1
|
Tulinska J, Kobylinska L, Lehotska Mikusova M, Babincova J, Mitina N, Rollerova E, Liskova A, Madrova N, Alacova R, Zaichenko A, Lesyk R, Horvathova M, Szabova M, Lukan N, Vari S. PEG-Polymeric Nanocarriers Alleviate the Immunosuppressive Effects of Free 4-Thiazolidinone-Based Chemotherapeutics on T Lymphocyte Function and Cytokine Production. Int J Nanomedicine 2024; 19:14021-14041. [PMID: 39742092 PMCID: PMC11687095 DOI: 10.2147/ijn.s479137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Purpose Our study aimed to assess the effects of anticancer 4-thiazolidinone-based free water-insoluble therapeutics Les-3288 and Les-3833 and their waterborne complexes with branched PEG-containing polymeric carriers (A24-PEG550 and A24-PEG750) on immune response. Methods Human peripheral blood was used to study in vitro lymphocyte proliferative function, leukocyte phagocytic activity and respiratory burst, and cytokine production. Results The binding of the polymer to the anticancer drug Les-3288, which is intended to mitigate the immunosuppressive effects of the free drug on the proliferative activity of T lymphocytes and T-dependent B cells, demonstrated comparable efficacy for both A24-PEG750 and A24-PEG550 nanocarriers. Furthermore, it was observed that the drug-polymer complex significantly increased the reduced levels of IFN-γ and TNF-α resulting from free Les-3288. Conversely, the reduced levels of IL-6 and IL-4 remained unchanged. Administration of either form of Les-3288 had no effect on the phagocytic activity of monocytes, granulocytes or the respiratory burst of granulocytes. Due to the reduced cell viability and increased cytotoxicity associated with Les-3833, tenfold lower doses were selected for the immune assays. The effects of free Les-3833 on lymphocyte proliferative function resulted in significant stimulation of T-dependent B cells. The binding of Les-3833 to the smaller carrier, A24-PEG550 was found to maintain the stimulatory effect on B lymphocytes. While no effect of free Les-3833 on the granulocyte phagocytic activity was observed, binding of Les-3833 to both polymeric carriers resulted in a decrease in granulocyte phagocytic activity and respiratory burst, with no observable effect on monocytes. Monitoring of cytokine production showed no significant effect of either form of Les-3833 on the production of IFN-γ and IL-6. In the context of TNF-α and IL-4, the positive effect of polymer binding on restoring suppressed cytokine levels induced by the Les-3833 free drug was slightly more favorable for A24-PEG750. Conclusion The drug complexation with novel PEGylated carriers is a promising way for efficient therapeutic development.
Collapse
Affiliation(s)
- Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Lesya Kobylinska
- Department of Biochemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | - Julia Babincova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Natalia Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Eva Rollerova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Nikola Madrova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and BioOrganic Chemistry Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Sandor Vari
- International Research and Innovation in Medicine Program, Cedars - Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
2
|
Sun XH, Jiang HJ, Liu Q, Xiao C, Xu JY, Wu Y, Mei JY, Wu ST, Lin ZY. Low concentrations of TNF-α in vitro transform the phenotype of vascular smooth muscle cells and enhance their survival in a three-dimensional culture system. Artif Organs 2024; 48:839-848. [PMID: 38660762 DOI: 10.1111/aor.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) are commonly used as seed cells in tissue-engineered vascular constructions. However, their variable phenotypes and difficult to control functions pose challenges. This study aimed to overcome these obstacles using a three-dimensional culture system. METHODS Calf VSMCs were administered tumor necrosis factor-alpha (TNF-α) before culturing in two- and three-dimensional well plates and polyglycolic acid (PGA) scaffolds, respectively. The phenotypic markers of VSMCs were detected by immunofluorescence staining and western blotting, and the proliferation and migration abilities of VSMCs were detected by CCK-8, EDU, cell counting, scratch, and Transwell assays. RESULTS TNF-α rapidly decreased the contractile phenotypic markers and elevated the synthetic phenotypic markers of VSMCs, as well as markedly increasing the proliferation and migration ability of VSMCs under two- and three-dimensional culture conditions. CONCLUSIONS TNF-α can rapidly induce a phenotypic shift in VSMCs and change their viability on PGA scaffolds.
Collapse
Affiliation(s)
- Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jing-Yi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Shu-Ting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, P.R. China
| | - Zhan-Yi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| |
Collapse
|