1
|
Yu J, Hu JR, Tian Y, Lei YM, Hu HM, Lei BS, Zhang G, Sun Y, Ye HR. Nanosensitizer-assisted sonodynamic therapy for breast cancer. J Nanobiotechnology 2025; 23:281. [PMID: 40197318 PMCID: PMC11978163 DOI: 10.1186/s12951-025-03311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025] Open
Abstract
Breast cancer is the most commonly diagnosed cancer worldwide. Despite advancements in therapeutic modalities, its prognosis remains poor owing to complex clinical, pathological, and molecular characteristics. Sonodynamic therapy (SDT) is a promising approach for tumor elimination, using sonosensitizers that preferentially accumulate in tumor tissues and are activated by low-intensity ultrasound to produce reactive oxygen species. However, the clinical translation of SDT faces challenges, including the limited efficiency of sonosensitizers and resistance posed by the tumor microenvironment. The emergence of nanomedicine offers innovative strategies to address these obstacles. This review discusses strategies for enhancing the efficacy of SDT using sonosensitizers, including rational structural modifications, improved tumor-targeted enrichment, tumor microenvironment remodeling, and imaging-guided therapy. Additionally, SDT-based multimodal therapies, such as sono-chemotherapy, sono-immunotherapy, and sono-photodynamic therapy, and their potential applications in breast cancer treatment are summarized. The underlying mechanisms of SDT in breast cancer are briefly outlined. Finally, this review highlights current challenges and prospects for the clinical translation of SDT, providing insights into future advancements that may improve therapeutic outcomes for breast cancer.
Collapse
Affiliation(s)
- Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Jun-Rui Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yi Tian
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Bing-Song Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| | - Yao Sun
- National Key Laboratory of Green Pesticides, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, 430080, China.
| |
Collapse
|
2
|
Cheng R, Xie T, Ma W, Deng P, Liu C, Hong Y, Liu C, Tian J, Xu Y. Application of polydopamine-modified triphasic PLA/PCL-PLGA/Mg(OH) 2-velvet antler polypeptides scaffold loaded with fibrocartilage stem cells for the repair of osteochondral defects. Front Bioeng Biotechnol 2024; 12:1460623. [PMID: 39372430 PMCID: PMC11450761 DOI: 10.3389/fbioe.2024.1460623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Articular cartilage defects often involve damage to both the cartilage and subchondral bone, requiring a scaffold that can meet the unique needs of each tissue type and establish an effective barrier between the bone and cartilage. In this study, we used 3D printing technology to fabricate a tri-phasic scaffold composed of PLA/PCL-PLGA/Mg(OH)₂, which includes a cartilage layer, an osteochondral interface, and a bone layer. The scaffold was filled with Velvet antler polypeptides (VAP), and its characterization was assessed using compression testing, XRD, FTIR, SEM, fluorescence microscopy, and EDS. In vitro investigation demonstrated that the scaffold not only supported osteogenesis but also promoted chondrogenic differentiation of fibrocartilage stem cells (FCSCs). n vivo experiments showed that the tri-phasic PLA/PCL-PLGA/Mg(OH)2-VAP scaffold together with FCSC, when transplanted to animal models, increased the recovery of osteochondral defects. Those results demonstrate the promising future of illustrated tri-phasic PLA/PCL-PLGA/Mg(OH)2-VAP scaffold loaded with FCSCs as a new bone and cartilage tissue engineering approach for osteochondral defects treatment.
