1
|
Chen Y, Cai S, Liu FY, Liu M. Advancing oral cancer care: nanomaterial-driven diagnostic and therapeutic innovations. Cell Biol Toxicol 2025; 41:90. [PMID: 40407908 PMCID: PMC12102110 DOI: 10.1007/s10565-025-10027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/13/2025] [Indexed: 05/26/2025]
Abstract
The advent of nanotechnology has significantly advanced the diagnosis and treatment of oral cancer, offering more precise and efficient therapeutic strategies. This review presents a comprehensive overview of recent developments in the application of nanotechnology to oral cancer management. It begins with an overview of the epidemiology of oral cancer and outlines current diagnostic and therapeutic methods. The classification and advantages of various nanomaterials are then introduced. The paper thoroughly explores the use of nanomaterials as drug delivery systems (DDSs), imaging contrast agents, and therapeutic tools, with particular emphasis on multifunctional nanoplatforms that integrate diagnostics and therapy. These platforms enable real-time monitoring and immediate therapeutic response, offering innovative approaches for early detection and intervention. Despite these promising advances, several challenges persist, including issues related to biocompatibility, clearance, targeting specificity, and clinical translation. The review concludes by highlighting current limitations and proposing future directions for the clinical application of nanotechnology in oral cancer treatment.
Collapse
Affiliation(s)
- Yuwen Chen
- Departmentof Orthodontics, School of Stomatology, China Medical University, 117 South Nanjing Street, Heping, Shenyang, Liaoning, 110002, P.R. China
| | - Sijia Cai
- Departmentof Orthodontics, School of Stomatology, China Medical University, 117 South Nanjing Street, Heping, Shenyang, Liaoning, 110002, P.R. China
| | - Fa-Yu Liu
- Department of Oromaxillofacial-Head and Neck, Oral Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, P.R. China
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, P.R. China.
| |
Collapse
|
2
|
Gomes M, Ramalho MJ, Loureiro JA, Pereira MC. Advancing Brain Targeting: Cost-Effective Surface-Modified Nanoparticles for Faster Market Entry. Pharmaceutics 2025; 17:661. [PMID: 40430951 PMCID: PMC12115355 DOI: 10.3390/pharmaceutics17050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The blood-brain barrier (BBB) poses a major obstacle to delivering therapeutic agents to the central nervous system (CNS), driving the need for innovative drug delivery strategies. Among these, nanoparticles (NPs) have gained attention due to their ability to enhance drug transport, improve bioavailability, and enable targeted delivery. Methods: This paper explores various surface modification strategies employed to optimize NP-mediated drug delivery across the BBB. Specifically, the functionalization of NPs with ligands such as transferrin (Tf), lactoferrin (Lf), protamine, and insulin is discussed, each demonstrating unique mechanisms for enhancing brain-targeting efficiency. In addition, this work provides a comprehensive overview of recent scientific advancements and market strategies aimed at accelerating the adoption of low-cost, surface-modified nanoparticles, ultimately improving patient access to effective CNS treatments. Conclusions: Preclinical and in vitro studies have demonstrated the effectiveness of these modifications in increasing drug retention and bioavailability in brain tissues. Additionally, while ligand-conjugated NPs hold significant promise for neuropharmacology, their clinical translation is often hindered by regulatory and economic constraints. Lengthy approval processes can slow market entry, but cost-benefit analyses indicate that surface-modified NPs remain financially viable, particularly as scalable manufacturing techniques and some ligands are cost-efficient.
