1
|
Liu X, Qian R, Li B, Zhang Y, Han Y. Sono-Catalytic Tooth Whitening and Oral Health Enhancement with Oxygen Vacancies-Enriched Mesoporous TiO 2 Nanospheres: A Nondestructive Approach for Daily Tooth Care. ACS Biomater Sci Eng 2024; 10:6634-6647. [PMID: 39348292 DOI: 10.1021/acsbiomaterials.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Tooth discoloration and the breeding of oral microorganisms pose threats to both one's aesthetic appearance and oral health. Clinical whitening agents based on H2O2 with high concentrations are effective in tooth whitening and bacterial elimination but may also cause enamel demineralization, gingival irritation, or cytotoxicity, necessitating professional supervision. Herein, leveraging sono-catalysis effects, a nondestructive and convenient tooth whitening strategy was developed, utilizing oxygen vacancies (OVs)-enriched mesoporous TiO2 nanospheres. The introduction of OVs leads to TiO2 bandgap narrowing, boosting the generation of reactive oxygen species (ROS) by TiO2 under ultrasound treatment. Additionally, through the chemocatalysis effect, the ROS yield can be further augmented by employing OVs-enriched TiO2 in conjunction with an extremely low concentration of H2O2 (1%) during ultrasound treatment. Hence, under ultrasound treatment simulating daily tooth brushing using an electronic toothbrush, the combination of OVs-enriched TiO2 and 1% H2O2 proves to be effective in whitening teeth stained by tea, coffee, and mix juice. Furthermore, the combination of OVs-enriched TiO2 and 1% H2O2 demonstrates potent bacterial-killing and biofilm-eradicating effects under ultrasound treatment within an extremely short duration (5 min). Additionally, given the mesoporous structure, curcumin, serving as an anti-inflammatory agent, can be efficiently loaded into OVs-enriched TiO2 and then controllably released through ultrasound treatment. The curcumin-loaded TiO2 facilitates the transition of macrophages to the anti-inflammatory M2 phenotype, potentially alleviating oral inflammation induced by bacterial infection without showing any biotoxicity. The OVs-enriched TiO2 based sono-catalysis tooth whitening procedure provides the convenience of whitening teeth during daily brushing without requiring professional supervision.
Collapse
Affiliation(s)
- Xiaoqi Liu
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Runliu Qian
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Li
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yingang Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong Han
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Orthopaedics, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
2
|
Gomez GE, Hamer M, Regiart MD, Tortella GR, Seabra AB, Soler Illia GJAA, Fernández-Baldo MA. Advances in Nanomaterials and Composites Based on Mesoporous Materials as Antimicrobial Agents: Relevant Applications in Human Health. Antibiotics (Basel) 2024; 13:173. [PMID: 38391559 PMCID: PMC10885969 DOI: 10.3390/antibiotics13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Nanotechnology has emerged as a cornerstone in contemporary research, marked by the advent of advanced technologies aimed at nanoengineering materials with diverse applications, particularly to address challenges in human health. Among these challenges, antimicrobial resistance (AMR) has risen as a significant and pressing threat to public health, creating obstacles in preventing and treating persistent diseases. Despite efforts in recent decades to combat AMR, global trends indicate an ongoing and concerning increase in AMR. The primary contributors to the escalation of AMR are the misuse and overuse of various antimicrobial agents in healthcare settings. This has led to severe consequences not only in terms of compromised treatment outcomes but also in terms of substantial financial burdens. The economic impact of AMR is reflected in skyrocketing healthcare costs attributed to heightened hospital admissions and increased drug usage. To address this critical issue, it is imperative to implement effective strategies for antimicrobial therapies. This comprehensive review will explore the latest scientific breakthroughs within the metal-organic frameworks and the use of mesoporous metallic oxide derivates as antimicrobial agents. We will explore their biomedical applications in human health, shedding light on promising avenues for combating AMR. Finally, we will conclude the current state of research and offer perspectives on the future development of these nanomaterials in the ongoing battle against AMR.
