1
|
Miyabe S, Fujinaga Y, Tsuchiya H, Fujimoto S. TiO 2 nanotubes with customized diameters for local drug delivery systems. J Biomed Mater Res B Appl Biomater 2024; 112:e35445. [PMID: 38946669 DOI: 10.1002/jbm.b.35445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two-diameter]), and a 20-60 V swept potential (49 nm [full-tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two-diameter) and 49 nm (full-tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two-diameter), 49 nm (full-tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two-diameter) and 49 nm (full-tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two-diameter) sample. Thus, 50 nm (two-diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two-diameter and full-tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.
Collapse
Affiliation(s)
- Sayaka Miyabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yushi Fujinaga
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hiroaki Tsuchiya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shinji Fujimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Kunrath MF, Farina G, Sturmer LBS, Teixeira ER. TiO 2 nanotubes as an antibacterial nanotextured surface for dental implants: Systematic review and meta-analysis. Dent Mater 2024; 40:907-920. [PMID: 38714394 DOI: 10.1016/j.dental.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVES Nanotechnology is constantly advancing in dental science, progressing several features aimed at improving dental implants. An alternative for surface treatment of dental implants is electrochemical anodization, which may generate a nanotubular surface (TiO2 nanotubes) with antibacterial potential and osteoinductive features. This systematic review and meta-analysis aims to elucidate the possible antibacterial properties of the surface in question compared to the untreated titanium surface. SOURCES For that purpose, was performed a systematic search on the bases PubMed, Lilacs, Embase, Web Of Science, Cinahl, and Cochrane Central, as well as, manual searches and gray literature. STUDY SELECTION The searches resulted in 742 articles, of which 156 followed for full-text reading. Then, 37 were included in the systematic review and 8 were included in meta-analysis. RESULTS Fifteen studies revealed significant antibacterial protection using TiO2 nanotube surfaces, while 15 studies found no statistical difference between control and nanotextured surfaces. Meta-analysis of in vitro studies demonstrated relevant bacterial reduction only for studies investigating Staphylococcus aureus in a period of 6 h. Meta-analysis of in vivo studies revealed three times lower bacterial adhesion and proliferation on TiO2 nanotube surfaces. CONCLUSIONS TiO2 nanotube topography as a surface for dental implants in preclinical research has demonstrated a positive relationship with antibacterial properties, nevertheless, factors such as anodization protocols, bacteria strains, and mono-culture methods should be taken into consideration, consequently, further studies are necessary to promote clinical translatability.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Georgia Farina
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiza B S Sturmer
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Eduardo R Teixeira
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Moradi MR, Salahinejad E, Sharifi E, Tayebi L. Controlled drug delivery from chitosan-coated heparin-loaded nanopores anodically grown on nitinol shape-memory alloy. Carbohydr Polym 2023; 314:120961. [PMID: 37173015 PMCID: PMC10585653 DOI: 10.1016/j.carbpol.2023.120961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Nitinol (NiTi shape-memory alloy) is an interesting candidate in various medical applications like dental, orthopedic, and cardiovascular devices, owing to its unique mechanical behaviors and proper biocompatibility. The aim of this work is the local controlled delivery of a cardiovascular drug, heparin, loaded onto nitinol treated by electrochemical anodizing and chitosan coating. In this regard, the structure, wettability, drug release kinetics, and cell cytocompatibility of the specimens were analyzed in vitro. The two-stage anodizing process successfully developed a regular nanoporous layer of Ni-Ti-O on nitinol, which considerably decreased the sessile water contact angle and induced hydrophilicity. The application of the chitosan coatings controlled the release of heparin mainly by a diffusional mechanism, where the drug release mechanisms were evaluated by the Higuchi, first-order, zero-order, and Korsmeyer-Pepass models. Human umbilical cord endothelial cells (HUVECs) viability assay also showed the non-cytotoxicity of the samples, so that the best performance was found for the chitosan-coated samples. It is concluded that the designed drug delivery systems are promising for cardiovascular, particularly stent applications.
Collapse
Affiliation(s)
- M R Moradi
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - E Salahinejad
- Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - E Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - L Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| |
Collapse
|
4
|
Gulati K, Chopra D, Kocak-Oztug NA, Verron E. Fit and forget: The future of dental implant therapy via nanotechnology. Adv Drug Deliv Rev 2023; 199:114900. [PMID: 37263543 DOI: 10.1016/j.addr.2023.114900] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/03/2023]
Abstract
Unlike orthopedic implants, dental implants require the orchestration of both osseointegration at the bone-implant interface and soft-tissue integration at the transmucosal region in a complex oral micro-environment with ubiquitous pathogenic bacteria. This represents a very challenging environment for early acceptance and long-term survival of dental implants, especially in compromised patient conditions, including aged, smoking and diabetic patients. Enabling advanced local therapy from the surface of titanium-based dental implants via novel nano-engineering strategies is emerging. This includes anodized nano-engineered implants eluting growth factors, antibiotics, therapeutic nanoparticles and biopolymers to achieve maximum localized therapeutic action. An important criterion is balancing bioactivity enhancement and therapy (like bactericidal efficacy) without causing cytotoxicity. Critical research gaps still need to be addressed to enable the clinical translation of these therapeutic dental implants. This review informs the latest developments, challenges and future directions in this domain to enable the successful fabrication of clinically-translatable therapeutic dental implants that would allow for long-term success, even in compromised patient conditions.
Collapse
Affiliation(s)
- Karan Gulati
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia.
| | - Divya Chopra
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia
| | - Necla Asli Kocak-Oztug
- The University of Queensland, School of Dentistry, Herston, QLD 4006, Australia; Istanbul University, Faculty of Dentistry, Department of Periodontology, 34116 Istanbul, Turkey
| | - Elise Verron
- Nantes Université, CNRS, CEISAM, UMR 6230, 44000 Nantes, France
| |
Collapse
|
5
|
Jarosz M, Latosiński J, Gumułka P, Dąbrowska M, Kępczyński M, Sulka GD, Starek M. Controlled Delivery of Celecoxib-β-Cyclodextrin Complexes from the Nanostructured Titanium Dioxide Layers. Pharmaceutics 2023; 15:1861. [PMID: 37514047 PMCID: PMC10383027 DOI: 10.3390/pharmaceutics15071861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Considering the potential of nanostructured titanium dioxide layers as drug delivery systems, it is advisable to indicate the possibility of creating a functional drug delivery system based on anodic TiO2 for celecoxib as an alternative anti-inflammatory drug and its inclusion complex with β-cyclodextrin. First, the optimal composition of celecoxib-β-cyclodextrin complexes was synthesized and determined. The effectiveness of the complexation was quantified using isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR) nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Then, nanostructured titanium dioxide layers (TiO2) were synthesized using the electrochemical oxidation technique. The TiO2 layers with pore diameters of 60 nm and layer thickness of 1.60 µm were used as drug delivery systems. The samples were modified with pure celecoxib and the β-cyclodextrin-celecoxib complex. The release profiles shown effective drug release from such layers during 24 h. After the initial burst release, the drug was continuously released from the pores. The presented results confirm that the use of nanostructured TiO2 as a drug delivery system can be effectively used in more complicated systems composed of β-cyclodextrin-celecoxib complexes, making such drugs available for pain treatment, e.g., for orthopedic surgeries.
Collapse
Affiliation(s)
- Magdalena Jarosz
- Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Jakub Latosiński
- Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Gumułka
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Łazarza St., 31-530 Krakow, Poland
| | - Monika Dąbrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Mariusz Kępczyński
- Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Grzegorz Dariusz Sulka
- Department of Physical Chemistry & Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Małgorzata Starek
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| |
Collapse
|
6
|
Kennedy DG, O’Mahony AM, Culligan EP, O’Driscoll CM, Ryan KB. Strategies to Mitigate and Treat Orthopaedic Device-Associated Infections. Antibiotics (Basel) 2022; 11:1822. [PMID: 36551479 PMCID: PMC9774155 DOI: 10.3390/antibiotics11121822] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Orthopaedic device implants play a crucial role in restoring functionality to patients suffering from debilitating musculoskeletal diseases or to those who have experienced traumatic injury. However, the surgical implantation of these devices carries a risk of infection, which represents a significant burden for patients and healthcare providers. This review delineates the pathogenesis of orthopaedic implant infections and the challenges that arise due to biofilm formation and the implications for treatment. It focuses on research advancements in the development of next-generation orthopaedic medical devices to mitigate against implant-related infections. Key considerations impacting the development of devices, which must often perform multiple biological and mechanical roles, are delineated. We review technologies designed to exert spatial and temporal control over antimicrobial presentation and the use of antimicrobial surfaces with intrinsic antibacterial activity. A range of measures to control bio-interfacial interactions including approaches that modify implant surface chemistry or topography to reduce the capacity of bacteria to colonise the surface, form biofilms and cause infections at the device interface and surrounding tissues are also reviewed.