Collapse
Affiliation(s)
- Mariana Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
3
|
Badir A, Refki S, Sekkat Z. Utilizing gold nanoparticles in plasmonic photothermal therapy for cancer treatment. Heliyon 2025; 11:e42738. [PMID: 40084020 PMCID: PMC11904586 DOI: 10.1016/j.heliyon.2025.e42738] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025] Open
Abstract
In recent decades, significant attention has been directed towards gold nanoparticles due to their exceptional properties, capturing the interest of researchers globally. Their unique characteristics, such as localized surface plasmon resonance, high surface area to volume ratio, biocompatibility, and facile surface functionalization, render them highly suitable for diverse applications, ranging from optoelectronics and sensing to surface-enhanced spectroscopies and biomedical uses, particularly in the realm of photothermal therapy. Plasmonic photothermal therapy, an emerging biomedical technology, has garnered substantial interest for its potential in cancer treatment and management. This approach employs photothermal agents, such as gold nanoparticles, which absorb light in the near-infrared region. When these agents accumulate within cancer cells, the absorbed photon energy is converted into heat, inducing local hyperthermia. This localized effect selectively eliminates damaged cells adjacent to nanoparticles while sparing normal cells. Various shapes and sizes of gold nanoparticles have proven well-suited candidates for photothermal therapy. This paper provides an overview of the distinctive properties of gold nanoparticles. It delves into the surface functionalization techniques crucial for ensuring cancer cells' effective retention and targeting of gold nanoparticles. In this context, the present paper reviews diverse applications of gold nanoparticles with different shapes in plasmonic photothermal therapy, encompassing nanospheres, nanorods, nanoshells, nanostars, and nanocages.
Collapse
Affiliation(s)
- Amina Badir
- Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Siham Refki
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| | - Zouheir Sekkat
- Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Optics and Photonics Center, Moroccan Foundation for Advanced Science Innovation and Research, MAScIR, University Mohammed VI Polytechnic, Benguerir, Morocco
| |
Collapse
|
4
|
Amparo TR, Almeida TC, Sousa LRD, Xavier VF, da Silva GN, Brandão GC, dos Santos ODH. Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities. Pharmaceutics 2025; 17:205. [PMID: 40006574 PMCID: PMC11859672 DOI: 10.3390/pharmaceutics17020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods.
Collapse
Affiliation(s)
- Tatiane Roquete Amparo
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Tamires Cunha Almeida
- Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brasil, 1500–Butantã, São Paulo 05503-900, Brazil;
| | - Lucas Resende Dutra Sousa
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Viviane Flores Xavier
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Glenda Nicioli da Silva
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Geraldo Célio Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| | - Orlando David Henrique dos Santos
- Department of Pharmacy, Federal University of Ouro Preto, Rua Professor Paulo Magalhães Gomes, 122-Bauxita, Ouro Preto 35400-000, Brazil; (L.R.D.S.); (V.F.X.); (G.N.d.S.); (G.C.B.); (O.D.H.d.S.)
| |
Collapse
|
5
|
Gao Y, Huo S, Chen C, Du S, Xia R, Liu J, Chen D, Diao Z, Han X, Yin Z. Gold nanorods as biocompatible nano-agents for the enhanced photothermal therapy in skin disorders. J Biomed Res 2024; 39:1-17. [PMID: 39375931 PMCID: PMC11873593 DOI: 10.7555/jbr.38.20240119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Rod-shaped gold nanomaterials, known as gold nanorods (GNRs), may undergo specific surface modification, because of their straightforward surface chemistry. This feature makes them appropriate for use as functional and biocompatible nano-formulations. By optimizing the absorption of longitudinally localized surface plasmon resonance in the near-infrared region, which corresponds to the near-infrared bio-tissue window, GNRs with appropriate modifications may improve the results of photothermal treatment (PTT). In dermatology, potential noninvasive uses of GNRs to enhance wound healing, manage infections, combat cutaneous malignancies, and remodel skin tissues via PTT have attracted research attention in recent years. The review discussed the basic properties of GNRs, such as their shape, size, optical performance, photothermal efficiency, and metabolism. Then, the disadvantages of using these particles in photodynamic therapy are highlighted. Next, biological applications of GNRs-based PTT are explored in detail. Finally, the limitations and future perspectives of this research are addressed, providing a comprehensive perspective on the potential GNRs with PTT.