Collapse
Affiliation(s)
- Germán E Gomez
- Instituto de Investigaciones en Tecnología Química (INTEQUI), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Ejército de los Andes 950, San Luis D5700BWS, Argentina
| | - Mariana Hamer
- Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET, Juan María Gutiérrez 1150, Los Polvorines CP1613, Argentina
| | - Matías D Regiart
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| | - Gonzalo R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Avenida dos Estados, Saint Andrew 09210-580, Brazil
| | - Galo J A A Soler Illia
- Instituto de Nanosistemas, Escuela de Bio y Nanotecnología, Universidad Nacional de General San Martín-CONICET, Av. 25 de mayo 1169, San Martín B1650KNA, Argentina
| | - Martín A Fernández-Baldo
- Instituto de Química San Luis (INQUISAL), Departamento de Química, Universidad Nacional de San Luis (UNSL), CONICET, Chacabuco 917, San Luis D5700BWS, Argentina
| |
Collapse
|
3
|
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206602. [PMID: 36722732 PMCID: PMC10104676 DOI: 10.1002/advs.202206602] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 05/10/2023]
Abstract
Owing to the increase in multidrug-resistant bacterial isolates in hospitals globally and the lack of truly effective antimicrobial agents, antibiotic resistant bacterial infections have increased substantially. There is thus an urgent need to develop new antimicrobial drugs and their related formulations. In recent years, natural antimicrobial peptides (AMPs), AMP optimization, self-assembled AMPs, AMP hydrogels, and biomaterial-assisted delivery of AMPs have shown great potential in the treatment of bacterial infections. In this review, it is focused on the development prospects and shortcomings of various AMP-based biomaterials for treating animal model infections, such as abdominal, skin, and eye infections. It is hoped that this review will inspire further innovations in the design of AMP-based biomaterials for the treatment of bacterial infections and accelerate their commercialization.
Collapse
Affiliation(s)
- Guoyu Li
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhenheng Lai
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Anshan Shan
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
4
|
Mahmoudi P, Akbarpour MR, Lakeh HB, Jing F, Hadidi MR, Akhavan B. Antibacterial Ti-Cu implants: A critical review on mechanisms of action. Mater Today Bio 2022; 17:100447. [PMID: 36278144 PMCID: PMC9579810 DOI: 10.1016/j.mtbio.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Titanium (Ti) has been widely used for manufacturing of bone implants because of its mechanical properties, biological compatibility, and favorable corrosion resistance in biological environments. However, Ti implants are prone to infection (peri-implantitis) by bacteria which in extreme cases necessitate painful and costly revision surgeries. An emerging, viable solution for this problem is to use copper (Cu) as an antibacterial agent in the alloying system of Ti. The addition of copper provides excellent antibacterial activities, but the underpinning mechanisms are still obscure. This review sheds light on such mechanisms and reviews how incorporation of Cu can render Ti-Cu implants with antibacterial activity. The review first discusses the fundamentals of interactions between bacteria and implanted surfaces followed by an overview of the most common engineering strategies utilized to endow an implant with antibacterial activity. The underlying mechanisms for antibacterial activity of Ti-Cu implants are then discussed in detail. Special attention is paid to contact killing mechanisms because the misinterpretation of this mechanism is the root of discrepancies in the literature.
Collapse
Affiliation(s)
- Pezhman Mahmoudi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, 11365-9466, Iran
| | - Mohammad Reza Akbarpour
- Department of Materials Engineering, University of Maragheh, Maragheh, P.O. Box 55136-553, Iran
| | | | - Fengjuan Jing
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Mohammad Reza Hadidi
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Behnam Akhavan
- School of Engineering, University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute (HMRI), Precision Medicine Research Program, New Lambton Heights, NSW, 2305, Australia
| |
Collapse
|
5
|
Sahare P, Alvarez PG, Yanez JMS, Bárcenas JGL, Chakraborty S, Paul S, Estevez M. Engineered titania nanomaterials in advanced clinical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:201-218. [PMID: 35223351 PMCID: PMC8848344 DOI: 10.3762/bjnano.13.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 02/03/2022] [Indexed: 06/06/2023]
Abstract
Significant advancement in the field of nanotechnology has raised the possibility of applying potent engineered biocompatible nanomaterials within biological systems for theranostic purposes. Titanium dioxide (titanium(IV) oxide/titania/TiO2) has garnered considerable attention as one of the most extensively studied metal oxides in clinical applications. Owing to the unique properties of titania, such as photocatalytic activity, excellent biocompatibility, corrosion resistance, and low toxicity, titania nanomaterials have revolutionized therapeutic approaches. Additionally, titania provides an exceptional choice for developing innovative medical devices and the integration of functional moieties that can modulate the biological responses. Thus, the current review aims to present a comprehensive and up-to-date overview of TiO2-based nanotherapeutics and the corresponding future challenges.