Collapse
Affiliation(s)
- Darragh G. Kennedy
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | - Eamonn P. Culligan
- Department of Biological Sciences, Munster Technological University, T12 P928 Cork, Ireland
| | | | - Katie B. Ryan
- School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
7
|
Ammendolia MG, De Berardis B. Nanoparticle Impact on the Bacterial Adaptation: Focus on Nano-Titania. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3616. [PMID: 36296806 PMCID: PMC9609019 DOI: 10.3390/nano12203616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Titanium dioxide nanoparticles (nano-titania/TiO2 NPs) are used in different fields and applications. However, the release of TiO2 NPs into the environment has raised concerns about their biosafety and biosecurity. In light of the evidence that TiO2 NPs could be used to counteract antibiotic resistance, they have been investigated for their antibacterial activity. Studies reported so far indicate a good performance of TiO2 NPs against bacteria, alone or in combination with antibiotics. However, bacteria are able to invoke multiple response mechanisms in an attempt to adapt to TiO2 NPs. Bacterial adaption arises from global changes in metabolic pathways via the modulation of regulatory networks and can be related to single-cell or multicellular communities. This review describes how the impact of TiO2 NPs on bacteria leads to several changes in microorganisms, mainly during long-term exposure, that can evolve towards adaptation and/or increased virulence. Strategies employed by bacteria to cope with TiO2 NPs suggest that their use as an antibacterial agent has still to be extensively investigated from the point of view of the risk of adaptation, to prevent the development of resistance. At the same time, possible effects on increased virulence following bacterial target modifications by TiO2 NPs on cells or tissues have to be considered.
Collapse
|
8
|
Ciprofloxacin-Loaded Titanium Nanotubes Coated with Chitosan: A Promising Formulation with Sustained Release and Enhanced Antibacterial Properties. Pharmaceutics 2022; 14:pharmaceutics14071359. [PMID: 35890255 PMCID: PMC9316085 DOI: 10.3390/pharmaceutics14071359] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Due to their high entrapment efficiency, anodized titanium nanotubes (TiO2-NTs) are considered effective reservoirs for loading/releasing strong antibiotics whose systemic administration is associated with diverse and severe side-effects. In this study, TiO2-NTs were synthesized by anodic oxidation of titanium foils, and the effects of electrolyte percentage and viscosity on their dimensions were evaluated. It was found that as the water content increased from 15 to 30%, the wall thickness, length, and inner diameter of the NTs increase from 5.9 to 15.8 nm, 1.56 to 3.21 µm, and 59 to 84 nm, respectively. Ciprofloxacin, a highly potent antibiotic, was loaded into TiO2-NTs with a high encapsulation efficiency of 93%, followed by coating with different chitosan layers to achieve a sustained release profile. The prepared formulations were characterized by various techniques, such as scanning electron microscopy, differential scanning calorimetry, and contact measurement. In vitro release studies showed that the higher the chitosan layer count, the more sustained the release. Evaluation of antimicrobial activity of the formulation against two endodontic species from Peptostreptococcus and Fusobacterium revealed minimum inhibitory concentrations (MICs) of 1 µg/mL for the former and the latter. To summarize, this study demonstrated that TiO2-NTs are promising reservoirs for drug loading, and that the chitosan coating provides not only a sustained release profile, but also a synergistic antibacterial effect.
Collapse
|
9
|
Effect of electrochemical oxidation and drug loading on the antibacterial properties and cell biocompatibility of titanium substrates. Sci Rep 2022; 12:8595. [PMID: 35597786 PMCID: PMC9124201 DOI: 10.1038/s41598-022-12332-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
A combination of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ TiO}}_{2}$$\end{document}TiO2 nanotube array (TON) and controlled drug release system is employed to provide enhanced surface properties of titanium implants. Electrochemical anodization process is used to generate TON for introducing, vancomycin, an effective antibacterial drug against Staphylococcusaureus. TON loaded vancomycin is then coated with a number of layers of 10% gelatin using spin coating technique. The gelatin film is reinforced with graphene oxide (GO) nanoparticles to improve the surface bioactivity. The surface of the samples is characterized by field emission electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and contact angle measurement. The results illustrate that the TON was constructed and vancomycin molecules are successfully loaded. The drug release study shows that the amount of released vancomycin is controlled by the thickness of gelatin layers. With an increase in gelatin film layers from 3 to 7, the release of vancomycin in the burst release phase decreased from 58 to 31%, and sustained release extended from 10 to 17 days. The addition of GO nanoparticles seems to reduce drug release in from 31 to 22% (burst release phase) and prolonged drug release (from 17 to 19 days). MTT assay indicates that samples show no cytotoxicity, and combination of GO nanoparticles with gelatin coating could highly promote MG63 cell proliferation. Soaking the samples in SBF solution after 3 and 7 days demonstrates that hydroxy apatite crystals were deposited on the TON surface with GO-gelatin coating more than surface of TON with gelatin. Moreover, based on the results of disc diffusion assay, both samples (loaded with Vancomycin and coated with gelatin and gelatin-GO) with the inhibition zones equaled to 20 mm show effective antibacterial properties against S. aureus. The evidence demonstrates that titania nanotube loaded with vancomycin and coated with gelatin-GO has a great potential for general applicability to the orthopedic implant field.
Collapse
|
10
|
Meng F, Yin Z, Ren X, Geng Z, Su J. Construction of Local Drug Delivery System on Titanium-Based Implants to Improve Osseointegration. Pharmaceutics 2022; 14:pharmaceutics14051069. [PMID: 35631656 PMCID: PMC9146791 DOI: 10.3390/pharmaceutics14051069] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Titanium and its alloys are the most widely applied orthopedic and dental implant materials due to their high biocompatibility, superior corrosion resistance, and outstanding mechanical properties. However, the lack of superior osseointegration remains the main obstacle to successful implantation. Previous traditional surface modification methods of titanium-based implants cannot fully meet the clinical needs of osseointegration. The construction of local drug delivery systems (e.g., antimicrobial drug delivery systems, anti-bone resorption drug delivery systems, etc.) on titanium-based implants has been proved to be an effective strategy to improve osseointegration. Meanwhile, these drug delivery systems can also be combined with traditional surface modification methods, such as anodic oxidation, acid etching, surface coating technology, etc., to achieve desirable and enhanced osseointegration. In this paper, we review the research progress of different local drug delivery systems using titanium-based implants and provide a theoretical basis for further research on drug delivery systems to promote bone–implant integration in the future.
Collapse
Affiliation(s)
- Fanying Meng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China;
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China;
- Correspondence: (X.R.); (Z.G.); (J.S.)
| |
Collapse
|
11
|
Baati T, Ben Brahim M, Salek A, Selmi M, Njim L, Umek P, Aouane A, Hammami M, Hosni K. Flumequine-loaded titanate nanotubes as antibacterial agents for aquaculture farms. RSC Adv 2022; 12:5953-5963. [PMID: 35424545 PMCID: PMC8981844 DOI: 10.1039/d1ra08533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms. However, its intensive use becomes worrisome because of its environmental risks and the emergence of FLUM-resistant bacteria. To overcome these problems we propose in this study the encapsulation and the delivery of FLUM by titanate nanotubes (TiNTs). Optimal FLUM loading was reached by suspending the dehydrated powder nanomaterials (FLUM : TiNTs ratio = 1 : 5) in ethanol. The drug entrapment efficiency was calculated to be 80% approximately with a sustained release in PBS at 37 °C up to 5 days. Then FLUM@TiNTs was evaluated for both its in vitro drug release and antimicrobial activity against Escherichia coli (E. coli). Spectacularly high antibacterial activity compared to those of free FLUM antibiotic was obtained confirming the efficiency of TiNTs to protect FLUM from rapid degradation and transformation within bacteria improving thereby its antibacterial effect. Indeed FLUM@TiNTs was efficient to decrease gradually the bacterial viability to reach ≈5% after 5 days versus ≈75% with free FLUM. Finally, the ex vivo permeation experiments on sea bass (Dicentrachus labrax) intestine shows that TiNTs act to increase the intestinal permeation of FLUM during the experiment. Indeed the encapsulated FLUM flux increased 12 fold (1.46 μg cm2 h−1) compared to the free antibiotic (0.18 μg cm2 h−1). Thanks to its physical properties (diameter 10 nm, tubular shape…) and its high stability in the simulated intestinal medium, TiNTs are easy internalized by enterocytes, thus involving an endocytosis mechanism, and then improve intestinal permeation of FLUM. Taken together, FLUM@TiNTs hold potential as an effective approach for enhancing the antimicrobial activity of FLUM and pave the way not only for future pharmacokinetic studies in the treatment and targeting of fish infections but also for instating of novel strategies that overcome the challenges associated with the abusive use of antibiotics in fish farming. Flumequine (FLUM), a quinolone-derived antibiotic is one of the most prescribed drugs in aquaculture farms.![]()
Collapse
Affiliation(s)
- Tarek Baati
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mounir Ben Brahim
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Abir Salek
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Mouna Selmi
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Leila Njim
- Service d'Anatomie Pathologique, CHU de Monastir, Université de Monastir Tunisia
| | - Polona Umek
- Jožef Stefan Institute Jamova cesta 39 SI-1000 Ljubljana Slovenia
| | - Aicha Aouane
- Centre de Microscopie Electronique, IBDML campus Luminy Marseille 13000 France
| | - Mohamed Hammami
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| | - Karim Hosni
- Laboratoire des Substances Naturelles, Institut National de Recherche et d'Analyse Physico-chimique, Biotechpôle Sidi Thabet 2020 Tunisia +216 71 537 666
| |
Collapse
|
12
|
Yılmaz E, Türk S. Loading antibiotics on the surface of nano-networked sodium hydroxide treated titanium. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Sun Y, Yang Y, Jiang W, Bai H, Liu H, Wang J. In Vivo Antibacterial Efficacy of Nanopatterns on Titanium Implant Surface: A Systematic Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121524. [PMID: 34943736 PMCID: PMC8698789 DOI: 10.3390/antibiotics10121524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Bionic surface nanopatterns of titanium (Ti) materials have excellent antibacterial effects in vitro for infection prevention. To date, there is a lack of knowledge about the in vivo bactericidal outcomes of the nanostructures on the Ti implant surfaces. Methods: A systematic review was performed using the PubMed, Embase, and Cochrane databases to better understand surface nanoscale patterns’ in vivo antibacterial efficacy. The inclusion criteria were preclinical studies (in vivo) reporting the antibacterial activity of nanopatterns on Ti implant surface. Ex vivo studies, studies not evaluating the antibacterial activity of nanopatterns or surfaces not modified with nanopatterns were excluded. Results: A total of five peer-reviewed articles met the inclusion criteria. The included studies suggest that the in vivo antibacterial efficacy of the nanopatterns on Ti implants’ surfaces seems poor. Conclusions: Given the small number of literature results, the variability in experimental designs, and the lack of reporting across studies, concluding the in vivo antibacterial effectiveness of nanopatterns on Ti substrates’ surfaces remains a big challenge. Surface coatings using metallic or antibiotic elements are still practical approaches for this purpose. High-quality preclinical data are still needed to investigate the in vivo antibacterial effects of the nanopatterns on the implant surface.