Collapse
Affiliation(s)
- Yamei Gao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaohu Huo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Chao Chen
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Shiyu Du
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Ruiyuan Xia
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dandan Chen
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ziyue Diao
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Han
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Zhiqiang Yin
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Villasante A, Corominas J, Alcon C, Garcia-Lizarribar A, Mora J, Lopez-Fanarraga M, Samitier J. Identification of GB3 as a Novel Biomarker of Tumor-Derived Vasculature in Neuroblastoma Using a Stiffness-Based Model. Cancers (Basel) 2024; 16:1060. [PMID: 38473417 DOI: 10.3390/cancers16051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroblastoma (NB) is a childhood cancer in sympathetic nervous system cells. NB exhibits cellular heterogeneity, with adrenergic and mesenchymal states displaying distinct tumorigenic potentials. NB is highly vascularized, and blood vessels can form through various mechanisms, including endothelial transdifferentiation, leading to the development of tumor-derived endothelial cells (TECs) associated with chemoresistance. We lack specific biomarkers for TECs. Therefore, identifying new TEC biomarkers is vital for effective NB therapies. A stiffness-based platform simulating human arterial and venous stiffness was developed to study NB TECs in vitro. Adrenergic cells cultured on arterial-like stiffness transdifferentiated into TECs, while mesenchymal state cells did not. The TECs derived from adrenergic cells served as a model to explore new biomarkers, with a particular focus on GB3, a glycosphingolipid receptor implicated in angiogenesis, metastasis, and drug resistance. Notably, the TECs unequivocally expressed GB3, validating its novelty as a marker. To explore targeted therapeutic interventions, nanoparticles functionalized with the non-toxic subunit B of the Shiga toxin were generated, because they demonstrated a robust affinity for GB3-positive cells. Our results demonstrate the value of the stiffness-based platform as a predictive tool for assessing NB aggressiveness, the discovery of new biomarkers, and the evaluation of the effectiveness of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Josep Corominas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Andrea Garcia-Lizarribar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jaume Mora
- Oncology Department, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, 08950 Barcelona, Spain
| | | | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
7
|
Zhao M, Liu Y, Yin C. Gold nanorod-chitosan based nanocomposites for photothermal and chemoembolization therapy of breast cancer. Int J Biol Macromol 2024; 259:129197. [PMID: 38184048 DOI: 10.1016/j.ijbiomac.2023.129197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Gold nanorods (AuNR) have received significant attention in tumor thermo-chemotherapy. However, insufficient thermal availability limits the in vivo highly efficient applications of AuNR in photothermal therapy. In this study, we have fabricated N-isopropylacrylamide grafted O-carboxymethyl chitosan nanoparticles (NCMC NPs) with thermo-responsive properties for co-encapsulating AuNR and doxorubicin (DOX), forming AuNR@NCMC/DOX nanocomposites (NCs). As a result of the thermo- and photothermal-responsiveness, AuNR@NCMC/DOX NCs exhibited irreversible aggregation at high temperature and under near-infrared (NIR) irradiation with an increase of size to 3 μm. When AuNR@NCMC/DOX NCs reached tumor sites following intravenous administration, they were located in the tumor vessels under NIR irradiation due to an embolization effect. This response enhanced tumor targeting, on-demand release, and the thermal performance of AuNR@NCMC/DOX NCs. We have observed higher tumor accumulation of DOX and AuNR with subsequent stronger inhibition of tumor growth than that achieved without NIR irradiation. The development of AuNR-based NCs with multiple smart responsivenesses at tumors can provide a promising paradigm for solid tumor treatment via the cooperative effects of photothermal therapy and chemoembolization.