Collapse
Affiliation(s)
- Renyi Cheng
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Tao Xie
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Wen Ma
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peishen Deng
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Chaofeng Liu
- Yunnan Key Laboratory of Stomatology, Kunming, China
- Second Clinic, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuchen Hong
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Changyu Liu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jinjun Tian
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yanhua Xu
- Department of Orthodontics, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Stomatology, Kunming, China
| |
Collapse
|
3
|
Ma S, Zhao H, Zhang H, Li L, Geng J, Yu Q, Zhang C, Diao H, Li S, Liu W, Wu Z. Novel 131-iodine labeled and ultrasound-responsive nitric oxide and reactive oxygen species controlled released nanoplatform for synergistic sonodynamic/nitric oxide/chemodynamic/radionuclide therapy. Bioorg Chem 2024; 150:107593. [PMID: 38971093 DOI: 10.1016/j.bioorg.2024.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) embody excellent potential in cancer therapy. However, as a small molecule, their targeted delivery and precise, controllable release are urgently needed to achieve accurate cancer therapy. In this paper, a novel US-responsive bifunctional molecule (SD) and hyaluronic acid-modified MnO2 nanocarrier was developed, and a US-responsive NO and ROS controlled released nanoplatform was constructed. US can trigger SD to release ROS and NO simultaneously at the tumor site. Thus, SD served as acoustic sensitizer for sonodynamic therapy and NO donor for gas therapy. In the tumor microenvironment, the MnO2 nanocarrier can effectively deplete the highly expressed GSH, and the released Mn2+ can make H2O2 to produce .OH by Fenton-like reaction, which exhibited a strong chemodynamic effect. The high concentration of ROS and NO in cancer cell can induce cancer cell apoptosis ultimately. In addition, toxic ONOO-, which was generated by the reaction of NO and ROS, can effectively cause mitochondrial dysfunction, which induced the apoptosis of tumor cells. The 131I was labeled on the nanoplatform, which exhibited internal radiation therapy for tumor therapy. In -vitro and -vivo experiments showed that the nanoplatform has enhanced biocompatibility, and efficient anti-tumor potential, and it achieves synergistic sonodynamic/NO/chemodynamic/radionuclide therapy for cancer.
Collapse
Affiliation(s)
- Sufang Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Huanhuan Zhao
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Huaiping Zhang
- College of Pharmacy, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Leyan Li
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Jiamei Geng
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Qiang Yu
- Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Chengwu Zhang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Haipeng Diao
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Wen Liu
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
4
|
Duan Q, Li H, Xue J, Zhang Q, Gao J, Wang X, Zhang Q, Guo X, Guo L, Li P, Wang X, Sang S, Xi Y. Effective Combination of Targeted Therapies with Sonodynamic Treatment for Use in Exploring Differences in Therapeutic Efficacy across Organelle Targets. Mol Pharm 2024; 21:760-769. [PMID: 38175712 DOI: 10.1021/acs.molpharmaceut.3c00899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Acoustic kinetic therapy systems that target specific organelles can improve the precision of a sonosensitizer, which is a perfect combination of targeted therapy and sonodynamic therapy (SDT) and plays an important role in current acoustic kinetic therapy. In this study, we loaded PpIX, a sonosensitizer, on targeted-functional carbon dots (CDs) via an amide reaction and then generated the mitochondria-targeted system (Mit-CDs-PpIX) and nucleus-targeted system (Nuc-CDs-PpIX), respectively, to deliver the sonosensitizer. Both systems exhibited minimal cytotoxicity in the absence of ultrasound stimulation. The efficacy of the targeted SDT systems was investigated using methylthiazol tetrazolium (MTT) assays, live/dead staining, flow cytometry, etc. Compared with the free PpIX and mitochondria-targeted system, the nucleus-targeted system is more potent in killing effect under ultrasound stimulation and induces apoptosis with higher intensity. To achieve the equal killing effect, the effective concentration of Nuc-CDs-PpIX is just one third of that of Mit-CDs-PpIX.
Collapse
Affiliation(s)
- Qianqian Duan
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Huaqian Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Juanjuan Xue
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qi Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jing Gao
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaoyuan Wang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Qiang Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xing Guo
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Li Guo
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Pengcui Li
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Xiaojuan Wang
- Department of Gynecology, Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yanfeng Xi
- Department of Gynecology, Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, Shanxi China
| |
Collapse
|
5
|
Chang M, Zhang L, Wang Z, Chen L, Dong Y, Yang J, Chen Y. Nanomedicine/materdicine-enabled sonocatalytic therapy. Adv Drug Deliv Rev 2024; 205:115160. [PMID: 38110153 DOI: 10.1016/j.addr.2023.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The advent of numerous treatment modalities with desirable therapeutic efficacy has been made possible by the fast development of nanomedicine and materdicine, among which the ultrasound (US)-triggered sonocatalytic process as minimal or non-invasive method has been frequently employed for diagnostic and therapeutic purposes. In comparison to phototherapeutic approaches with inherent penetration depth limitations, sonocatalytic therapy shatters the depth limit of photoactivation and offers numerous remarkable prospects and advantages, including mitigated side effects and appropriate tissue-penetration depth. Nevertheless, the optimization of sonosensitizers and therapies remains a significant issue in terms of precision, intelligence and efficiency. In light of the fact that nanomedicine and materdicine can effectively enhance the theranostic efficiency, we herein aim to furnish a cutting-edge review on the latest progress and development of nanomedicine/materdicine-enabled sonocatalytic therapy. The design methodologies and biological features of nanomedicine/materdicine-based sonosensitizers are initially introduced to reveal the underlying relationship between composition/structure, sonocatalytic function and biological effect, in accompany with a thorough discussion of nanomedicine/materdicine-enabled synergistic therapy. Ultimately, the facing challenges and future perspectives of this intriguing sonocatalytic therapy are highlighted and outlined to promote technological advancements and clinical translation in efficient disease treatment.