Collapse
Affiliation(s)
- Yang Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Yang Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Engineering Research Centre of Molecular Diagnosis and Cell Treatment for Metabolic Bone Disease, The Second Hospital of Jilin University, Changchun 130041, China
| | - Weibo Jiang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Haotian Bai
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China; (Y.S.); (Y.Y.); (W.J.); (H.B.); (H.L.)
- Correspondence:
| |
Collapse
|
14
|
Improved Biocompatibility of TiO2 Nanotubes via Co-Precipitation Loading with Hydroxyapatite and Gentamicin. COATINGS 2021. [DOI: 10.3390/coatings11101191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The antibacterial properties of titanium make it useful for clinical applications. Hydroxyapatite (HA) is widely utilized as a coating on orthopedic implants to improve osteointegration. Titanium oxide nanotubes (TNT) are recognized as a promising solution for local antibiotic therapy in bone implants. It is demonstrated that the utilization of HA-coated titanium can improve the biocompatibility of bone implants. This research aims to examine the antibacterial properties and biocompatibility of the TiO2 nanotubes by loading HA and gentamicin. In vitro testing, the characterization of drug release, cell adhesion and proliferation, bacteria culture, and antibacterial tests were conducted. During the in vivo experiments, Staphylococcus aureus was implanted into the femur of rats. The animals were sacrificed at four weeks followed by microbiological and clinical assessments on the bone, which were conducted by removing the implants followed by agar plating. The in vitro cell incubation demonstrated that the TiO2 nanotubes loaded with hydroxyapatite and gentamicin had better cellular compatibility compared to Cp–Ti. In addition, in vitro elution testing showed that gentamicin was released from the hydroxyapatite/TiO2 nanotubes for as long as 22 days. The release time was much longer than the TNT loaded with gentamicin at only 6 h. All animals in the gentamicin/HA/TNT group were free of infection compared to those in the Cp–Ti, TNT, and HA/gentamicin/TNT groups. There was a considerable reduction in the rates of infection among the rats with gentamicin-HA-TNT coatings compared to standard titanium. These results indicated that the co-precipitation of gentamicin and HA loading using the TNT method provided a novel prophylactic method against prosthetic infections and other biomedical applications.
Collapse
|
15
|
Hosseinpour S, Nanda A, Walsh LJ, Xu C. Microbial Decontamination and Antibacterial Activity of Nanostructured Titanium Dental Implants: A Narrative Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2336. [PMID: 34578650 PMCID: PMC8471155 DOI: 10.3390/nano11092336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Peri-implantitis is the major cause of the failure of dental implants. Since dental implants have become one of the main therapies for teeth loss, the number of patients with peri-implant diseases has been rising. Like the periodontal diseases that affect the supporting tissues of the teeth, peri-implant diseases are also associated with the formation of dental plaque biofilm, and resulting inflammation and destruction of the gingival tissues and bone. Treatments for peri-implantitis are focused on reducing the bacterial load in the pocket around the implant, and in decontaminating surfaces once bacteria have been detached. Recently, nanoengineered titanium dental implants have been introduced to improve osteointegration and provide an osteoconductive surface; however, the increased surface roughness raises issues of biofilm formation and more challenging decontamination of the implant surface. This paper reviews treatment modalities that are carried out to eliminate bacterial biofilms and slow their regrowth in terms of their advantages and disadvantages when used on titanium dental implant surfaces with nanoscale features. Such decontamination methods include physical debridement, chemo-mechanical treatments, laser ablation and photodynamic therapy, and electrochemical processes. There is a consensus that the efficient removal of the biofilm supplemented by chemical debridement and full access to the pocket is essential for treating peri-implantitis in clinical settings. Moreover, there is the potential to create ideal nano-modified titanium implants which exert antimicrobial actions and inhibit biofilm formation. Methods to achieve this include structural and surface changes via chemical and physical processes that alter the surface morphology and confer antibacterial properties. These have shown promise in preclinical investigations.
Collapse
Affiliation(s)
| | | | - Laurence J. Walsh
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia; (S.H.); (A.N.)
| |
Collapse
|
16
|
Rajeswari SR, Nandini V, Perumal A, Rajendran, Gowda T. Influence of Titania Nanotubes Diameter on Its Antibacterial Efficacy against Periodontal Pathogens: An In vitro Analysis. J Pharm Bioallied Sci 2021; 13:S284-S288. [PMID: 34447094 PMCID: PMC8375917 DOI: 10.4103/jpbs.jpbs_743_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/04/2022] Open
Abstract
Background Peri implant infection in dental implantology is a frequently encountered clinical problem. Titania nanotubes (TNTs) are recent improvement in surface characterization, showing promising results. Aim The nanosurface parameter tweaking has been implicated with profound change in the microbiological and biological response. Hence, it was proposed that alteration in the nanotube diameter could have positive influence in its antibacterial activity against salient periodontal pathogens. Materials and Methods Commercially, pure titanium discs of 8-mm diameter and 1.5-mm thickness were prepared. Polished titanium discs were used as control (Group A). Vertically oriented, structured TNTs were fabricated by anodization technique and grouped as B and C, having nanotube diameter, 40 and 80 nm subsequently. The surface characterizations of the samples were done by scanning electron microscope analysis. The antibacterial activity was evaluated with the bacterial colony counting method, at 24 h, 72 h, and 1-week intervals. Statistical Analysis The one-way analysis of variance and Tukey's honest significance post hoc test were employed to assess the statistical significance. Results The 80 nm nanotubes showed better antibacterial activity comparatively, at all three-time intervals investigated. Conclusion The optimal TNT diameter of 80 nm was the most effective from an antimicrobial stand point of view.
Collapse
Affiliation(s)
- S Raja Rajeswari
- Department of Periodontics, SRM Institute of Science and Technology, Davangere, Karnataka, India
| | - Vidyashree Nandini
- Department of Prosthodontics, SRM Institute of Science and Technology, Davangere, Karnataka, India
| | - Agilan Perumal
- Deparment of Chemistry, Anna University, Davangere, Karnataka, India
| | - Rajendran
- Deparment of Chemistry, Anna University, Davangere, Karnataka, India
| | - Triveni Gowda
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
17
|
Zhang E, Zhao X, Hu J, Wang R, Fu S, Qin G. Antibacterial metals and alloys for potential biomedical implants. Bioact Mater 2021; 6:2569-2612. [PMID: 33615045 PMCID: PMC7876544 DOI: 10.1016/j.bioactmat.2021.01.030] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Metals and alloys, including stainless steel, titanium and its alloys, cobalt alloys, and other metals and alloys have been widely used clinically as implant materials, but implant-related infection or inflammation is still one of the main causes of implantation failure. The bacterial infection or inflammation that seriously threatens human health has already become a worldwide complaint. Antibacterial metals and alloys recently have attracted wide attention for their long-term stable antibacterial ability, good mechanical properties and good biocompatibility in vitro and in vivo. In this review, common antibacterial alloying elements, antibacterial standards and testing methods were introduced. Recent developments in the design and manufacturing of antibacterial metal alloys containing various antibacterial agents were described in detail, including antibacterial stainless steel, antibacterial titanium alloy, antibacterial zinc and alloy, antibacterial magnesium and alloy, antibacterial cobalt alloy, and other antibacterial metals and alloys. Researches on the antibacterial properties, mechanical properties, corrosion resistance and biocompatibility of antibacterial metals and alloys have been summarized in detail for the first time. It is hoped that this review could help researchers understand the development of antibacterial alloys in a timely manner, thereby could promote the development of antibacterial metal alloys and the clinical application.