Collapse
Affiliation(s)
- Padmavati Sahare
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Paulina Govea Alvarez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| | - Juan Manual Sanchez Yanez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
| | | | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130 Querétaro, Mexico
| | - Miriam Estevez
- Centre of Applied Physics and Advanced Technologies (CFATA), National Autonomous University of Mexico, Queretaro, Mexico
| |
Collapse
|
6
|
Sartori B, Amenitsch H, Marmiroli B. Functionalized Mesoporous Thin Films for Biotechnology. MICROMACHINES 2021; 12:740. [PMID: 34202530 PMCID: PMC8304103 DOI: 10.3390/mi12070740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Mesoporous materials bear great potential for biotechnological applications due to their biocompatibility and versatility. Their high surface area and pore interconnection allow the immobilization of molecules and their subsequent controlled delivery. Modifications of the mesoporous material with the addition of different chemical species, make them particularly suitable for the production of bioactive coatings. Functionalized thin films of mesoporous silica and titania can be used as scaffolds with properties as diverse as promotion of cell growth, inhibition of biofilms formation, or development of sensors based on immobilized enzymes. The possibility to pattern them increase their appeal as they can be incorporated into devices and can be tailored both with respect to architecture and functionalization. In fact, selective surface manipulation is the ground for the fabrication of advanced micro devices that combine standard micro/nanofluids with functional materials. In this review, we will present the advantages of the functionalization of silica and titania mesoporous materials deposited in thin film. Different functional groups used to modify their properties will be summarized, as well as functionalization methods and some examples of applications of modified materials, thus giving an overview of the essential role of functionalization to improve the performance of such innovative materials.
Collapse
Affiliation(s)
| | | | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria; (B.S.); (H.A.)
| |
Collapse
|
7
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|
8
|
Fabrication of Gentamicin-Loaded Hydroxyapatite/Collagen Bone-Like Nanocomposite for Anti-Infection Bone Void Fillers. Int J Mol Sci 2020; 21:ijms21020551. [PMID: 31952242 PMCID: PMC7013509 DOI: 10.3390/ijms21020551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/22/2022] Open
Abstract
A gentamicin-loaded hydroxyapatite/collagen bone-like nanocomposite (GNT-HAp/Col) was fabricated and evaluated for its absorption–desorption properties, antibacterial efficacy, and cytotoxicity. The hydroxyapatite/collagen bone-like nanocomposite (HAp/Col) powder was mixed with gentamicin sulfate (GNT) in phosphate-buffered saline (PBS) at room temperature. After 6 h mixing, the GNT adsorption in all conditions reached plateau by Langmuir’s isotherm, and maximum GNT adsorption amount was 34 ± 7 μg in 250 μg/mL GNT solution. Saturated GNT-loaded HAp/Col powder of 100 mg was soaked in 10 mL of PBS at 37 °C and released all GNT in 3 days. A shaking culture method for a GNT extraction from the GNT-HAp/Col and an inhibition zone assay for the GNT-HAp/Col compact showed antibacterial efficacy to Escherichia coli (E. coli) at least for 2 days. From the release profile of the GNT from the GNT-HAp/Col powder, antibacterial efficacy would affect E. coli at least for 3 days. Further, no cytotoxicities were observed on MG-63 cells. Thus, the GNT-HAp/Col is a good candidate of bioresorbable anti-infection bone void fillers by prevention initial infections, which is the primary cause of implant-associated infection even for rapid bioresorbable materials.