Collapse
Affiliation(s)
- Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Lu Zhang
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Hebei University, Baoding 071000, PR China
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yang Dong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Jishun Yang
- Naval Medical Center of PLA, Medical Security Center, Shanghai 200052, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Qiao X, Liang J, Qiu L, Feng W, Cheng G, Chen Y, Ding H. Ultrasound-activated nanosonosensitizer for oxygen/sulfate dual-radical nanotherapy. Biomaterials 2023; 301:122252. [PMID: 37542858 DOI: 10.1016/j.biomaterials.2023.122252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
An all-in-one therapy for cooperatively fighting cancer, infection and boosting wound repair is exceedingly demanded for patients with advanced superficial cancers or after surgical intervention to avoid multiple drug abuse and resultant adverse effects. Here, the ultrasound-activated nanosonosensitizer PHMP that integrated peroxymonosulfate (PMS) into the Pd-catalyzed hydrogenated mesoporous titanium dioxide (PHM) was dexterously designed for combined therapy of cancer and infected wound based on oxygen/sulfate dual-radical nanotherapy. Firstly, the PHM with single crystal structure and abundant oxygen deficiencies exhibited excellent ultrasound-excited reactive oxygen species (ROS) production for enhanced sonodynamic therapy (SDT) under the support of Pd nanozyme-mediated O2 supply. Simultaneously, the physically targeted ultrasound irradiation effectively transformed PMS loaded in the hollow cavities into distinct sulfate radical (•SO4-) with longer half-life and stronger oxidation, which remarkably enhanced the therapeutic efficacy of PHM-mediated SDT for cancer and bacteria. In addition, by embedding PHMP into the hydrogel, the enrichment of PHMP in the focal site was guaranteed, and meanwhile a moist and ventilated environment was created to speed up wound repair. The study broadens the potential of •SO4- in the therapeutic fields and contributes a simple and appealing tactic for the comprehensive treatment of cancer, infection and wound repair.
Collapse
Affiliation(s)
- Xiaohui Qiao
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Jing Liang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Luping Qiu
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Guangwen Cheng
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
7
|
Zhou R, Chang M, Shen M, Cong Y, Chen Y, Wang Y. Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301764. [PMID: 37395421 PMCID: PMC10477905 DOI: 10.1002/advs.202301764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.
Collapse
Affiliation(s)
- Ruirui Zhou
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Mengjun Shen
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yang Cong
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yin Wang
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
8
|
Shen J, Chen G, Zhao L, Huang G, Liu H, Liu B, Miao Y, Li Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv Healthc Mater 2023; 12:e2300089. [PMID: 37055912 DOI: 10.1002/adhm.202300089] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Hypoxia is a typical feature of most solid tumors and has important effects on tumor cells' proliferation, invasion, and metastasis. This is the key factor that leads to poor efficacy of different kinds of therapy including chemotherapy, radiotherapy, photodynamic therapy, etc. In recent years, the construction of hypoxia-relieving functional nanoplatforms through nanotechnology has become a new strategy to reverse the current situation of tumor microenvironment hypoxia and improve the effectiveness of tumor treatment. Here, the main strategies and recent progress in constructing nanoplatforms are focused on to directly carry oxygen, generate oxygen in situ, inhibit mitochondrial respiration, and enhance blood perfusion to alleviate tumor hypoxia. The advantages and disadvantages of these nanoplatforms are compared. Meanwhile, nanoplatforms based on organic and inorganic substances are also summarized and classified. Through the comprehensive overview, it is hoped that the summary of these nanoplatforms for alleviating hypoxia could provide new enlightenment and prospects for the construction of nanomaterials in this field.