Collapse
Affiliation(s)
- Erlin Zhang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| | - Xiaotong Zhao
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Jiali Hu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Ruoxian Wang
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Shan Fu
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
| | - Gaowu Qin
- Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University, Shenyang, 150819, China
- Research Center for Metallic Wires, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
18
|
Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater 2021; 127:80-101. [PMID: 33744499 DOI: 10.1016/j.actbio.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Nanoscale surface modification of titanium-based orthopaedic and dental implants is routinely applied to augment bioactivity, however, as is the case with other cells, bacterial adhesion is increased on nano-rough surfaces. Electrochemically anodized Ti implants with titania nanotubes (TNTs) have been proposed as an ideal implant surface with desirable bioactivity and local drug release functions to target various conditions. However, a comprehensive state of the art overview of why and how such TNTs-Ti implants acquire antibacterial functions, and an in-depth knowledge of how topography, chemistry and local elution of potent antibiotic agents influence such functions has not been reported. This review discusses and details the application of nano-engineered Ti implants modified with TNTs for maximum local antibacterial functions, deciphering the interdependence of various characteristics and the fine-tuning of different parameters to minimize cytotoxicity. An ideal implant surface should cater simultaneously to ossoeintegration (and soft-tissue integration for dental implants), immunomodulation and antibacterial functions. We also evaluate the effectiveness and challenges associated with such synergistic functions from modified TNTs-implants. Particular focus is placed on the metallic and semi-metallic modification of TNTs towards enabling bactericidal properties, which is often dose dependent. Additionally, there are concerns over the cytotoxicity of these therapies. In that light, research challenges in this domain and expectations from the next generation of customizable antibacterial TNTs implants towards clinical translation are critically evaluated. STATEMENT OF SIGNIFICANCE: One of the major causes of titanium orthopaedic/dental implant failure is bacterial colonization and infection, which results in complete implant failure and the need for revision surgery and re-implantation. Using advanced nanotechnology, controlled nanotopographies have been fabricated on Ti implants, for instance anodized nanotubes, which can accommodate and locally elute potent antibiotic agents. In this pioneering review, we shine light on the topographical, chemical and therapeutic aspects of antibacterial nanotubes towards achieving desirable tailored antibacterial efficacy without cytotoxicity concerns. This interdisciplinary review will appeal to researchers from the wider scientific community interested in biomaterials science, structure and function, and will provide an improved understanding of controlling bacterial infection around nano-engineered implants, aimed at bridging the gap between research and clinics.
Collapse
|
19
|
Losic D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opin Drug Deliv 2021; 18:1355-1378. [PMID: 33985402 DOI: 10.1080/17425247.2021.1928071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Titanium (Ti) and their alloys are used as main implant materials in orthopedics and dentistry for decades having superior mechanical properties, chemical stability and biocompatibility. Their rejections due lack of biointegration and bacterial infection are concerning with considerable healthcare costs and impacts on patients. To address these limitations, conventional Ti implants need improvements where the use of surface nanoengineering approaches and the development of a new generation of implants are recognized as promising strategies.Areas covered:This review presents an overview of recent progress on the application of surface engineering methods to advance Ti implants enable to address their key limitations. Several promising surface engineering strategies are presented and critically discussed to generate advanced surface properties and nano-topographies (tubular, porous, pillars) able not only to improve their biointegration, antibacterial performances, but also to provide multiple functions such as drug delivery, therapy, sensing, communication and health monitoring underpinning the development of new generation and smart medical implants.Expert opinion:Recent advances in cell biology, materials science, nanotechnology and additive manufacturing has progressively influencing improvements of conventional Ti implants toward the development of the next generation of implants with improved performances and multifunctionality. Current research and development are in early stage, but progressing with promising results and examples of moving into in-vivo studies an translation into real applications.
Collapse
Affiliation(s)
- Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia.,ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia
| |
Collapse
|
20
|
Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv Transl Res 2021; 11:1456-1474. [PMID: 33942245 DOI: 10.1007/s13346-021-00980-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Titanium implants have been widely used as one of the most effective treatments of bone defects. However, the lack of osteogenesis and bacteria-resistant activities result in high infection and loosening rates of titanium implants. Anodic oxidation could easily construct titanium dioxide nanotubes (TNTs) array on the surface of titanium, and the rough surface of TNTs is beneficial to the growth of osteoblast-related cells on the surface. And TNTs could be excellent drug carriers because of their single-entry tubular hollow structure. In this review, we aim at detailing the application of TNTs as drug carriers in the field of bone implants. Starting from the topography of TNTs, we illustrated the biological activity of the TNTs surface, the drugs for loading in TNTs, and the controlled and responsive release strategies of drug-loaded TNTs, respectively. At the end of this review, the shortcomings of TNTs as the drug carrier in the field of bone implants are discussed, and the development direction of this research field is also prospected.
Collapse
|
21
|
Ren X, van der Mei HC, Ren Y, Busscher HJ, Peterson BW. Antimicrobial loading of nanotubular titanium surfaces favoring surface coverage by mammalian cells over bacterial colonization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112021. [PMID: 33812638 DOI: 10.1016/j.msec.2021.112021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Titanium is frequently used for dental implants, percutaneous pins and screws or orthopedic joint prostheses. Implant surfaces can become peri-operatively contaminated by surgically introduced bacteria during implantation causing lack of surface coverage by mammalian cells and subsequent implant failure. Especially implants that have to function in a bacteria-laden environment such as dental implants or percutaneous pins, cannot be surgically implanted while being kept sterile. Accordingly, contaminating bacteria adhering to implant surfaces hamper successful surface coverage by mammalian cells required for long-term functioning. Here, nanotubular titanium surfaces were prepared and loaded with Ag nanoparticles or gentamicin with the aim of killing contaminating bacteria in order to favor surface coverage by mammalian cells. In mono-cultures, unloaded nanotubules did not cause bacterial killing, but loading of Ag nanoparticles or gentamicin reduced the number of adhering Staphylococcus aureus or Pseudomonas aeruginosa CFUs. A gentamicin-resistant Staphylococcus epidermidis was only killed upon loading with Ag nanoparticles. However, unlike low-level gentamicin loading, loading with Ag nanoparticles also caused tissue-cell death. In bi-cultures, low-level gentamicin-loading of nanotubular titanium surfaces effectively eradicated contaminating bacteria favoring surface coverage by mammalian cells. Thus, care must be taken in loading nanotubular titanium surfaces with Ag nanoparticles, while low-level gentamicin-loaded nanotubular titanium surfaces can be used as a local antibiotic delivery system to negate failure of titanium implants due to peri-operatively introduced, contaminating bacteria without hampering surface coverage by mammalian cells.
Collapse
Affiliation(s)
- Xiaoxiang Ren
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen, Department of Orthodontics, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Brandon W Peterson
- University of Groningen and University Medical Center of Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
22
|
Electrodeposited Hydroxyapatite-Based Biocoatings: Recent Progress and Future Challenges. COATINGS 2021. [DOI: 10.3390/coatings11010110] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite has become an important coating material for bioimplants, following the introduction of synthetic HAp in the 1950s. The HAp coatings require controlled surface roughness/porosity, adequate corrosion resistance and need to show favorable tribological behavior. The deposition rate must be sufficiently fast and the coating technique needs to be applied at different scales on substrates having a diverse structure, composition, size, and shape. A detailed overview of dry and wet coating methods is given. The benefits of electrodeposition include controlled thickness and morphology, ability to coat a wide range of component size/shape and ease of industrial processing. Pulsed current and potential techniques have provided denser and more uniform coatings on different metallic materials/implants. The mechanism of HAp electrodeposition is considered and the effect of operational variables on deposit properties is highlighted. The most recent progress in the field is critically reviewed. Developments in mineral substituted and included particle, composite HAp coatings, including those reinforced by metallic, ceramic and polymeric particles; carbon nanotubes, modified graphenes, chitosan, and heparin, are considered in detail. Technical challenges which deserve further research are identified and a forward look in the field of the electrodeposited HAp coatings is taken.
Collapse
|
23
|
Davoodian F, Salahinejad E, Sharifi E, Barabadi Z, Tayebi L. PLGA-coated drug-loaded nanotubes anodically grown on nitinol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111174. [DOI: 10.1016/j.msec.2020.111174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 12/12/2022]
|
24
|
Abstract
Dental implants are widely used in the field of oral restoration, but there are still problems leading to implant failures in clinical application, such as failed osseointegration, marginal bone resorption, and peri-implantitis, which restrict the success rate of dental implants and patient satisfaction. Poor osseointegration and bacterial infection are the most essential reasons resulting in implant failure. To improve the clinical outcomes of implants, many scholars devoted to modifying the surface of implants, especially to preparing different physical and chemical modifications to improve the osseointegration between alveolar bone and implant surface. Besides, the bioactive-coatings to promote the adhesion and colonization of ossteointegration-related proteins and cells also aim to improve the osseointegration. Meanwhile, improving the anti-bacterial performance of the implant surface can obstruct the adhesion and activity of bacteria, avoiding the occurrence of inflammation related to implants. Therefore, this review comprehensively investigates and summarizes the modifying or coating methods of implant surfaces, and analyzes the ossteointegration ability and anti-bacterial characteristics of emerging functional coatings in published references.