Collapse
Affiliation(s)
- Mengxin Zhao
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yifu Liu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
Zhang Y, Wu Y, Du H, Li Z, Bai X, Wu Y, Li H, Zhou M, Cao Y, Chen X. Nano-Drug Delivery Systems in Oral Cancer Therapy: Recent Developments and Prospective. Pharmaceutics 2023; 16:7. [PMID: 38276483 PMCID: PMC10820767 DOI: 10.3390/pharmaceutics16010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Oral cancer (OC), characterized by malignant tumors in the mouth, is one of the most prevalent malignancies worldwide. Chemotherapy is a commonly used treatment for OC; however, it often leads to severe side effects on human bodies. In recent years, nanotechnology has emerged as a promising solution for managing OC using nanomaterials and nanoparticles (NPs). Nano-drug delivery systems (nano-DDSs) that employ various NPs as nanocarriers have been extensively developed to enhance current OC therapies by achieving controlled drug release and targeted drug delivery. Through searching and analyzing relevant research literature, it was found that certain nano-DDSs can improve the therapeutic effect of drugs by enhancing drug accumulation in tumor tissues. Furthermore, they can achieve targeted delivery and controlled release of drugs through adjustments in particle size, surface functionalization, and drug encapsulation technology of nano-DDSs. The application of nano-DDSs provides a new tool and strategy for OC therapy, offering personalized treatment options for OC patients by enhancing drug delivery, reducing toxic side effects, and improving therapeutic outcomes. However, the use of nano-DDSs in OC therapy still faces challenges such as toxicity, precise targeting, biodegradability, and satisfying drug-release kinetics. Overall, this review evaluates the potential and limitations of different nano-DDSs in OC therapy, focusing on their components, mechanisms of action, and laboratory therapeutic effects, aiming to provide insights into understanding, designing, and developing more effective and safer nano-DDSs. Future studies should focus on addressing these issues to further advance the application and development of nano-DDSs in OC therapy.
Collapse
Affiliation(s)
- Yun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yongjia Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Hongjiang Du
- Department of Stomatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China;
| | - Zhiyong Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Xiaofeng Bai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yange Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Huimin Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Mengqi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| | - Yifeng Cao
- Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China; (Y.Z.); (Y.W.); (Z.L.); (X.B.); (Y.W.); (H.L.); (M.Z.)
| |
Collapse
|
9
|
Gallo J, Villasante A. Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment. Int J Mol Sci 2023; 24:15484. [PMID: 37895165 PMCID: PMC10607206 DOI: 10.3390/ijms242015484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Nanomedicine presents innovative solutions for cancer treatment, including photothermal therapy (PTT). PTT centers on the design of photoactivatable nanoparticles capable of absorbing non-toxic near-infrared light, generating heat within target cells to induce cell death. The successful transition from benchside to bedside application of PTT critically depends on the core properties of nanoparticles responsible for converting light into heat and the surface properties for precise cell-specific targeting. Precisely targeting the intended cells remains a primary challenge in PTT. In recent years, a groundbreaking approach has emerged to address this challenge by functionalizing nanocarriers and enhancing cell targeting. This strategy involves the creation of biomimetic nanoparticles that combine desired biocompatibility properties with the immune evasion mechanisms of natural materials. This review comprehensively outlines various strategies for designing biomimetic photoactivatable nanocarriers for PTT, with a primary focus on its application in cancer therapy. Additionally, we shed light on the hurdles involved in translating PTT from research to clinical practice, along with an overview of current clinical applications.