Collapse
|
9
|
Antibacterial Properties of a Novel Zirconium Phosphate-Glycinediphosphonate Loaded with Either Zinc or Silver. MATERIALS 2019; 12:ma12193184. [PMID: 31569362 PMCID: PMC6804034 DOI: 10.3390/ma12193184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
Abstract
A novel compound consisting of a zirconium phosphate-glycinediphosphonate (ZPGly) has recently been introduced. This 2D-structured material forming nanosheets was exfoliated under appropriate conditions, producing colloidal aqueous dispersions (ZPGly-e) which were then loaded with zinc (Zn/ZPGly) or silver ions. Silver ions were subsequently reduced to produce metallic silver nanoparticles on exfoliated ZPGly nanosheets (Ag@ZPGly). In the search for new anti-infective materials, the present study investigated the properties of colloidal dispersions of ZPGly-e, Zn/ZPGly, and Ag@ZPGly. Ag@ZPGly was found to be a bactericidal material and was assayed to define its minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) on the five most prevalent pathogens of orthopaedic implant infections, namely: Staphylococcus aureus ATCC25923, Staphylococcus epidermidis RP62A, Enterococcus faecalis ATCC29212, Escherichia coli ATCC51739, and Pseudomonas aeruginosa ATCC27853. MIC and MBC were in the range of 125–250 μg/mL and 125–1000 μg/mL, respectively, with E. coli being the most sensitive species. Even colloidal suspensions of exfoliated ZPGly nanosheets and Zn/ZPGly exhibited some intrinsic antibacterial properties, but only at greater concentrations. Unexpectedly, Zn/ZPGly was less active than ZPGly-e.
Collapse
|
10
|
Li Y, Yang Y, Li R, Tang X, Guo D, Qing Y, Qin Y. Enhanced antibacterial properties of orthopedic implants by titanium nanotube surface modification: a review of current techniques. Int J Nanomedicine 2019; 14:7217-7236. [PMID: 31564875 PMCID: PMC6733344 DOI: 10.2147/ijn.s216175] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/09/2019] [Indexed: 11/23/2022] Open
Abstract
Prosthesis-associated infections are one of the main causes of implant failure; thus it is important to enhance the long-term antibacterial ability of orthopedic implants. Titanium dioxide nanotubes (TNTs) are biomaterials with good physicochemical properties and biocompatibility. Owing to their inherent antibacterial and drug-loading ability, the antibacterial application of TNTs has received increasing attention. In this review, the process of TNT anodizing fabrication is summarized. Also, the mechanism and the influencing factors of the antibacterial property of bare TNTs are explored. Furthermore, different antibacterial strategies for carrying drugs, as well as modifications to prolong the antibacterial effect and reduce drug-related toxicity are discussed. In addition, antibacterial systems based on TNTs that can automatically respond to infection are introduced. Finally, the currently faced problems are reviewed and potential solutions are proposed. This review provides new insight on TNT fabrication and summarizes the most advanced antibacterial strategies involving TNTs for the enhancement of long-term antibacterial ability and reduction of toxicity.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun'an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
11
|
Zeng X, Xiong S, Zhuo S, Liu C, Miao J, Liu D, Wang H, Zhang Y, Wang C, Liu Y. Nanosilver/poly (dl-lactic-co-glycolic acid) on titanium implant surfaces for the enhancement of antibacterial properties and osteoinductivity. Int J Nanomedicine 2019; 14:1849-1863. [PMID: 30880984 PMCID: PMC6417851 DOI: 10.2147/ijn.s190954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Despite titanium (Ti) implants have been commonly used in the medical device field due to their superior biocompatibility, implant-associated bacterial infection remains a major clinical complication. Nanosilver, an effective antibacterial agent against a wide spectrum of bacterial strains, with a low-resistance potential, has attracted much interest too. Incorporation of nanosilver on Ti implants may be a promising approach to prevent biofilm formation. Purpose The objective of the study was to investigate the antibacterial effects and osteoinductive properties of nanosilver/poly (dl-lactic-co-glycolic acid)-coated titanium (NSPTi). Methods Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and the Gram-negative opportunistic pathogen Pseudomonas aeruginosa (PAO-1) were used to evaluate the antibacterial activity of NSPTi implants through the analysis of bacterial colonization in vitro and in vivo. Furthermore, we examined the osteoinductive potential of NSPTi implants by investigating the proliferation and differentiation of MC3T3-E1 preosteoblast cells. In vivo, the osteoinductive properties of NSPTi implants were assessed by radiographic evaluation, H&E staining, and Masson’s trichrome staining. Results In vitro, bacterial adhesion to the 2% NSPTi was significantly inhibited and <1% of adhered bacteria survived after 24 hours. In vitro, the average colony-forming units (CFU)/g ratios in the 2% NSPTi with 103 CFU MRSA and PAO-1 were 1.50±0.68 and 1.75±0.6, respectively. In the uncoated Ti groups, the ratios were 1.03±0.82×103 and 0.94±0.49×103, respectively. These results demonstrated that NSPTi implants had prominent antibacterial properties. Proliferation of MC3T3-E1 cells on the 2% NSPTi sample was 1.51, 1.78, and 2.22 times that on the uncoated Ti control after 3, 5, and 7 days’ incubation, respectively. Furthermore, NSPTi implants promoted the maturation and differentiation of MC3T3-E1 cells. In vivo, NSPTi accelerated the formation of new bone while suppressing bacterial survival. Conclusion NSPTi implants have simultaneous antibacterial and osteoinductive activities and therefore have the potential in clinical applications.