Collapse
|
25
|
Novel ternary vancomycin/strontium doped hydroxyapatite/graphene oxide bioactive composite coatings electrodeposited on titanium substrate for orthopedic applications. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Wu F, Xu J, Yan R, Hu B, Li G, Jin M, Jiang X, Li J, Tang P, Zhu J, Yan S. In vitro and in vivo evaluation of antibacterial activity of polyhexamethylene guanidine (PHMG)-loaded TiO 2 nanotubes. ACTA ACUST UNITED AC 2020; 15:045016. [PMID: 32567560 DOI: 10.1088/1748-605x/ab7e79] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Artificial joint replacement is an effective surgical method for treating end-stage degenerative joint diseases, but peripheral bacterial infection of prosthesis can compromise the effect of the surgery. Herein, antibacterial effects of titanium dioxide nanotubes (TNTs) coated with polyhexamethylene guanidine (PHMG) were examined via in vitro and in vivo experiments. TNTs with a pore diameter 46.4 ± 5.9 nm and length of 300-500 nm for the slice and 650-800 nm for the rod were fabricated by anodization. Then, 3.46 ± 0.40 mg and 1.27 ± 0.28 mg of PHMG were coated onto the TNT slice and rod, respectively. In vitro studies of the release of PHMG showed that the antibacterial agent was released in two stages: initial burst release and relatively slow release. In vitro and in vivo antibacterial studies showed that the PHMG-loaded TNTs (PHMG-TNTs) had excellent antibacterial abilities to prevent bacterial infections. Clinical pathological analysis of rabbit femurs indicated that the implanted PHMG-TNTs had no apparent pathological changes. Real-time quantitative reverse transcription polymerase chain reaction analysis of the femur tissues around the implants showed that the expression of osteogenic-related genes, including runt-related transcription factor 2, osteocalcin, alkaline phosphatase, bone sialoprotein, bone morphogenetic protein 2 and vascular endothelial growth factor A, was significantly upregulated in the PHMG-TNT implanted group as compared to the other groups. Overall, these findings provide a promising approach for the fabrication of antibacterial and bone biocompatible titanium-based implants in orthopedics.
Collapse
Affiliation(s)
- Fengfeng Wu
- Department of Orthopedics, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310009, People's Republic of China. Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, People's Republic of China. These authors contributed equally to this article
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ion R, Necula MG, Mazare A, Mitran V, Neacsu P, Schmuki P, Cimpean A. Drug Delivery Systems Based on Titania Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr Med Chem 2020; 27:854-902. [PMID: 31362646 DOI: 10.2174/0929867326666190726123229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 01/16/2019] [Accepted: 05/04/2019] [Indexed: 12/31/2022]
Abstract
TiO2 nanotubes (TNTs) are attractive nanostructures for localized drug delivery. Owing to their excellent biocompatibility and physicochemical properties, numerous functionalizations of TNTs have been attempted for their use as therapeutic agent delivery platforms. In this review, we discuss the current advances in the applications of TNT-based delivery systems with an emphasis on the various functionalizations of TNTs for enhancing osteogenesis at the bone-implant interface and for preventing implant-related infection. Innovation of therapies for enhancing osteogenesis still represents a critical challenge in regeneration of bone defects. The overall concept focuses on the use of osteoconductive materials in combination with the use of osteoinductive or osteopromotive factors. In this context, we highlight the strategies for improving the functionality of TNTs, using five classes of bioactive agents: growth factors (GFs), statins, plant derived molecules, inorganic therapeutic ions/nanoparticles (NPs) and antimicrobial compounds.
Collapse
Affiliation(s)
- Raluca Ion
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Anca Mazare
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patricia Neacsu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Patrik Schmuki
- University of Erlangen-Nuremberg, Department of Materials Science, Erlangen, Germany
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
28
|
Auñón Á, Esteban J, Doadrio AL, Boiza-Sánchez M, Mediero A, Eguibar-Blázquez D, Cordero-Ampuero J, Conde A, Arenas MÁ, de-Damborenea JJ, Aguilera-Correa JJ. Staphylococcus aureus Prosthetic Joint Infection Is Prevented by a Fluorine- and Phosphorus-Doped Nanostructured Ti-6Al-4V Alloy Loaded With Gentamicin and Vancomycin. J Orthop Res 2020; 38:588-597. [PMID: 31608498 DOI: 10.1002/jor.24496] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 10/04/2019] [Indexed: 02/04/2023]
Abstract
Prosthetic joint infection (PJI) is one of the most devastating complications in orthopedic surgery. One approach used to prevent PJI is local antibiotic therapy. This study evaluates the antibiotic release, in vitro cytocompatibility and in vivo effectiveness in preventing PJI caused by Staphylococcus aureus (S. aureus) of the fluorine- and phosphorus-doped, bottle-shaped, nanostructured (bNT) Ti-6Al-4V alloy loaded with a mixture of gentamicin and vancomycin (GV). We evaluated bNT Ti-6Al-4V loading with a mixture of GV, measuring the release of these antibiotics using high-performance liquid chromatography. Further, we describe bNT Ti-6Al-4V GV cytocompatibility and its efficacy against S. aureus using an in vivo rabbit model. GV was released from bNT Ti-6Al-4V following a Boltzmann non-linear model and maximum release values were obtained at 240 min for both antibiotics. The cell proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 (28%) and 168 h (68%), as did the matrix mineralization (52%) of these cells and the gene expression of three of the most important markers related to bone differentiation (more than threefold for VEGF and BGLAP, and 65% for RunX) on bNT Ti-6Al-4V GV compared with control. In vivo study results show that bNT Ti-6Al-4V GV can prevent S. aureus PJI according to histopathological and microbiological results. According to our results, bNT Ti-6Al-4V loaded with a mixture of GV using the soaking method is a promising biomaterial with favorable cytocompatibility and osteointegration, demonstrating local bactericidal properties against S. aureus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:588-597, 2020.
Collapse
Affiliation(s)
- Álvaro Auñón
- Department of Orthopedic Surgery, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Antonio L Doadrio
- Department of Inorganic and Bioinorganic Chemistry, Health Research Institute, Complutense University of Madrid, 12 de Octubre i+12, 28040, Madrid, Spain
| | - Macarena Boiza-Sánchez
- Department of Pathology, Fundación Jiménez Díaz University Hospital, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Aranzazu Mediero
- Joint and Bone Research Unit, IIS-Fundación Jimenez Diaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - Diego Eguibar-Blázquez
- Department of Experimental Surgery and Animal Research, IIS-Fundación Jimenez Diaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| | - José Cordero-Ampuero
- Department of Orthopaedic Surgery, University Hospital La Princesa, c/Océano Antártico 41, 28760, Tres Cantos, Spain
| | - Ana Conde
- Corrosion and Material Protection Group, Surface Engineering, Corrosion and Durability Department National Center for Metallurgical Research, (CENIM-CSIC) Av. Gregorio del Amo, 8, Madrid, 28040, Spain
| | - María-Ángeles Arenas
- Corrosion and Material Protection Group, Surface Engineering, Corrosion and Durability Department National Center for Metallurgical Research, (CENIM-CSIC) Av. Gregorio del Amo, 8, Madrid, 28040, Spain
| | - Juan-José de-Damborenea
- Corrosion and Material Protection Group, Surface Engineering, Corrosion and Durability Department National Center for Metallurgical Research, (CENIM-CSIC) Av. Gregorio del Amo, 8, Madrid, 28040, Spain
| | - John J Aguilera-Correa
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Av. Reyes Católicos, 2, 28040, Madrid, Spain
| |
Collapse
|
29
|
Bilek O, Fialova T, Otahal A, Adam V, Smerkova K, Fohlerova Z. Antibacterial activity of AgNPs–TiO 2 nanotubes: influence of different nanoparticle stabilizers. RSC Adv 2020; 10:44601-44610. [PMID: 35517148 PMCID: PMC9058477 DOI: 10.1039/d0ra07305a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/01/2020] [Indexed: 01/22/2023] Open
Abstract
Enhanced antibacterial properties of nanomaterials such as TiO2 nanotubes (TNTs) and silver nanoparticles (AgNPs) have attracted much attention in biomedicine and industry. The antibacterial properties of nanoparticles depend, among others, on the functionalization layer of the nanoparticles. However, the more complex information about the influence of different functionalization layers on antibacterial properties of nanoparticle decorated surfaces is still missing. Here we show the array of ∼50 nm diameter TNTs decorated with ∼50 nm AgNPs having different functionalization layers such as polyvinylpyrrolidone, branched polyethyleneimine, citrate, lipoic acid, and polyethylene glycol. To assess the antibacterial properties, the viability of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) has been assessed. Our results showed that the functional layer of nanoparticles plays an important role in antibacterial properties and the synergistic effect such nanoparticles and TiO2 nanotubes have had different effects on adhesion and viability of G− and G+ bacteria. These findings could help researchers to optimally design any surfaces to be used as an antibacterial including the implantable titanium biomaterials. Synergictic antibacterial effect of AgNPs–TiO2 nanotubes is influenced by different nanoparticle stabilizers.![]()
Collapse
Affiliation(s)
- Ondrej Bilek
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry
- Mendel University in Brno
- Brno
- Czech Republic
| | - Alexandr Otahal
- Department of Microelectronics
- Brno University of Technology
- Brno
- Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Chemistry and Biochemistry
| | - Kristyna Smerkova
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Chemistry and Biochemistry
| | - Zdenka Fohlerova
- Central European Institute of Technology
- Brno University of Technology
- Brno
- Czech Republic
- Department of Microelectronics
| |
Collapse
|
30
|
Fathi M, Akbari B, Taheriazam A. Antibiotics drug release controlling and osteoblast adhesion from Titania nanotubes arrays using silk fibroin coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109743. [DOI: 10.1016/j.msec.2019.109743] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 01/10/2023]
|
31
|
Gunputh UF, Le H, Lawton K, Besinis A, Tredwin C, Handy RD. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus. Nanotoxicology 2019; 14:97-110. [PMID: 31566471 DOI: 10.1080/17435390.2019.1665727] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Medical grade titanium alloy, Ti-6Al-4V, with TiO2 nanotubes (TiO2-NTs) grown on the surface and then decorated with silver nanoparticles (Ag NPs) is proposed to enhance the antimicrobial properties of the bone/dental implants. However, the decoration with Ag NPs is not consistent and there are concerns about the direct contact of Ag NPs with human tissue. The aim of this study was to achieve a more even coverage of Ag NPs on TiO2-NTs and determine their biocidal properties against Staphylococcus aureus, with and without a top coat of nano hydroxyapatite (nHA). The decoration with Ag NPs was optimised by adjusting the incubation time of the TiO2-NTs in a silver ammonia solution, and using biocompatible δ-gluconolactone as a reducing agent. The optimum incubation in silver ammonia was 7 min, and resulted in evenly distributed Ag NPs with an average diameter of 47.5 ± 1.7 nm attached to the surface of the nanotubes. The addition of nHA did not compromise the antimicrobial properties of the materials; high-resolution electron microscopy showed S. aureus did not grow on the composite with nHA and with >80% biocidal activity measured by the LIVE/DEAD assay, also limited lactate production. Dialysis experiment confirmed the stability of the coatings, and showed a slow release of dissolved silver (3.27 ± 0.15 μg/L over 24 h) through the top coat of nHA.
