1
|
Hanga-Farcaș A, Miere (Groza) F, Filip GA, Clichici S, Fritea L, Vicaș LG, Marian E, Pallag A, Jurca T, Filip SM, Muresan ME. Phytochemical Compounds Involved in the Bone Regeneration Process and Their Innovative Administration: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2055. [PMID: 37653972 PMCID: PMC10222459 DOI: 10.3390/plants12102055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 09/02/2023]
Abstract
Bone metabolism is a complex process which is influenced by the activity of bone cells (e.g., osteocytes, osteoblasts, osteoclasts); the effect of some specific biomarkers (e.g., parathyroid hormone, vitamin D, alkaline phosphatase, osteocalcin, osteopontin, osteoprotegerin, osterix, RANKL, Runx2); and the characteristic signaling pathways (e.g., RANKL/RANK, Wnt/β, Notch, BMP, SMAD). Some phytochemical compounds-such as flavonoids, tannins, polyphenols, anthocyanins, terpenoids, polysaccharides, alkaloids and others-presented a beneficial and stimulating effect in the bone regeneration process due to the pro-estrogenic activity, the antioxidant and the anti-inflammatory effect and modulation of bone signaling pathways. Lately, nanomedicine has emerged as an innovative concept for new treatments in bone-related pathologies envisaged through the incorporation of medicinal substances in nanometric systems for oral or local administration, as well as in nanostructured scaffolds with huge potential in bone tissue engineering.
Collapse
Affiliation(s)
- Alina Hanga-Farcaș
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Florina Miere (Groza)
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Simona Clichici
- Department of Physiology, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400347 Cluj-Napoca, Romania; (G.A.F.); (S.C.)
| | - Luminita Fritea
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Annamaria Pallag
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Tunde Jurca
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (E.M.); (A.P.); (T.J.)
| | - Sanda Monica Filip
- Department of Physics, Faculty of Informatics and Sciences, University of Oradea, 1 University Street, 410087 Oradea, Romania;
| | - Mariana Eugenia Muresan
- Department of Preclinical Discipline, Faculty of Medicine and Pharmacy, University of Oradea, 10, 1 December Square, 410073 Oradea, Romania; (F.M.); (L.F.); (M.E.M.)
| |
Collapse
|
2
|
Suliman S, Mieszkowska A, Folkert J, Rana N, Mohamed-Ahmed S, Fuoco T, Finne-Wistrand A, Dirscherl K, Jørgensen B, Mustafa K, Gurzawska-Comis K. Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration. Inflamm Regen 2022; 42:12. [PMID: 35366945 PMCID: PMC8977008 DOI: 10.1186/s41232-022-00196-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/13/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Age-driven immune signals cause a state of chronic low-grade inflammation and in consequence affect bone healing and cause challenges for clinicians when repairing critical-sized bone defects in elderly patients.
Methods
Poly(l-lactide-co-ɛ-caprolactone) (PLCA) scaffolds are functionalized with plant-derived nanoparticles from potato, rhamnogalacturonan-I (RG-I), to investigate their ability to modulate inflammation in vitro in neutrophils and macrophages at gene and protein levels. The scaffolds’ early and late host response at gene, protein and histological levels is tested in vivo in a subcutaneous rat model and their potential to promote bone regeneration in an aged rodent was tested in a critical-sized calvaria bone defect. Significant differences were tested using one-way ANOVA, followed by a multiple-comparison Tukey’s test with a p value ≤ 0.05 considered significant.
Results
Gene expressions revealed PLCA scaffold functionalized with plant-derived RG-I with a relatively higher amount of galactose than arabinose (potato dearabinated (PA)) to reduce the inflammatory state stimulated by bacterial LPS in neutrophils and macrophages in vitro. LPS-stimulated neutrophils show a significantly decreased intracellular accumulation of galectin-3 in the presence of PA functionalization compared to Control (unmodified PLCA scaffolds). The in vivo gene and protein expressions revealed comparable results to in vitro. The host response is modulated towards anti-inflammatory/ healing at early and late time points at gene and protein levels. A reduced foreign body reaction and fibrous capsule formation is observed when PLCA scaffolds functionalized with PA were implanted in vivo subcutaneously. PLCA scaffolds functionalized with PA modulated the cytokine and chemokine expressions in vivo during early and late inflammatory phases. PLCA scaffolds functionalized with PA implanted in calvaria defects of aged rats downregulating pro-inflammatory gene markers while promoting osteogenic markers after 2 weeks in vivo.
