1
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023; 20:411-433. [PMID: 37060487 PMCID: PMC10219911 DOI: 10.1007/s13770-023-00530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 04/16/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
2
|
Kandhola G, Park S, Lim JW, Chivers C, Song YH, Chung JH, Kim J, Kim JW. Nanomaterial-Based Scaffolds for Tissue Engineering Applications: A Review on Graphene, Carbon Nanotubes and Nanocellulose. Tissue Eng Regen Med 2023. [PMID: 37060487 DOI: 10.1007/s13770-023-0054*-*] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Nanoscale biomaterials have garnered immense interest in the scientific community in the recent decade. This review specifically focuses on the application of three nanomaterials, i.e., graphene and its derivatives (graphene oxide, reduced graphene oxide), carbon nanotubes (CNTs) and nanocellulose (cellulose nanocrystals or CNCs and cellulose nanofibers or CNFs), in regenerating different types of tissues, including skin, cartilage, nerve, muscle and bone. Their excellent inherent (and tunable) physical, chemical, mechanical, electrical, thermal and optical properties make them suitable for a wide range of biomedical applications, including but not limited to diagnostics, therapeutics, biosensing, bioimaging, drug and gene delivery, tissue engineering and regenerative medicine. A state-of-the-art literature review of composite tissue scaffolds fabricated using these nanomaterials is provided, including the unique physicochemical properties and mechanisms that induce cell adhesion, growth, and differentiation into specific tissues. In addition, in vitro and in vivo cytotoxic effects and biodegradation behavior of these nanomaterials are presented. We also discuss challenges and gaps that still exist and need to be addressed in future research before clinical translation of these promising nanomaterials can be realized in a safe, efficacious, and economical manner.
Collapse
Affiliation(s)
- Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jae-Woon Lim
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cody Chivers
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Young Hye Song
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Jong Hoon Chung
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA.
- Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, USA.
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
3
|
Valdés-Madrigal MA, Montejo-Alvaro F, Cernas-Ruiz AS, Rojas-Chávez H, Román-Doval R, Cruz-Martinez H, Medina DI. Role of Defect Engineering and Surface Functionalization in the Design of Carbon Nanotube-Based Nitrogen Oxide Sensors. Int J Mol Sci 2021; 22:12968. [PMID: 34884770 PMCID: PMC8658008 DOI: 10.3390/ijms222312968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental-theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.
Collapse
Affiliation(s)
- Manuel A. Valdés-Madrigal
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Av. Ing. Carlos Rojas Gutiérrez 2120, Fracc. Valle de la Herradura, Ciudad Hidalgo 61100, Mexico;
| | - Fernando Montejo-Alvaro
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Amelia S. Cernas-Ruiz
- Instituto Tecnológico del Istmo, Tecnológico Nacional de México, Panamericana 821, 2da., Juchitán de Zaragoza, Oaxaca 70000, Mexico;
| | - Hugo Rojas-Chávez
- Instituto Tecnológico de Tláhuac II, Tecnológico Nacional de México, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Ramon Román-Doval
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Heriberto Cruz-Martinez
- Instituto Tecnológico Del Valle de Etla, Tecnológico Nacional de México, Abasolo S/N, Barrio Del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (F.M.-A.); (R.R.-D.)
| | - Dora I. Medina
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Mexico
| |
Collapse
|
4
|
Özmen EN, Kartal E, Turan MB, Yazıcıoğlu A, Niazi JH, Qureshi A. Graphene and carbon nanotubes interfaced electrochemical nanobiosensors for the detection of SARS-CoV-2 (COVID-19) and other respiratory viral infections: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112356. [PMID: 34579878 PMCID: PMC8339589 DOI: 10.1016/j.msec.2021.112356] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023]
Abstract
Recent COVID-19 pandemic has claimed millions of lives due to lack of a rapid diagnostic tool. Global scientific community is now making joint efforts on developing rapid and accurate diagnostic tools for early detection of viral infections to preventing future outbreaks. Conventional diagnostic methods for virus detection are expensive and time consuming. There is an immediate requirement for a sensitive, reliable, rapid and easy-to-use Point-of-Care (PoC) diagnostic technology. Electrochemical biosensors have the potential to fulfill these requirements, but they are less sensitive for sensing viruses/viral infections. However, sensitivity and performance of these electrochemical platforms can be improved by integrating carbon nanostructure, such as graphene and carbon nanotubes (CNTs). These nanostructures offer excellent electrical property, biocompatibility, chemical stability, mechanical strength and, large surface area that are most desired in developing PoC diagnostic tools for detecting viral infections with speed, sensitivity, and cost-effectiveness. This review summarizes recent advancements made toward integrating graphene/CNTs nanostructures and their surface modifications useful for developing new generation of electrochemical nanobiosensors for detecting viral infections. The review also provides prospects and considerations for extending the graphene/CNTs based electrochemical transducers into portable and wearable PoC tools that can be useful in preventing future outbreaks and pandemics.