Collapse
Affiliation(s)
- Jing Shen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guobo Chen
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Linghao Zhao
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Hui Liu
- Shanghai Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
9
|
Misra SK, Rosenholm JM, Pathak K. Functionalized and Nonfunctionalized Nanosystems for Mitochondrial Drug Delivery with Metallic Nanoparticles. Molecules 2023; 28:4701. [PMID: 37375256 DOI: 10.3390/molecules28124701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The application of metallic nanoparticles as a novel therapeutic tool has significant potential to facilitate the treatment and diagnosis of mitochondria-based disorders. Recently, subcellular mitochondria have been trialed to cure pathologies that depend on their dysfunction. Nanoparticles made from metals and their oxides (including gold, iron, silver, platinum, zinc oxide, and titanium dioxide) have unique modi operandi that can competently rectify mitochondrial disorders. Materials: This review presents insight into the recent research reports on exposure to a myriad of metallic nanoparticles that can alter the dynamic ultrastructure of mitochondria (via altering metabolic homeostasis), as well as pause ATP production, and trigger oxidative stress. The facts and figures have been compiled from more than a hundred PubMed, Web of Science, and Scopus indexed articles that describe the essential functions of mitochondria for the management of human diseases. Result: Nanoengineered metals and their oxide nanoparticles are targeted at the mitochondrial architecture that partakes in the management of a myriad of health issues, including different cancers. These nanosystems not only act as antioxidants but are also fabricated for the delivery of chemotherapeutic agents. However, the biocompatibility, safety, and efficacy of using metal nanoparticles is contested among researchers, which will be discussed further in this review.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, CSJM University Kanpur, Kanpur 208024, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, BioCity (3rd Floor), Tykistökatu, 6A, 20520 Turku, Finland
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah 206130, India
| |
Collapse
|
10
|
Kurhaluk N. The Effectiveness of L-arginine in Clinical Conditions Associated with Hypoxia. Int J Mol Sci 2023; 24:ijms24098205. [PMID: 37175912 PMCID: PMC10179183 DOI: 10.3390/ijms24098205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The review summarises the data of the last 50 years on the effectiveness of the amino acid L-arginine in therapeutic practice in conditions accompanied by different-origin hypoxia. The aim of this review was to analyse the literature and our research data on the role of nitric oxide in the modulation of individual physiological reactivity to hypoxia. The review considers the possibility of eliminating methodological conflicts in the case of L-arginine, which can be solved by taking into account individual physiological reactivity (or the hypoxia resistance factor). Considerable attention is paid to genetic and epigenetic mechanisms of adaptation to hypoxia and conditions of adaptation in different models. The article presents data on the clinical effectiveness of L-arginine in cardiovascular system diseases (hypertension, atherosclerosis, coronary heart disease, etc.) and stress disorders associated with these diseases. The review presents a generalised analysis of techniques, data on L-arginine use by athletes, and the ambiguous role of NO in the physiology and pathology of hypoxic states shown via nitric oxide synthesis. Data on the protective effects of adaptation in the formation of individual high reactivity in sportsmen are demonstrated. The review demonstrates a favourable effect of supplementation with L-arginine and its application depending on mitochondrial oxidative phosphorylation processes and biochemical indices in groups of individuals with low and high capacity of adaptation to hypoxia. In individuals with high initial anti-hypoxic reserves, these favourable effects are achieved by the blockade of NO-dependent biosynthesis pathways. Therefore, the methodological tasks of physiological experiments and the therapeutic consequences of treatment should include a component depending on the basic level of physiological reactivity.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
11
|