Conclusion
We have shown that PLCA scaffolds functionalized with plant-derived RG-I with a relatively higher amount of galactose play a role in the modulation of inflammatory responses both in vitro and in vivo subcutaneously and promote the initiation of bone formation in a critical-sized bone defect of an aged rodent. Our study addresses the increasing demand in bone tissue engineering for immunomodulatory 3D scaffolds that promote osteogenesis and modulate immune responses.
Collapse
|
3
|
Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106824] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Phenolic-Enriched Collagen Fibrillar Coatings on Titanium Alloy to Promote Osteogenic Differentiation and Reduce Inflammation. Int J Mol Sci 2020; 21:ijms21176406. [PMID: 32899166 PMCID: PMC7504673 DOI: 10.3390/ijms21176406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022] Open
Abstract
The adsorption of biomolecules on biomaterial surfaces can promote their integration with surrounding tissue without changing their bulk properties. For biomaterials in bone reconstruction, the promotion of osteogenic differentiation and reduction of inflammation are desirable. Fibrillar coatings are interesting because of fibrils’ high surface area-volume ratio, aiding adsorption and adhesion. Fibrils also serve as a matrix for the immobilization of biomolecules with biological activity, such as the phenolic compound phloroglucinol (PG), the subunit of marine polyphenols. The aim of this work was to investigate the influence of PG coatings on fibroblast- and osteoblast-like cells to increase the osseointegration of titanium implants. Collagen fibril coatings, containing PG at low and high concentrations, were produced on titanium alloy (Ti6Al4V) scaffolds generated by additive manufacturing (AM). These coatings, especially PG-enriched coatings, reduced hydrophobicity and modulated the behavior of human osteosarcoma SaOS-2 and mouse embryonic fibroblast 3T3 cell lines. Both osteoblastic and fibroblastic cells spread and adhered well on PG-enriched coatings. Coatings significantly reduced the inflammatory response. Moreover, osteogenic differentiation was promoted by collagen coatings with a high PG concentration. Thus, the enrichment of collagen fibril coatings with PG is a promising strategy to improve Ti6Al4V implants for bone contact in orthopedics and dentistry and is worthy of further investigation.
Collapse
|
5
|
Tilkin RG, Régibeau N, Lambert SD, Grandfils C. Correlation between Surface Properties of Polystyrene and Polylactide Materials and Fibroblast and Osteoblast Cell Line Behavior: A Critical Overview of the Literature. Biomacromolecules 2020; 21:1995-2013. [PMID: 32181654 DOI: 10.1021/acs.biomac.0c00214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone reconstruction remains an important challenge today in several clinical situations, notably regarding the control of the competition occurring during proliferation of osteoblasts and fibroblasts. Polystyrene and polylactide are reference materials in the biomedical field. Therefore, it could be expected from the literature that clear correlations have been already established between the behavior of fibroblasts or osteoblasts and the surface characteristics of these materials. After an extensive analysis of the literature, although general trends could be established, our critical review has highlighted the need to develop a more in-depth analysis of the surface properties of these materials. Moreover, the large variation noticed in the experimental conditions used for in vitro animal cell studies impairs comparison between studies. From our comprehensive review on this topic, we have suggested several parameters that would be valuable to standardize to integrate the data from the literature and improve our knowledge on the cell-material interactions.
Collapse
Affiliation(s)
- Rémi G Tilkin
- Department of Chemical Engineering-Nanomaterials, Catalysis, and Electrochemistry (NCE), University of Liège, B-4000 Liège, Belgium.,Interfaculty Research Center of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Nicolas Régibeau
- Department of Chemical Engineering-Nanomaterials, Catalysis, and Electrochemistry (NCE), University of Liège, B-4000 Liège, Belgium.,Interfaculty Research Center of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - Stéphanie D Lambert
- Department of Chemical Engineering-Nanomaterials, Catalysis, and Electrochemistry (NCE), University of Liège, B-4000 Liège, Belgium
| | - Christian Grandfils
- Interfaculty Research Center of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
6
|
Stewart CAC, Akhavan B, Hung J, Bao S, Jang JH, Wise SG, Bilek MMM. Multifunctional Protein-Immobilized Plasma Polymer Films for Orthopedic Applications. ACS Biomater Sci Eng 2018; 4:4084-4094. [DOI: 10.1021/acsbiomaterials.8b00954] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Callum A. C. Stewart
- School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
- Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
- Charles Perkins Centre, University of Sydney, Camperdown NSW 2006, Australia