Collapse
Affiliation(s)
- Emine Nur Özmen
- Department of Molecular Biology and Genetics, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Enise Kartal
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Mehmet Bora Turan
- Department of Mechanical Engineering, Bilkent University, Ankara, Turkey
| | - Alperen Yazıcıoğlu
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle 34956, Tuzla, Istanbul, Turkey
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey.
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
5
|
Attri A, Thakur D, Kaur T, Sensale S, Peng Z, Kumar D, Singh RP. Nanoparticles Incorporating a Fluorescence Turn-on Reporter for Real-Time Drug Release Monitoring, a Chemoenhancer and a Stealth Agent: Poseidon's Trident against Cancer? Mol Pharm 2020; 18:124-147. [PMID: 33346663 DOI: 10.1021/acs.molpharmaceut.0c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rate and extent of drug release under physiological conditions is a key factor influencing the therapeutic activity of a formulation. Real-time detection of drug release by conventional pharmacokinetics approaches is confounded by low sensitivity, particularly in the case of tissue-targeted novel drug delivery systems, where low concentrations of the drug reach systemic circulation. We present a novel fluorescence turn-on platform for real-time monitoring of drug release from nanoparticles based on reversible fluorescence quenching in fluorescein esters. Fluorescein-conjugated carbon nanotubes (CNTs) were esterified with methotrexate in solution and solid phase, followed by supramolecular functionalization with a chemoenhancer (suramin) or/and a stealth agent (dextran sulfate). Suramin was found to increase the cytotoxicity of methotrexate in A549 cells. On the other hand, dextran sulfate exhibited no effect on cytotoxicity or cellular uptake of CNTs by A549 cells, while a decrease in cellular uptake of CNTs and cytotoxicity of methotrexate was observed in macrophages (RAW 264.7 cells). Similar results were also obtained when CNTs were replaced with graphene. Docking studies revealed that the conjugates are not internalized by folate receptors/transporters. Further, docking and molecular dynamics studies revealed the conjugates do not exhibit affinity toward the methotrexate target, dihydrofolate reductase. Molecular dynamics studies also revealed that distinct features of dextran-CNT and suramin-CNT interactions, characterized by π-π interactions between CNTs and dextran/suramin. Our study provides a simple, cost-effective, and scalable method for the synthesis of nanoparticles conferred with the ability to monitor drug release in real-time. This method could also be extended to other drugs and other types of nanoparticles.
Collapse
Affiliation(s)
- Arjun Attri
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Deepak Thakur
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, Punjab 147 001, India
| | - Sebastian Sensale
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556-5637, United States
| | - Zhangli Peng
- Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Bioengineering, University of Illinois, Chicago, Illinois 60612, United States
| | - Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India
| | - Raman Preet Singh
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173 221, India.,Department of Pharmacy, Government Polytechnic College, Bathinda, Punjab 151 001, India
| |
Collapse
|
6
|
Biagiotti G, Pisaneschi F, Gammon ST, Machetti F, Ligi MC, Giambastiani G, Tuci G, Powell E, Piwnica-Worms H, Pranzini E, Paoli P, Cicchi S, Piwnica-Worms D. Multiwalled Carbon Nanotubes for Combination Therapy: a Biodistribution and Efficacy Pilot Study. J Mater Chem B 2019; 7:2678-2687. [PMID: 31073405 PMCID: PMC6501563 DOI: 10.1039/c8tb03299h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A drug delivery system (DDS) for combined therapy, based on a short oxidized multiwalled carbon nanotube, is reported. It was prepared exploiting a synthetic approach which allowed loading of two drugs, doxorubicin and metformin, the targeting agent biotin and a radiolabeling tag, to enable labeling with Ga-68 or Cu-64 in order to perform an extensive biodistribution study by PET/CT. The DDS biodistribution profile changes with different administration methods. Once administered at therapeutic doses, the DDS showed a marginal beneficial effect on 4T1 tumor bearing mice, a syngeneic and orthotopic model of triple negative breast cancer, with survival extended by 1 week and 2 days in 20% of the mice. This is encouraging given the aggressiveness of the 4T1 tumor. Furthermore our DDS was well tolerated, ruling out concerns regarding the toxicity of carbon nanotubes.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| | - Fabrizio Machetti
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Maria Cristina Ligi
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giuliano Giambastiani
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Kazan Federal University, 420008 Kazan, Russian Federation