Chen J, Tang Q, Wang Y, Xu M, Sun S, Zhang J, Wu R, Yue X, Li X, Chen Q, Liang X. Ultrasound-Induced Piezocatalysis Triggered NO Generation for Enhanced Hypoxic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15220-15234. [PMID: 36922152 DOI: 10.1021/acsami.3c00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conventional NO gas generation based on l-arginine (l-Arg) is usually dependent on H2O2 and O2, both of which are very limited within the tumor microenvironment, thus greatly limiting l-Arg's therapeutic effect. Herein, a novel nanoplatform for efficiently triggering NO production based on ultrasound-induced piezocatalysis was developed, which was fabricated by coating amphiphilic poly-l-arginine (DSPE-PEG2000-Arg, DPA) on the piezoelectric material of barium titanate (BTO). The resulting BTO@DPA nanoparticles can efficiently generate H2O2, 1O2, and O2 via ultrasound-induced piezocatalysis based on BTO and oxidize the surface arginine to produce NO, which can even further interact with the reactive oxygen species (ROS) to produce more reactive peroxynitrite, thus inducing serious tumor cell apoptosis both in hypoxia and normoxia. After intravenous injection, BTO@DPA accumulated well at the tumor tissue at 4 h postinjection; later, ultrasound irradiation on the tumor not only achieved the best tumor inhibition rate of ∼70% but also completely inhibited tumor metastasis to the lungs via the alleviation of tumor hypoxia. Such a strategy was not dependent on the tumor microenvironment and can be well controlled by ultrasound irradiation, providing a simple and efficient therapy paradigm for hypoxic tumor.
Collapse
Affiliation(s)
- Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiuli Yue
- School of Environment, Harbin Institute of Technology, Harbin, 150090 China
| | - Xiaoda Li
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
12
|
Abstract
The conventional microbubble-based ultrasound biomedicine clinically plays a vital role in providing the dynamic detection of macro and microvasculature and disease theranostics. However, the intrinsic limitation of particle size severely decreases the treatment effectiveness due to their vascular transport characteristics, which promotes the development and application of multifunctional ultrasound-responsive nanomaterials. Herein, we put forward a research field of "ultrasound nanomedicine and materdicine", referring to the interdiscipline of ultrasound, nanobiotechnology and materials, which seeks to produce specific biological effects for addressing the challenges faced and dilemma of conventional ultrasound medicine. We comprehensively summarize the state-of-the-art scientific advances in the latest progress in constructing ultrasound-based platforms and ultrasound-activated sonosensitizers, ranging from the synthesis strategies, biological functions to ultrasound-triggered therapeutic applications. Ultimately, the unresolved challenges and clinical-translation potentials of ultrasound nanomedicine and materdicine are discussed and prospected in this evolving field.
Collapse
Affiliation(s)
- Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Xue Wang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Meiqi Chang
- Central Laboratory of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China.
| | - Jia Guo
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
13
|
Huang W, Zhang J, Luo L, Yu Y, Sun T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater Sci Eng 2023; 9:139-152. [PMID: 36576226 DOI: 10.1021/acsbiomaterials.2c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As an important endogenous signaling molecule, nitric oxide (NO) is involved in various physiological and pathological activities in living organisms. It is proved that NO plays a critical role in tumor therapy, while the extremely short half-life and nonspecific distribution of NO greatly limit its further clinical applications. Thus, the past few decades have witnessed the progress made in conquering these shortcomings, including developing innovative NO donors, especially smart and multimodal nanoplatforms. These platforms can precisely control the spatiotemporal distribution of therapeutic agents in the organism, which make big differences in tumor treatment. Here current NO therapeutic mechanisms for cancer, NO donors from small molecules to smart-responsive nanodrug delivery platforms, and NO-based combination therapy are comprehensively reviewed, emphasizing outstanding breakthroughs in these fields and hoping to bring new insights into NO-based tumor treatments.