Collapse
Affiliation(s)
- Urvashi F Gunputh
- School of Engineering, Plymouth University, Plymouth, UK.,School of Mechanical Engineering and Built Environment, University of Derby, Derby, UK
| | - Huirong Le
- School of Mechanical Engineering and Built Environment, University of Derby, Derby, UK
| | - Kiruthika Lawton
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | | | - Christopher Tredwin
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Richard D Handy
- School of Biological & Marine Sciences, Plymouth University, Plymouth, UK
| |
Collapse
|
32
|
Gunputh UF, Le H, Besinis A, Tredwin C, Handy RD. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus. Int J Nanomedicine 2019; 14:3583-3600. [PMID: 31190813 PMCID: PMC6529028 DOI: 10.2147/ijn.s199219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: This study aimed to decorate the surface of TiO2 nanotubes (TiO2 NTs) grown on medical grade Ti-6Al-4V alloy with an antimicrobial layer of nano zinc oxide particles (nZnO) and then determine if the antimicrobial properties were maintained with a final layer of nano-hydroxyapatite (HA) on the composite. Methods: The additions of nZnO were attempted at three different annealing temperatures: 350, 450 and 550 °C. Of these temperatures, 350°C provided the most uniform and nanoporous coating and was selected for antimicrobial testing. Results: The LIVE/DEAD assay showed that ZnCl2 and nZnO alone were >90% biocidal to the attached bacteria, and nZnO as a coating on the nanotubes resulted in around 70% biocidal activity. The lactate production assay agreed with the LIVE/DEAD assay. The concentrations of lactate produced by the attached bacteria on the surface of nZnO-coated TiO2 NTs and ZnO/HA-coated TiO2 NTs were 0.13±0.03 mM and 0.37±0.1 mM, respectively, which was significantly lower than that produced by the bacteria on TiO2 NTs alone, 1.09±0.30 mM (Kruskal–Wallis, P<0.05, n=6). These biochemical measurements were correlated with electron micrographs of cell morphology and cell coverage on the coatings. Conclusion: nZnO on TiO2 NTs was a stable and antimicrobial coating, and most of the biocidal properties remained in the presence of nano-HA on the coating.
Collapse
Affiliation(s)
- Urvashi F Gunputh
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK.,School of Engineering, Plymouth University, Plymouth PL4 8AA, UK
| | - Huirong Le
- School of Mechanical Engineering and Built Environment, University of Derby, Derby DE22 3AW, UK
| | | | - Christopher Tredwin
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, Devon PL6 8BU, UK
| | - Richard D Handy
- School of Biological & Marine Sciences, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
33
|
Kunrath MF, Leal BF, Hubler R, de Oliveira SD, Teixeira ER. Antibacterial potential associated with drug-delivery built TiO 2 nanotubes in biomedical implants. AMB Express 2019; 9:51. [PMID: 30993485 PMCID: PMC6468021 DOI: 10.1186/s13568-019-0777-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 02/09/2023] Open
Abstract
The fast evolution of surface treatments for biomedical implants and the concern with their contact with cells and microorganisms at early phases of bone healing has boosted the development of surface topographies presenting drug delivery potential for, among other features, bacterial growth inhibition without impairing cell adhesion. A diverse set of metal ions and nanoparticles (NPs) present antibacterial properties of their own, which can be applied to improve the implant local response to contamination. Considering the promising combination of nanostructured surfaces with antibacterial materials, this critical review describes a variety of antibacterial effects attributed to specific metals, ions and their combinations. Also, it explains the TiO2 nanotubes (TNTs) surface creation, in which the possibility of aggregation of an active drug delivery system is applicable. Also, we discuss the pertinent literature related to the state of the art of drug incorporation of NPs with antibacterial properties inside TNTs, along with the promising future perspectives of in situ drug delivery systems aggregated to biomedical implants.
Collapse
Affiliation(s)
- Marcel Ferreira Kunrath
- Dentistry University, School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil.
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, Porto Alegre, 90619-900, Brazil.
| | - Bruna Ferreira Leal
- Immunology and Microbiology Laboratory, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 1429, Porto Alegre, 90619-900, Brazil
| | - Sílvia Dias de Oliveira
- Immunology and Microbiology Laboratory, School of Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| | - Eduardo Rolim Teixeira
- Dentistry University, School of Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, P.O. Box 6681, Porto Alegre, 90619-900, Brazil
| |
Collapse
|
34
|
Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. PLoS One 2019; 14:e0214066. [PMID: 30901347 PMCID: PMC6430414 DOI: 10.1371/journal.pone.0214066] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/06/2019] [Indexed: 11/26/2022] Open
Abstract
Selenium nanoparticle modified surfaces attract increasing attention in the field of tissue engineering. Selenium exhibits strong anticancer, antibacterial and anti-inflammatory properties and it maintains relatively low off-target cytotoxicity. In our paper, we present the fabrication, characterization and cytocompatibility of titanium oxide (TiO2) nanotube surface decorated with various surface densities of chemically synthesized selenium nanoparticles. To evaluate antibacterial and anti-cancer properties of such nanostructured surface, gram negative bacteria E. coli, cancerous osteoblast like MG-63 cells and non-cancerous fibroblast NIH/3T3 were cultured on designed surfaces. Our results suggested that selenium nanoparticles improved antibacterial properties of titanium dioxide nanotubes and confirmed the anticancer activity towards MG-63 cells, with increasing surface density of nanoparticles. Further, the selenium decorated TiO2 nanotubes suggested deteriorating effect on the cell adhesion and viability of non-cancerous NIH/3T3 cells. Thus, we demonstrated that selenium nanoparticles decorated TiO2 nanotubes synthesized using sodium selenite and glutathione can be used to control bacterial infections and prevent the growth of cancerous cells. However, the higher surface density of nanoparticles adsorbed on the surface was found to be cytotoxic for non-cancerous NIH/3T3 cells and thus it might complicate the integration of biomaterial into the host tissue. Therefore, an optimal surface density of selenium nanoparticles must be found to effectively kill bacteria and cancer cells, while remaining favorable for normal cells.
Collapse
|
35
|
Maher S, Mazinani A, Barati MR, Losic D. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays. Expert Opin Drug Deliv 2019; 15:1021-1037. [PMID: 30259776 DOI: 10.1080/17425247.2018.1517743] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Therapeutics delivery to bones to treat skeletal diseases or prevent postsurgical infections is challenging due to complex and solid bone structure that limits blood supply and diffusion of therapeutics administered by systemic routes to reach effective concentration. Titanium (Ti) and their alloys are employed as mainstream implant materials in orthopedics and dentistry; having superior mechanical/biocompatibility properties which could provide an alternative solution to address this problem. AREAS COVERED This review presents an overview of recent development of Ti drug-releasing implants, with emphasis on nanoengineered Titania nanotubes (TNTs) structures, for solving key problems to improve implants osseointegration, overcome inflammation and infection together with providing localized drug delivery (LDD) for bone diseases including cancer. Critical analysis of the advantages/disadvantages of developed concepts is discussed, their drug loading/releasing performances and specific applications. EXPERT OPINION LDD to bones can address many disorders and postsurgical conditions such as inflammation, implants rejection and infection. To this end, TNTs-Ti implants represent a potential promise for the development of new generation of multifunctional implants with drug release functions. Even this concept is extensively explored recently, there is a strong need for more preclinical studies using animal models to confirm the long-term safety and stability of TNTs-Ti implants for real-life medical applications.