Collapse
Affiliation(s)
- Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal;
| | - Aranzazu Villasante
- Nanobioengineering Lab, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Electronic and Biomedical Engineering, Faculty of Physics, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Rodríguez-Ramos A, González JA, Fanarraga ML. Enhanced Inhibition of Amyloid Formation by Heat Shock Protein 90 Immobilized on Nanoparticles. ACS Chem Neurosci 2023; 14:2811-2817. [PMID: 37471620 PMCID: PMC10401628 DOI: 10.1021/acschemneuro.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
As the population ages, an epidemic of neurodegenerative diseases with devastating social consequences is looming. To address the pathologies leading to amyloid-related dementia, novel therapeutic strategies must be developed for the treatment or prevention of neural protein-folding disorders. Nanotechnology will be crucial to this scenario, especially in the design of nanoscale systems carrying therapeutic compounds that can navigate the nervous system and identify amyloid to treat it in situ. In this line, we have recently designed a highly simplified and versatile nanorobot consisting of a protein coating based on the heat shock protein 90 (Hsp90) chaperone that not only propels nanoparticles using ATP but also endows them with the extraordinary ability to fold and restore the activity of heat-denatured proteins. Here, we assess the effectiveness of these nanosystems in inhibiting/reducing the aggregation of amyloidogenic proteins. Using Raman spectroscopy, we qualitatively and quantitatively analyze amyloid by identifying and semi-quantifying the Amide I band. Our findings indicate that the coupling of Hsp90 to nanoparticles results in a more potent inhibition of amyloid formation when compared to the soluble protein. We propose that this enhanced performance may be attributed to enhanced release-capture cycles of amyloid precursor oligomers by Hsp90 molecules nearby on the nanosurface. Intelligent biocompatible coatings, like the one described here, that enhance the diffusivity and self-propulsion of nanoparticles while enabling them to carry out critical functions such as environmental scanning, identification, and amyloid prevention, present an exceptional opportunity for the development of advanced nanodevices in biomedical applications. This approach, which combined active biomolecules with synthetic materials, is poised to reveal remarkable prospects in the field of nanomedicine and biotechnology.
Collapse
Affiliation(s)
- Ana Rodríguez-Ramos
- Grupo de Nanomedicina, Universidad
de Cantabria, Instituto Valdecilla - IDIVAL, Avda. Herrera Oria
s/n, Santander 39011, Spain
| | - Jesús A. González
- Grupo de Nanomedicina, Universidad
de Cantabria, Instituto Valdecilla - IDIVAL, Avda. Herrera Oria
s/n, Santander 39011, Spain
| | - Mónica L. Fanarraga
- Grupo de Nanomedicina, Universidad
de Cantabria, Instituto Valdecilla - IDIVAL, Avda. Herrera Oria
s/n, Santander 39011, Spain
| |
Collapse
|
11
|
Li R, Liu C, Wan C, Liu T, Zhang R, Du J, Wang X, Jiao X, Gao R, Li B. A Targeted and pH-Responsive Nano-Graphene Oxide Nanoparticle Loaded with Doxorubicin for Synergetic Chemo-Photothermal Therapy of Oral Squamous Cell Carcinoma. Int J Nanomedicine 2023; 18:3309-3324. [PMID: 37351329 PMCID: PMC10284161 DOI: 10.2147/ijn.s402249] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Purpose Oral squamous cell carcinoma (OSCC) is a malignant disease with serious impacts on human health and quality of life worldwide. This disease is traditionally treated through a combination of surgery, radiotherapy, and chemotherapy. However, the efficacy of traditional treatments is hindered by systemic toxicity, limited therapeutic effects, and drug resistance. Fibroblast activation protein (FAP) is a membrane-bound protease. Although FAP has limited expression in normal adult tissues, it is highly expressed in the tumor microenvironment of many solid cancers - a characteristic that makes it an ideal target for anticancer therapy. In this study, we constructed a nano-drug delivery system (NPF@DOX) targeting FAP to increase the therapeutic efficiency of synergistic chemo-photothermal therapy against OSCC. Methods We utilized PEGylated nano-graphene oxide (NGO) to link doxorubicin (DOX) and fluorescently-labeled, FAP-targeted peptide chains via hydrogen bonding and π-π bonding to enhance the targeting capability of NPF@DOX. The synthesis of NPF@DOX was analyzed using UV-Vis and FT-IR spectroscopy and its morphology using transmission electron microscopy (TEM). Additionally, the drug uptake efficiency in vitro, photo-thermal properties, release performance, and anti-tumor effects of NPF@DOX were evaluated and further demonstrated in vivo. Results Data derived from FT-IR, UV-Vis, and TEM implied successful construction of the NPF@DOX nano-drug delivery system. Confocal laser scanning microscopy images and in vivo experiments demonstrated the targeting effects of FAP on OSCC. Furthermore, NPF@DOX exhibited a high photothermal conversion efficiency (52.48%) under near-infrared radiation. The thermogenic effect of NPF@DOX simultaneously promoted local release of DOX and apoptosis based on a pH-stimulated effect. Importantly, FAP-targeted NPF@DOX in combination with PTT showed better tumor suppression performance in vivo and in vitro than did either therapy individually. Conclusion NPF@DOX can precisely target OSCC, and combined treatment with chemical and photothermal therapy can improve the therapeutic outcomes of OSCC. This method serves as an efficient therapeutic strategy for the development of synergistic anti-tumor research.