Collapse
Affiliation(s)
- Wan Huang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jun Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Li Luo
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
14
|
Zuo S, Wang Z, Zhao L, Wang J. Gold nanoplatform for near-infrared light-activated radio-photothermal gas therapy in breast cancer. Front Bioeng Biotechnol 2023; 10:1098986. [PMID: 36686245 PMCID: PMC9853036 DOI: 10.3389/fbioe.2022.1098986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Although radiotherapy is one of the most common treatments for triple-negative breast cancer (TNBC), it frequently has unsatisfactory therapeutic outcomes due to the radiation resistance of tumor tissues. Therefore, a synergistic strategy is urgently needed to increase therapeutic responses and prolong patient survival. Herein, we constructed gold nanocages (GNCs) loaded with a hyperpyrexia-sensitive nitric oxide (NO) donor (thiolate cupferron) to integrate extrinsic radiosensitization, local photothermal therapy, and near-infrared-activated NO gas therapy. The resulting nanoplatform (GNCs@NO) showed a high photothermal conversion efficiency, which induced the death of cancer cells and facilitated rapid NO release in tumor tissues. The radiosensitizing efficacy of GNCs@NO was further demonstrated in vitro and in vivo. Importantly, the released NO reacted with the reactive oxide species induced by radiotherapy to produce more toxic reactive nitrogen species, exerting a synergistic effect to improve anticancer efficacy. Thus, GNCs@NO demonstrated excellent effects as a combination therapy with few adverse effects. Our work proposes a promising nanoplatform for the radio/photothermal/gas treatment of TNBC.
Collapse
Affiliation(s)
- Shuting Zuo
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Zhenyu Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Liping Zhao
- Gynecology and Obstetrics Department of the Second Hospital of Jilin University, Changchun, China
| | - Jing Wang
- Department of Breast Surgery, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Jing Wang,
| |
Collapse
|
15
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
16
|
Zhou HY, Chen Y, Li P, He X, Zhong J, Hu Z, Liu L, Chen Y, Cui G, Sun D, Zheng T. Sonodynamic therapy for breast cancer: A literature review. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Breast cancer (BC) is a malignant tumor with the highest incidence among women. Surgery, radiotherapy, and chemotherapy are currently used as the first-line methods for treating BC. Sonodynamic therapy (SDT) in combination with sonosensitizers exerts a synergistic effect. The therapeutic effects of SDT depend on factors, such as the intensity, frequency, and duration of ultrasound, and the type and the biological model of sonosensitizer. Current reviews have focused on the possibility of using tumor-seeking sonosensitizers, sometimes in combination with different therapies, such as immunotherapy. This study elucidates the therapeutic mechanism of interaction between SDT and tissue as well as the current progress in medical applications of SDT to BC.
Collapse
Affiliation(s)
- Hai-ying Zhou
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Yi Chen
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Ping Li
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Xiaoxin He
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Jieyu Zhong
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Zhengming Hu
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Li Liu
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Yun Chen
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Guanghui Cui
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Desheng Sun
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Tingting Zheng
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| |
Collapse
|
17
|
Dou R, Cai X, Ruan L, Zhang J, Rouzi A, Chen J, Chai Z, Hu Y. Precision Nanomedicines: Targeting Hot Mitochondria in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4103-4117. [PMID: 36066886 DOI: 10.1021/acsabm.2c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondrion is a multifunctional organelle in a cell, and it is one of the important targets of antitumor therapy. Conventional mitochondrial targeting strategies can hardly distinguish the mitochondria in cancer cells from those in normal cells, which might raise a concern about the biosafety. Recent studies suggest that a relatively high temperature of mitochondria exists in cancer cells. We named it tumor intrinsic mitochondrial overheating (TIMO). By taking advantage of the difference in mitochondrial temperatures between cancer cells and normal cells, therapeutic agents can be specifically delivered to the mitochondria in cancer cells. Here we will briefly overview the mitochondria-targeted delivery strategies. In addition, the recent discovery of hot mitochondria in cancer cells and the development of mitochondrial temperature-responsive delivery systems for antitumor therapy will be reviewed.