| | - Giulia Tuci
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Emily Powell
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1901 East Road, 77054 Houston, TX USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1901 East Road, 77054 Houston, TX USA
| | - Erica Pranzini
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Paolo Paoli
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| |
Collapse
|
7
|
Abstract
Malignant melanoma is an aggressive skin cancer with limited therapeutic options. Cancer is the second largest cause of death in society and one of the most difficult diseases to treat. Advances in biotechnology have enabled the current use of nanotechnology via the application of nanomaterials, especially as drug delivery systems for the transportation of very small particles. In this context, carbon nanotubes, with a potential role in the diagnosis and treatment of melanoma, are still an emerging research field. Their properties have been extensively studied for the use of antineoplastics drugs, as well as for DNA and RNA interference for the treatment of cancer. However, the most important challenge in nanomedicine is to decrease the toxicity and increase the biocompatibility of the nanomaterials used to transport therapeutic molecules. In this sense, this article addresses the recent advances in the use of carbon nanotubes in melanoma therapy and highlights the opportunities and challenges in this area. The advances and challenges involving these topics are essential to the success of nanoconjugate systems, and studies improving the comprehension of these nanosystems contribute to the development of specific antitumor therapies.
Collapse
|
8
|
Assali M, Zaid AN, Abdallah F, Almasri M, Khayyat R. Single-walled carbon nanotubes-ciprofloxacin nanoantibiotic: strategy to improve ciprofloxacin antibacterial activity. Int J Nanomedicine 2017; 12:6647-6659. [PMID: 28924348 PMCID: PMC5595360 DOI: 10.2147/ijn.s140625] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As infectious diseases continue to be one of the greatest health challenges worldwide, the demand toward alternative agents is continuously increasing. Recent advancement in nanotechnology has expanded our ability to design and construct nanomaterials to treat bacterial infections. Carbon nanotubes are one among these nanomaterials. Herein, we describe the covalent functionalization of the single-walled carbon nanotubes (SWCNTs) with multiple molecules of ciprofloxacin. The prepared nanoantibiotics were characterized using different techniques, including transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The characterization of the nanoantibiotics confirmed the successful covalent functionalization of the SWCNTs with 55% of functionalization as has been observed by thermogravimetric analysis. The release profile revealed that 90% of the loaded ciprofloxacin was released within 2.5 h at pH 7.4 showing a first-order release profile with R2>0.99. Interestingly, the results of the antibacterial activity indicated that the functionalized SWCNTs have significant increase in the antibacterial activity against the three strains of bacteria – by 16-fold for Staphylococcus aureus and Pseudomonas aeruginosa and by 8-fold for Escherichia coli – in comparison to the ciprofloxacin free drug. Moreover, the synthesized nanoantibiotic showed high hemocompatibility and cytocompatibility over a wide concentration range.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| | - Abdel Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| | - Farah Abdallah
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| | - Motasem Almasri
- Department of Biology and Biotechnology, Faculty of Science, An Najah National University, Nablus, Palestine
| | - Rasha Khayyat
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An Najah National University, Nablus, Palestine
| |
Collapse
|
9
|
Kotagiri N, Sakon J, Han H, Zharov VP, Kim JW. Fluorescent ampicillin analogues as multifunctional disguising agents against opsonization. NANOSCALE 2016; 8:12658-67. [PMID: 26935543 PMCID: PMC4919181 DOI: 10.1039/c5nr08686h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cancer nanomedicines are opening new paradigms in cancer management and recent research points to how they can vastly improve imaging and therapy through multimodality and multifunctionality. However, challenges to achieving optimal efficacy are manifold starting from processing materials and evaluating their intended effectiveness on biological tissue, to developing new strategies aimed at improving transport of these materials through the biological milieu to the target tissue. Here, we report a fluorescent derivative of a beta-lactam antibiotic, ampicillin (termed iAmp) and its multifunctional physicobiochemical characteristics and potential as a biocompatible shielding agent and an effective dispersant. Carbon nanotubes (CNTs) were chosen to demonstrate the efficacy of iAmp. CNTs are known for their