Collapse
Affiliation(s)
- Shaheer Maher
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Arash Mazinani
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Mohammad Reza Barati
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Dusan Losic
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
36
|
Liu X, Chen C, Zhang H, Tian A, You J, Wu L, Lei Z, Li X, Bai X, Chen S. Biocompatibility evaluation of antibacterial Ti-Ag alloys with nanotubular coatings. Int J Nanomedicine 2019; 14:457-468. [PMID: 30666107 PMCID: PMC6330981 DOI: 10.2147/ijn.s193569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Implant-related infection is a major problem postsurgery. As an alternative to a localized antibiotic release system, we used Ag to fabricate Ti-Ag alloys with nanotubular coatings (TiAg-NTs). Ag has excellent antibacterial properties, but its biological toxicity is a concern. Therefore, we performed biological experiments both in vitro and in vivo to evaluate the biocompatibility of TiAg-NTs with different concentrations of Ag (1%, 2%, and 4%). METHODS For in vitro experiments, cytocompatibility, including cell attachment, viability, and proliferation, was tested, and genes and proteins related to osteogenic differentiation were also evaluated. For in vivo assays, the rat femoral condylar insertion model was used, and micro-computed tomography (micro-CT) and histological analysis were conducted to analyze bone formation around implants at 1, 2, and 4 weeks after surgery. RESULTS Both in vitro and in vivo results indicate that Ti2%Ag-NT showed comparable cytocompatibility with commercially pure Ti (cp-Ti), and it could achieve good osseointegration with the surrounding bone tissue. CONCLUSION We thus believe that Ti2%Ag-NT is a potential biomaterial for orthopedics.
Collapse
Affiliation(s)
- Xingwang Liu
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200082, China
| | - Chen Chen
- Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hangzhou Zhang
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Ang Tian
- Liaoning Provincial Key Laboratory of Metallurgical Resources Circulation Science, Northeastern University, Shenyang 110819, China
| | - Junhua You
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Lin Wu
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110000, China
| | - Zeming Lei
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xi Li
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Xizhuang Bai
- Department of Orthopaedics, The People's Hospital of China Medical University, Shenyang 110000, China,
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital of Fudan University, Shanghai 200040, China,
| |
Collapse
|
37
|
Microbiological and Cellular Evaluation of a Fluorine-Phosphorus-Doped Titanium Alloy, a Novel Antibacterial and Osteostimulatory Biomaterial with Potential Applications in Orthopedic Surgery. Appl Environ Microbiol 2019; 85:AEM.02271-18. [PMID: 30367003 DOI: 10.1128/aem.02271-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Joint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both of which are associated with high morbidity and substantial costs for patients and health systems. The development of a biomaterial that is capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. We report antibacterial and osteostimulatory effects in a novel fluorine-phosphorus (F-P)-doped TiO2 oxide film grown on Ti-6Al-4V alloy with a nanostructure of bottle-shaped nanotubes (bNT) using five bacterial species (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia) and MCT3T3-E1 osteoblastic cells. The interaction between the bacteria and bNT Ti-6Al-4V was complex, as the adhesion of four bacterial species decreased (two staphylococcus species, E. coli, and S. maltophilia), and the viability of staphylococci and S. maltophilia also decreased because of the aluminum (Al) released by bNT Ti-6Al-4V. This released Al can be recruited by the bacteria through siderophores and was retained only by the Gram-negative bacteria tested. P. aeruginosa showed higher adhesion on bNT Ti-6Al-4V than on chemically polished (CP) samples of Ti-6Al-4V alloy and an ability to mobilize Al from bNT Ti-6Al-4V. The cell adhesion and proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 and 168 h, as did the matrix mineralization of these cells and the gene expression levels of three of the most important markers related to bone differentiation. According to our results, the bNT Ti-6Al-4V alloy could have clinical application, preventing infection and stimulating bone growth and thus preventing the two main causes of joint prosthesis failure.IMPORTANCE This work evaluates F-P-doped bNT Ti-6Al-4V from microbiological and cellular approaches. The bacterial results highlight that the antibacterial ability of bNT Ti-6Al-4V is the result of a combination of antiadhesive and bactericidal effects exerted by Al released from the alloy. The cell results highlight that F-P bNT Ti-6Al-4V alloy increases osseointegration due to modification of the chemical composition of the alloy resulting from P incorporation and not due to the nanostructure, as reported previously. A key finding was the detection of Al release from inside the bNT Ti-6Al-4V nanostructures, a result of the nanostructure growth during the anodizing process that is in part responsible for its bactericidal effect.
Collapse
|
38
|
Li H, Nie B, Zhang S, Long T, Yue B. Immobilization of type I collagen/hyaluronic acid multilayer coating on enoxacin loaded titania nanotubes for improved osteogenesis and osseointegration in ovariectomized rats. Colloids Surf B Biointerfaces 2018; 175:409-420. [PMID: 30562715 DOI: 10.1016/j.colsurfb.2018.12.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
Titania nanotubes (Ti-NTs) have been proven to be good drug carriers and can release drugs efficiently around implants. Enoxacin (EN) is a broad-spectrum antibiotic that has the ability of anti-osteoclastogenesis. Immobilization of extracellular matrix components on the surface of the material can greatly enhance the biological activity of the implant and slow down the release rate of the drug in Ti-NTs. In the present study, a material system that provided uniform drug release, promoted osteogenesis, and inhibited osteoclast was designed and developed. Scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle measurements were used for material surface characterization. Enoxacin release was detected by high performance liquid chromatography. Alkaline phosphatase and Alizarin Red staining were used to evaluate the osteogenic differentiation of rat bone marrow mesenchymal stem cells. Tartrate-resistant acid phosphatase staining and bone absorption assay were applied to osteoclastogenesis experiments. A drug delivery system based on Ti-NTs and type I collagen /hyaluronic acid multilayer coating (Ti-NT+EN+Col/HyA) with predominant biocompatibility, osteogenic property, and anti-osteoclastogenesis ability was successfully constructed. These excellent biological properties were further validated in an ovariectomized rat model. The results of the study indicate that Ti-NT+EN+Col/HyA is a potential material for future orthopedic implants.
Collapse
Affiliation(s)
- Hui Li
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, PR China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, PR China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, PR China
| | - Teng Long
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, PR China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, PR China.
| |
Collapse
|
39
|
Lei Z, Zhang H, Zhang E, You J, Ma X, Bai X. Antibacterial activities and biocompatibilities of Ti-Ag alloys prepared by spark plasma sintering and acid etching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:121-131. [DOI: 10.1016/j.msec.2018.06.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/12/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
40
|
Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:638-644. [DOI: 10.1016/j.msec.2018.05.074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 02/20/2018] [Accepted: 05/26/2018] [Indexed: 12/20/2022]
|
41
|
Aguilera-Correa JJ, Doadrio AL, Conde A, Arenas MA, de-Damborenea JJ, Vallet-Regí M, Esteban J. Antibiotic release from F-doped nanotubular oxide layer on TI6AL4V alloy to decrease bacterial viability. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:118. [PMID: 30030636 DOI: 10.1007/s10856-018-6119-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
We aimed to evaluate the release of two antibiotics: gentamicin and vancomycin loaded into F-doped nanotubular anodic oxide layers, as well as their bactericide effect. F-doped nanotubular oxide layers fabricated on Ti-6Al-4V loaded with gentamicin (Gm), vancomycin (Vm) and their mixture (Gm + Vm) by a previously described loading method. Antibiotic release was studied by RP-HPLC and by a biological method. Bactericidal activity was evaluated by a bacterial adherence protocol described previously using on three clinically important bacterial species. The antibiotic release steady up to 120 and 180 min for Gm and Vm, respectively, and despite the antibiotic concentration decreased, their biological activity was maintained over time. The number of living bacteria of three species tested on NT-Gm specimens was significantly lower than on NT specimens without antibiotics (P < 0.01). There are significant differences among NT-Gm and NT-Gm + Vm specimens (P < 0.05) for S. aureus 15981, S. epidermidis ATCC 35984, and P. aeruginosa ATCC 27853 and no differences between NT-Vm and NT-Gm + Vm for staphylococci (P > 0.05). In conclusion, this Gm + Vm loading method added to the properties of F-doped nanotubular oxide layers fabricated on Ti-6Al-4V, and therefore surfaces with antibacterial, biocompatible, tissue integration stimulating and spread-spectrum bactericidal properties can be obtained.