Collapse
Affiliation(s)
- Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Aisha Rouzi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics and University of Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
| |
Collapse
|
18
|
Yu J, Gan L, Zhou Y, Xu J, Yun C, Fang T, Cai X. Indole‐Based Long‐Wavelength Fluorescent Probes for Bioimaging of
S
‐Nitrosylation in Mitochondria. Chemistry 2022; 28:e202201494. [DOI: 10.1002/chem.202201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Jinfeng Yu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Lu Gan
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yani Zhou
- School of Basic Medical Sciences Lanzhou University Lanzhou 730000 China
| | - Jingyao Xu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Chengyu Yun
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Tong Fang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
19
|
Zhang Y, Zhao Y, Zhang Y, Liu Q, Zhang M, Tu K. The crosstalk between sonodynamic therapy and autophagy in cancer. Front Pharmacol 2022; 13:961725. [PMID: 36046833 PMCID: PMC9421066 DOI: 10.3389/fphar.2022.961725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
As a noninvasive treatment approach for cancer and other diseases, sonodynamic therapy (SDT) has attracted extensive attention due to the deep penetration of ultrasound, good focusing, and selective irradiation sites. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, nanoparticles as sonosensitizers or as a vehicle to deliver sonosensitizers have been designed and used to target tissues or tumor cells with high specificity and accuracy. Autophagy is a common metabolic alteration in both normal cells and tumor cells. When autophagy happens, a double-membrane autophagosome with sequestrated intracellular components is delivered and fused with lysosomes for degradation. Recycling these cell materials can promote survival under a variety of stress conditions. Numerous studies have revealed that both apoptosis and autophagy occur after SDT. This review summarizes recent progress in autophagy activation by SDT through multiple mechanisms in tumor therapies, drug resistance, and lipid catabolism. A promising tumor therapy, which combines SDT with autophagy inhibition using a nanoparticle delivering system, is presented and investigated.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanru Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Zhou Z, Gao Z, Chen W, Wang X, Chen Z, Zheng Z, Chen Q, Tan M, Liu D, Zhang Y, Hou Z. Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu 9S 5 nanozymes. Acta Biomater 2022; 151:600-612. [PMID: 35953045 DOI: 10.1016/j.actbio.2022.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Therefore, how to construct a CDT treatment nanosystem with high yield and full utilization of ROS in tumor site is the main issue of CDT. Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (LA), abbreviated as m-MCS@LA, is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS based on the catalytic performance of multivalent metal ions, which were served as nanozymes, exhibit enhanced Fenton-like and glutathione (GSH) peroxidase-like activities in comparison to Cu9S5 nanoparticles without Mo-doping. Once placed in tumor microenvironment (TME), the existence of redox couples (Cu+/Cu2+ and Mo4+/Mo6+) in m-MCS enabled it to react with hydrogen peroxide (H2O2) to generate ·OH for achieving CDT effect via Fenton-like reaction. Meanwhile, m-MCS could consume overexpressed GSH in tumor microenvironment (TME) to alleviate antioxidant capability for enhancing CDT effect. Moreover, m-MCS with mesoporous structure could be employed as the carrier to load natural nitric oxide (NO) donor LA. US as the excitation source with high tissue penetration can trigger m-MCS@LA to produce NO. As the gas transmitter with physiological functions, NO could play dual roles to kill cancer cells through gas therapy directly, and enhance CDT effect by inhibiting protective autophagy simultaneously. As a result, this US-triggered and NO-mediated synergetic cancer chemodynamic/gas therapy based on m-MCS@LA NPs can effectively eliminate primary tumor and achieved tumor-specific treatment, which provide a possible strategy for developing more effective CDT in future practical applications. STATEMENT OF SIGNIFICANCE: The depletion of reactive oxygen species (ROS) by glutathione (GSH) and oxidative stress induced protective autophagy severely impaired the therapeutic effect of chemodynamic therapy (CDT). Herein, a multifunctional cascade bioreactor based on mesoporous Mo-doped Cu9S5 (m-MCS) nanozymes loaded with L-Arginine (m-MCS@LA) is constructed for realizing enhanced CDT promoted by ultrasound (US) triggered gas therapy. The m-MCS with double redox couples presents the enhanced enzyme-like activities to perform cascade reactions for reducing GSH and generating ROS. LA loaded by m-MCS can produce NO triggered by US to inhibit the mitochondria protective autophagy for reactivating mitochondria involved apoptosis pathway. The US-triggered and NO-mediated CDT based on m-MCS@LA can effectively eliminate primary tumor through the high yield and full utilization of ROS.
Collapse
Affiliation(s)
- Zhaoru Zhou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhimin Gao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Wei Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Xiaozhao Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Zhankun Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Zhaocong Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Qianyi Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China
| | - Meiling Tan
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China
| | - Donglian Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| | - Yaru Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| | - Zhiyao Hou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, P. R. China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, P. R. China.
| |
Collapse
|