versatility and have been used extensively for cancer theranostics as photothermal and photoacoustic agents, but have limited solubility in water and biocompatibility. Traditional dispersants are associated with imaging artifacts and are not fully biocompatible. The chemical structure of iAmp is consistent with a deamination product of ampicillin. Although the four-membered lactam ring is intact, it does not retain the antibiotic properties. The iAmp is an effective dispersant and simultaneously serves as a fluorescent label for single-walled CNTs (SWNTs) with minimal photobleaching. The iAmp also enables bioconjugation of SWNTs to bio-ligands such as antibodies through functional carboxyl groups. Viability tests show that iAmp-coated SWNTs have minimal toxicity. Bio-stability tests under physiological conditions reveal that iAmp coating not only remains stable in a biologically relevant environment with high protein and salt concentrations, but also renders SWNTs transparent against nonspecific protein adsorption, also known as protein corona. Mammalian tissue culture studies with macrophages and opsonins validate that iAmp coating affords immunological resistance to SWNTs. Furthermore, iAmp coating offers protection to SWNTs against their nonspecific adsorption across disparate cell types, which has precluded a targeted strategy, and enables selective molecular targeting. The iAmp can therefore be used as an efficient dispersant, a photostable fluorescent agent, and a biocompatible disguising agent, alleviating CNTs' drawbacks and rendering them suitable for nanotheranostic and drug delivery applications.
Collapse
Affiliation(s)
- Nalinikanth Kotagiri
- Bio/Nano Technology Laboratory, Institute for Nanoscience & Engineering, University of Arkansas, Fayetteville, AR, USA.
| | | | | | | | | |
Collapse
|
10
|
The janus facet of nanomaterials. BIOMED RESEARCH INTERNATIONAL 2015; 2015:317184. [PMID: 26075225 PMCID: PMC4449866 DOI: 10.1155/2015/317184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/06/2014] [Indexed: 12/12/2022]
Abstract
Application of nanoscale materials (NMs) displays a rapidly increasing trend in electronics, optics, chemical catalysis, biotechnology, and medicine due to versatile nature of NMs and easily adjustable physical, physicochemical, and chemical properties. However, the increasing abundance of NMs also poses significant new and emerging health and environmental risks. Despite growing efforts, understanding toxicity of NMs does not seem to cope with the demand, because NMs usually act entirely different from those of conventional small molecule drugs. Currently, large-scale application of available safety assessment protocols, as well as their furthering through case-by-case practice, is advisable. We define a standard work-scheme for nanotoxicity evaluation of NMs, comprising thorough characterization of structural, physical, physicochemical, and chemical traits, followed by measuring biodistribution in live tissue and blood combined with investigation of organ-specific effects especially regarding the function of the brain and the liver. We propose a range of biochemical, cellular, and immunological processes to be explored in order to provide information on the early effects of NMs on some basic physiological functions and chemical defense mechanisms. Together, these contributions give an overview with important implications for the understanding of many aspects of nanotoxicity.
Collapse
|
11
|
Sur A, Pradhan B, Banerjee A, Aich P. Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PLoS One 2015; 10:e0123905. [PMID: 25876153 PMCID: PMC4398554 DOI: 10.1371/journal.pone.0123905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/02/2015] [Indexed: 12/28/2022] Open
Abstract
Antibiotic resistance is concern of today's world. Search for alternative molecules, for treatment and immune stimulation, remains at the forefront. One such group of biomolecules with promise, along the line of immune stimulation or therapy, is host defense peptide (HDP). These molecules, however, are required at a higher dose to be effective which leads to high cost. To alleviate such problems, an aid can be used to achieve similar efficacy but at a smaller effective dose of the immune stimulant. We hypothesised that by conjugating HDPs with carbon nanotubes and/or gold nanoparticles, it would be possible to stimulate a protective immune response in host system at a lower dosage of HDP. In this report, we characterized, using biophysical methodologies, conjugation of Indolicidin, as a representative of HDP. We further established efficacy of peptide-nanomaterial conjugates in activating innate immunity and protecting against pathogen infection in vitro at a significantly small dose.
Collapse
Affiliation(s)
- Abhinav Sur
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Biswaranjan Pradhan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Arka Banerjee
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- * E-mail:
| |
Collapse
|