Collapse
Affiliation(s)
- John-Jairo Aguilera-Correa
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Antonio L Doadrio
- Department of Inorganic and Bioinorganic Chemistry, Institute of Sanitary Research Hospital, Complutense University of Madrid, 12 de Octubre i+12, 28040, Madrid, Spain
| | - Ana Conde
- Department of Surface Engineering Corrosion and Durability, National Center for Metallurgical Research, CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040, Madrid, Spain
| | - Maria-Angeles Arenas
- Department of Surface Engineering Corrosion and Durability, National Center for Metallurgical Research, CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040, Madrid, Spain
| | - Juan-Jose de-Damborenea
- Department of Surface Engineering Corrosion and Durability, National Center for Metallurgical Research, CENIM-CSIC, Avda. Gregorio del Amo, 8, 28040, Madrid, Spain
| | - María Vallet-Regí
- Department of Inorganic and Bioinorganic Chemistry, Institute of Sanitary Research Hospital, Complutense University of Madrid, 12 de Octubre i+12, 28040, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos 2, 28040, Madrid, Spain.
| |
Collapse
|
42
|
Pellegrini G, Francetti L, Barbaro B, del Fabbro M. Novel surfaces and osseointegration in implant dentistry. ACTA ACUST UNITED AC 2018; 9:e12349. [DOI: 10.1111/jicd.12349] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gaia Pellegrini
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| | - Luca Francetti
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| | - Bruno Barbaro
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| | - Massimo del Fabbro
- Department of Biomedical, Surgical, and Dental Sciences; University of the Study of Milan; Milan Italy
- Institute of Hospitalization and Care with a Scientific Character (IRCCS) Galeazzi Orthopaedic Institute; Milan Italy
| |
Collapse
|
43
|
Mi G, Shi D, Wang M, Webster TJ. Reducing Bacterial Infections and Biofilm Formation Using Nanoparticles and Nanostructured Antibacterial Surfaces. Adv Healthc Mater 2018; 7:e1800103. [PMID: 29790304 DOI: 10.1002/adhm.201800103] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/29/2018] [Indexed: 02/02/2023]
Abstract
With the rapid spreading of resistance among common bacterial pathogens, bacterial infections, especially antibiotic-resistant bacterial infections, have drawn much attention worldwide. In light of this, nanoparticles, including metal and metal oxide nanoparticles, liposomes, polymersomes, and solid lipid nanoparticles, have been increasingly exploited as both efficient antimicrobials themselves or as delivery platforms to enhance the effectiveness of existing antibiotics. In addition to the emergence of widespread antibiotic resistance, of equal concern are implantable device-associated infections, which result from bacterial adhesion and subsequent biofilm formation at the site of implantation. The ineffectiveness of conventional antibiotics against these biofilms often leads to revision surgery, which is both debilitating to the patient and expensive. Toward this end, micro- and nanotopographies, especially those that resemble natural surfaces, and nonfouling chemistries represent a promising combination for long-term antibacterial activity. Collectively, the use of nanoparticles and nanostructured surfaces to combat bacterial growth and infections is a promising solution to the growing problem of antibiotic resistance and biofilm-related device infections.
Collapse
Affiliation(s)
- Gujie Mi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Di Shi
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Mian Wang
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| | - Thomas J. Webster
- Department of Chemical Engineering; 313 Snell Engineering Center; Northeastern University; 360 Huntington Avenue Boston MA 02115 USA
| |
Collapse
|
44
|
Fu Y, Mo A. A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2018; 13:187. [PMID: 29956033 PMCID: PMC6023805 DOI: 10.1186/s11671-018-2597-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/07/2018] [Indexed: 02/05/2023]
Abstract
Titania nanotubes grown by anodic oxidation have intrigued the material science community by its many unique and potential properties, and the synthesis of technology is merging to its mature stage. The present review will focus on TiO2 nanotubes grown by self-organized electrochemical anodization from Ti metal substrate, which critically highlights the synthesis of this type of self-organized titania nanotube layers and the means to influence the size, shape, the degree of order, and crystallized phases via adjusting the anodization parameters and the subsequent thermal annealing. The relationship between dimensions and properties of the anodic TiO2 nanotube arrays will be presented. The latest progress and significance of the research on formation mechanism of anodic TiO2 nanotubes are briefly discussed. Besides, we will show the most promising applications reported recently in biomedical directions and modifications carried out by doping, surface modification, and thermal annealing toward improving the properties of anodically formed TiO2 nanotubes. At last, some unsolved issues and possible future directions of this field are indicated.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
45
|
Yao S, Feng X, Lu J, Zheng Y, Wang X, Volinsky AA, Wang LN. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO 2 nanotubes. NANOTECHNOLOGY 2018; 29:244003. [PMID: 29596060 DOI: 10.1088/1361-6528/aabac1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.
Collapse
Affiliation(s)
- Shenglian Yao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
46
|
Li D, Lv P, Fan L, Huang Y, Yang F, Mei X, Wu D. The immobilization of antibiotic-loaded polymeric coatings on osteoarticular Ti implants for the prevention of bone infections. Biomater Sci 2018; 5:2337-2346. [PMID: 29034380 DOI: 10.1039/c7bm00693d] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Implant-associated infections in orthopaedic surgeries are very critical as they may hinder bone healing, cause implant failure and even progress to osteomyelitis. Drug-eluting implants for local delivery of antibiotics at surgical sites are thought to be promising in preventing infections. Herein, the antibiotic vancomycin was encapsulated in a poly(ethylene glycol) (PEG)-based hydrogel film that was covalently bound to Ti implants and subsequently covered by a PEG-poly(lactic-co-caprolactone) (PEG-PLC) membrane. Additionally, crosslinked starch (CSt) was mixed with the hydrogel because its porous microstructure is able to inhibit hydrogel swelling and thus slow down drug release. The release behavior could be regulated by the drug loading and the coating thickness. The vancomycin-loaded Ti implants showed no initial burst release, offering a sustained drug release for nearly 3 weeks in vitro and more than 4 weeks in vivo. In a rabbit model of S. aureus infection, the implants with a 4 mg vancomycin loading significantly reduced the inflammatory reaction and exhibited a good antimicrobial capability. The immobilization of the antibiotic-loaded polymeric coatings on orthopaedic implants can offer a sustainable drug release with no initial burst release and maintain an effective concentration for a longer time, so it is expected to be an effective strategy to treat and prevent local bone infections.
Collapse
Affiliation(s)
- Dan Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Zhang H, Wang G, Liu P, Tong D, Ding C, Zhang Z, Xie Y, Tang H, Ji F. Vancomycin-loaded titanium coatings with an interconnected micro-patterned structure for prophylaxis of infections: an in vivo study. RSC Adv 2018; 8:9223-9231. [PMID: 35541855 PMCID: PMC9078646 DOI: 10.1039/c7ra12347g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/21/2018] [Indexed: 11/21/2022] Open
Abstract
Vancomycin-loaded titanium coatings with an interconnected micro-patterned structure for prophylaxis of titanium implant associated infection.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| | - Guangchao Wang
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| | - Peizhao Liu
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| | - Dake Tong
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| | - Chen Ding
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| | - Zequan Zhang
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Hao Tang
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| | - Fang Ji
- Department of Orthopedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai
- China
| |
Collapse
|
49
|
Piszczek P, Lewandowska Ż, Radtke A, Jędrzejewski T, Kozak W, Sadowska B, Szubka M, Talik E, Fiori F. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E274. [PMID: 28914821 PMCID: PMC5618385 DOI: 10.3390/nano7090274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 02/03/2023]
Abstract
Bioactivity investigations of titania nanotube (TNT) coatings enriched with silver nanograins (TNT/Ag) have been carried out. TNT/Ag nanocomposite materials were produced by combining the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS). The metabolic activity assay (MTT) was applied to determine the L929 murine fibroblasts adhesion and proliferation on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood mononuclear cells-PBMCs isolated from rats) allowed the estimation of the immunological activity of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and H9). The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference strain was mainly noticed for these TiO₂ nanotube coatings, which contain dispersed Ag nanograins deposited on their surface.
Collapse
Affiliation(s)
- Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland.
- Nano-implant Ltd., NIP 9562314777, Gagarina 5, 87-100 Toruń, Poland.
| | - Żaneta Lewandowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland.
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, ul. Gagarina 7, 87-100 Toruń, Poland.
- Nano-implant Ltd., NIP 9562314777, Gagarina 5, 87-100 Toruń, Poland.
| | - Tomasz Jędrzejewski
- Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, ul. Lwowska 1, 87-100 Toruń, Poland.
| | - Wiesław Kozak
- Faculty of Biology and Environment Protection, Nicolaus Copernicus University in Toruń, ul. Lwowska 1, 87-100 Toruń, Poland.
| | - Beata Sadowska
- Faculty of Biology and Environmental Protection, University of Lódź, ul. S. Banacha 12/16, 90-237 Łódź, Poland.
| | - Magdalena Szubka
- August Chełkowski Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice, Poland.
| | - Ewa Talik
- Faculty of Biology and Environmental Protection, University of Lódź, ul. S. Banacha 12/16, 90-237 Łódź, Poland.
| | - Fabrizio Fiori
- Di.S.C.O.-Sezione di Biochimica, Biologia e Fisica, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
50
|
Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine 2017; 12:3941-3965. [PMID: 28579779 PMCID: PMC5449158 DOI: 10.2147/ijn.s134526] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment.
Collapse
Affiliation(s)
| | - Sang M Ngo
- Department of Electrical Engineering, California State University, Long Beach, CA
| | | | - Lei Yang
- Department of Orthopaedics, Orthopaedic Institute, The First Affiliated Hospital.,International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - David A Stout
- International Research Center for Translational Orthopaedics (IRCTO), Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Mechanical and Aerospace Engineering.,Department of Biomedical Engineering, California State University, Long Beach, CA, USA
| |
Collapse
|