Collapse
Affiliation(s)
- Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chen Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Chaoqiong Wan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Tiantian Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Rongrong Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiangyu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaofeng Jiao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifang Gao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
- Department of Pediatric and Preventive Dentistry, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
12
|
Cupil-Garcia V, Li JQ, Norton SJ, Odion RA, Strobbia P, Menozzi L, Ma C, Hu J, Zentella R, Boyanov MI, Finfrock YZ, Gursoy D, Douglas DS, Yao J, Sun TP, Kemner KM, Vo-Dinh T. Plasmonic nanorod probes' journey inside plant cells for in vivo SERS sensing and multimodal imaging. NANOSCALE 2023; 15:6396-6407. [PMID: 36924128 DOI: 10.1039/d2nr06235f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticle-based platforms are gaining strong interest in plant biology and bioenergy research to monitor and control biological processes in whole plants. However, in vivo monitoring of biomolecules using nanoparticles inside plant cells remains challenging due to the impenetrability of the plant cell wall to nanoparticles beyond the exclusion limits (5-20 nm). To overcome this physical barrier, we have designed unique bimetallic silver-coated gold nanorods (AuNR@Ag) capable of entering plant cells, while conserving key plasmonic properties in the near-infrared (NIR). To demonstrate cellular internalization and tracking of the nanorods inside plant tissue, we used a comprehensive multimodal imaging approach that included transmission electron microscopy (TEM), confocal fluorescence microscopy, two-photon luminescence (TPL), X-ray fluorescence microscopy (XRF), and photoacoustics imaging (PAI). We successfully acquired SERS signals of nanorods in vivo inside plant cells of tobacco leaves. On the same leaf samples, we applied orthogonal imaging methods, TPL and PAI techniques for in vivo imaging of the nanorods. This study first demonstrates the intracellular internalization of AuNR@Ag inside whole plant systems for in vivo SERS analysis in tobacco cells. This work demonstrates the potential of this nanoplatform as a new nanotool for intracellular in vivo biosensing for plant biology.
Collapse
Affiliation(s)
- Vanessa Cupil-Garcia
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Chemistry, Duke University, Durham, NC 27706, USA
| | - Joy Q Li
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| | | | - Ren A Odion
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| | - Pietro Strobbia
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| | - Luca Menozzi
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| | - Chenshuo Ma
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, NC 27706, USA
| | | | - Maxim I Boyanov
- Bulgarian Academy of Sciences, Institute of Chemical Engineering, Sofia 1113, Bulgaria
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Y Zou Finfrock
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Doga Gursoy
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, USA
| | | | - Junjie Yao
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27706, USA
| | - Kenneth M Kemner
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Tuan Vo-Dinh
- Fitzpatrick Institute for Photonics, Durham, NC 27706, USA.
- Department of Chemistry, Duke University, Durham, NC 27706, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27706, USA
| |
Collapse
|