Xiamen, 361027, China.
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|