Collapse
Affiliation(s)
- Xuemin Zeng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Shijiang Xiong
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Endodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Shaoyang Zhuo
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Oral Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, People's Republic of China
| | - Chunpeng Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Jie Miao
- Department of Stomatology, The 5th People's Hospital of Jinan, Jinan, People's Republic of China
| | - Dongxu Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Hengxiao Wang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Yueying Zhang
- Department of Experimental Pathology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Chunling Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| | - Yi Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, People's Republic of China, ; .,Department of Orthodontics, School of Stomatology, Shandong University, Jinan, People's Republic of China, ;
| |
Collapse
|
12
|
Pan C, Zhou Z, Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections. J Orthop Surg Res 2018; 13:220. [PMID: 30176886 PMCID: PMC6122451 DOI: 10.1186/s13018-018-0930-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
Implant-related infections (IRIs) which led to a large amount of medical expenditure were caused by bacteria and fungi that involve the implants in the operation or in ward. Traditional treatments of IRIs were comprised of repeated radical debridement, replacement of internal fixators, and intravenous antibiotics. It needed a long time and numbers of surgeries to cure, which meant a catastrophe to patients. So how to prevent it was more important than to cure it. As an excellent local release system, coating is a good idea by its local drug infusion and barrier effect on resisting biofilms which were the main cause of IRIs. So in this review, materials used for coatings and evidences of prevention were elaborated.
Collapse
Affiliation(s)
- Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital East Campus, Shanghai University of Medicine and Health Sciences, Shanghai, 201306 China
| |
Collapse
|
13
|
Wu Z, Li Q, Pan Y, Yao Y, Tang S, Su J, Shin JW, Wei J, Zhao J. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. Int J Nanomedicine 2017; 12:3637-3651. [PMID: 28553104 PMCID: PMC5439988 DOI: 10.2147/ijn.s132778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bioactive composite macroporous scaffold containing nanoporosity was prepared by incorporation of nanoporous magnesium silicate (NMS) into poly(butylene succinate) (PBSu) using solvent casting-particulate leaching method. The results showed that the water absorption and in vitro degradability of NMS/PBSu composite (NMPC) scaffold significantly improved compared with magnesium silicate (MS)/PBSu composite (MPC) scaffold. In addition, the NMPC scaffold showed improved apatite mineralization ability, indicating better bioactivity, as the NMPC containing nanoporosity could induce more apatite and homogeneous apatite layer on the surfaces than MPC scaffold. The attachment and proliferation of MC3T3-E1 cells on NMPC scaffold increased significantly compared with MPC scaffold, and the alkaline phosphatase (ALP) activity of the cells on NMPC scaffold was expressed at considerably higher levels compared with MPC scaffold. Moreover, NMPC scaffold with nanoporosity not only had large drug loading (vancomycin) but also exhibited drug sustained release. The results suggested that the incorporation of NMS into PBSu could produce bioactive composite scaffold with nanoporosity, which could enhance water absorption, degradability, apatite mineralization and drug sustained release and promote cell responses.
Collapse
Affiliation(s)
- Zhaoying Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Quan Li
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yongkang Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Yuan Yao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Jun Zhao
- Department of Orthodontics
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|