| | - Behnam Akhavan
- School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
- Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia
| | - Juichien Hung
- Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
| | - Shisan Bao
- Charles Perkins Centre, University of Sydney, Camperdown NSW 2006, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Jun-Hyeog Jang
- School of Medicine, Inha University, Incheon 400−712, Korea
| | - Steven G. Wise
- Heart Research Institute, 7 Eliza Street, Newtown, New South Wales 2042, Australia
- Sydney Medical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Marcela M. M. Bilek
- School of Physics, University of Sydney, Physics Road, Camperdown, NSW 2006, Australia
- Charles Perkins Centre, University of Sydney, Camperdown NSW 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
7
|
Folkert J, Mieszkowska A, Gaber T, Miksch K, Dirscherl K, Gurzawska K. Surface Nanocoating with Plant-Derived Pectins Improves Fibroblast Response In Vitro. STARCH-STARKE 2018. [DOI: 10.1002/star.201800162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Justyna Folkert
- Department of Environmental Biotechnology; Faculty of Energy and Environmental Engineering; Silesian University of Technology; 44-100 Gliwice Poland
| | - Anna Mieszkowska
- Department of Environmental Biotechnology; Faculty of Energy and Environmental Engineering; Silesian University of Technology; 44-100 Gliwice Poland
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology; Universitätsmedizin Charité; 10117 Berlin Germany
| | - Korneliusz Miksch
- Department of Environmental Biotechnology; Faculty of Energy and Environmental Engineering; Silesian University of Technology; 44-100 Gliwice Poland
| | - Kai Dirscherl
- Dansk Fundamental Metrologi A/S; Kogle Allé 5 2970 Hørsholm Denmark
| | - Katarzyna Gurzawska
- Birmingham Dental School and Hospital; University of Birmingham; 5 Mill Poll Way, Edgbaston Birmingham B5 7EG United Kingdom
| |
Collapse
|
8
|
Oliveira WF, Silva GM, Cabral Filho PE, Fontes A, Oliveira MD, Andrade CA, Silva MV, Coelho LC, Machado G, Correia MT. Titanium dioxide nanotubes functionalized with Cratylia mollis seed lectin, Cramoll, enhanced osteoblast-like cells adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:664-672. [DOI: 10.1016/j.msec.2018.04.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 04/13/2018] [Accepted: 04/30/2018] [Indexed: 01/07/2023]
|
9
|
Kim DY, Kim EJ, Jang WG. Piperine induces osteoblast differentiation through AMPK-dependent Runx2 expression. Biochem Biophys Res Commun 2018; 495:1497-1502. [DOI: 10.1016/j.bbrc.2017.11.200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
|
10
|
Mieszkowska A, Folkert J, Gaber T, Miksch K, Gurzawska K. Pectin nanocoating reduces proinflammatory fibroblast response to bacteria. J Biomed Mater Res A 2017; 105:3475-3481. [PMID: 28782183 DOI: 10.1002/jbm.a.36170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
Abstract
Implant failures are primarily related to bacterial infections and inflammation. Nanocoating of implant devices with organic molecules is a method used for improving their integration into host tissues and limiting inflammation. Bioengineered plant-derived rhamnogalacturonan-Is (RG-Is) from pectins improve tissue regeneration and exhibit anti-inflammatory properties. Therefore, the aim of this study is to evaluate the in vitro effect of RG-I nanocoating on human gingival primary fibroblast (HGF) activity and proinflammatory response following Porphyromonas gingivalis (P. gingivalis) infection. Infected HGFs were incubated on tissue culture polystyrene (TCPS) plates coated with unmodified RG-I isolated from potato pectin (PU) and dearabinanated RG-I (PA). HGF morphology, proliferation, metabolic activity, and expression of genes responsible for extracellular matrix (ECM) turnover and proinflammatory response were examined. Following the P. gingivalis infection, PU and PA significantly promoted HGF proliferation and metabolic activity. Moreover, gene expression levels of IL1B, IL8, TNFA, and MMP2 decreased in the infected cells cultured on PU and PA, whereas the expression of COL1A1, FN1, and FGFR1 was upregulated. The results indicate that RG-Is are promising candidates for nanocoating of an implant surface, can reduce inflammation, and enhance implant integration, particularly in medically compromised patients with chronic inflammatory diseases such as periodontitis and rheumatoid arthritis. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3475-3481, 2017.
Collapse
Affiliation(s)
- A Mieszkowska
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice 44-100, Poland
| | - J Folkert
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice 44-100, Poland
| | - T Gaber
- Department of Rheumatology and Clinical Immunology, Charité University Medicine, Berlin 10117, Germany
| | - K Miksch
- Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice 44-100, Poland
| | - K Gurzawska
- Oral Surgery Department, Birmingham Dental School and Hospital, University of Birmingham, Birmingham B46NN, United Kingdom
| |
Collapse
|