1
|
Wróblewska K, Bieszczad D, Popławska M, Ziętara KJ, Zajączkowska M, Filip A. Gene therapy as an innovative approach to the treatment of hemophilia B-a review. J Appl Genet 2025:10.1007/s13353-025-00952-w. [PMID: 40178764 DOI: 10.1007/s13353-025-00952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/23/2024] [Accepted: 02/12/2025] [Indexed: 04/05/2025]
Abstract
Hemophilia B is a disease that affects the human coagulation system, causing the absence or deficiency of coagulation factor IX, which may manifest itself in uncontrolled bleeding that is life-threatening to patients. Due to its inheritance, the disease more often affects men, and the severity of symptoms directly correlates with the concentration of the missing factor IX; hence, the aim of therapy is to maintain it at a level that allows for sufficient hemostasis. The basic model of treatment offered to patients is based on primary prevention with coagulation factor IX with a prolonged half-life, which, however, does not solve the numerous problems faced by patients. An innovative proposal that, despite initial concerns, is becoming more and more popular every day is the recently approved genetic therapy in Europe, which uses viral vectors to transfer the correct gene that encodes coagulation factor IX. The introduction of a recombinant gene in place of its defective counterpart seems to be a promising solution and the beginning of a new era in which genetic therapies have a chance to develop their full potential and replace existing therapeutic regimens.
Collapse
Affiliation(s)
- Kinga Wróblewska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland.
| | - Dominika Bieszczad
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Magdalena Popławska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Karolina Joanna Ziętara
- Student Scientific Association at the Department of Psychology, Faculty of Medicine, Medical University of Lublin, 20-093, Lublin, Poland
| | - Monika Zajączkowska
- Students' Scientific Association at the Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Ul. Radziwiłłowska 11, 20-080, Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics, Cytogenetics Laboratory, Medical University of Lublin, 20-080, Lublin, Poland
| |
Collapse
|
2
|
El-Sayed AA, Bolous NS. Economic Burden of Haemophilia from a Societal Perspective: A Scoping Review. PHARMACOECONOMICS - OPEN 2025; 9:179-205. [PMID: 39548037 DOI: 10.1007/s41669-024-00540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Haemophilia is a rare genetic bleeding disorder that leads to musculoskeletal complications. The high cost of haemophilia treatment necessitates a thorough evaluation of its economic burden. However, due to the difficulty of estimating direct non-medical, indirect, and intangible costs, studies often underestimate the actual economic burden of haemophilia. This scoping review aims to summarise economic studies in haemophilia conducted from a societal perspective. METHODS A systematic search across eight scholarly databases, grey literature, and reference lists until the 5th of July 2023 was conducted to identify relevant studies. The inclusion criteria encompassed full-text, English-language publications of economic analyses in congenital haemophilia from a societal perspective. Model-based studies and those adopting a payer perspective were excluded. Costs were adjusted to international dollars (I$) and US dollars (US$) in 2022 for comparability. RESULTS Out of 2993 potential sources identified, 25 studies met the inclusion criteria, covering 7226 persons with haemophilia across 22 countries. All studies reported direct medical costs, with four excluding the cost of haemostatic therapy. Fifteen studies reported direct formal non-medical costs, while eight reported direct informal non-medical costs. All but one study reported the indirect costs. The average annual costs of haemophilia varied widely based on treatment modality, disease severity, geographical location, and included cost categories. When including the cost of clotting factor replacement therapy (CFRT), the total cost for severe haemophilia without inhibitors ranged from 1566 I$ to 700,070 I$ per person per year (lowest value reported in India and highest in the United States). CFRT represented up to 99.9% of the total cost for those receiving prophylaxis and up to 95.1% for episodic treatment. Haemostatic therapies accounted for 82% of the total cost in patients with inhibitors. CONCLUSION There is a significant heterogeneity in defining cost categories required for a comprehensive economic analysis from a societal perspective. While haemostatic therapies constitute a substantial portion of the overall cost, direct non-medical and indirect costs are crucial as they are often paid out-of-pocket and may impede access to treatment. It is essential for haematologists and economists to establish a standardised costing framework for future studies, particularly in the era of novel therapies.
Collapse
Affiliation(s)
- Amr A El-Sayed
- Public Health Institute, Faculty of Health, Liverpool John Moores University, Liverpool, UK
- Medical Affairs Department, Novo Nordisk Egypt, Cairo, Egypt
| | - Nancy S Bolous
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
3
|
Franchini M, Pasca S, Mengoli C, Focosi D, Mannucci PM. Bleeding Episodes in Patients With Haemophilia B Receiving Prophylactic Factor IX Treatment: A Systematic Review and Meta-Analysis. Haemophilia 2025; 31:173-186. [PMID: 39950390 DOI: 10.1111/hae.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 02/01/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Prophylaxis with coagulation factor concentrates is the mainstay of treatment in severe hemophilia A and B. Data on bleeding rates in persons with congenital haemophilia B (PwcHB) receiving prophylaxis are inconsistent. AIM This systematic review and meta-analysis were aimed at assessing bleeding outcomes, including annualised bleeding rates (ABR) and the proportion of patients with zero bleeding events, in PwcHB receiving prophylaxis with plasma-derived or recombinant FIX products with standard (rSHL) or extended half-life (rEHL). METHODS A systematic search was conducted using the bibliographic database Medline, Embase and Cochrane Central Register. The protocol was registered on PROSPERO (registration number: CRD42024592785). RESULTS The search yielded 2440 citations and a total of 42 studies (2 randomised and 40 nonrandomised) were included in the final analysis. The pooled estimated mean (95% confidence interval [CI]) ABR was significantly lower in PwcHB treated prophylactically with rEHL FIX than in those receiving rSHL FIX products (1.29 [95% CI: 0.91, 1.66] vs. 3.12 [95% CI: 2.63, 3.62], p < 0.01). The proportion of participants with zero bleeding events was significantly higher in PwcHB treated prophylactically with rEHL FIX than in those receiving rSHL FIX (0.53 [95% CI: 0.37, 0.69] vs. 0.24 [95% CI: 0.14, 0.39], p = 0.01). The ABR did not differ according to age groups (more or less than 12 years). CONCLUSION The results of this meta-analysis suggest that compared to standard half-life FIX concentrates, prophylaxis with rEHL FIX products is associated with a reduction in ABR and a higher proportion of patients with no bleeding episodes.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Samantha Pasca
- Transfusion and Immunohematology Department, Azienda Provinciale Servizi Sanitari (APSS) - Trento, Trento, Italy
| | - Carlo Mengoli
- Department of Transfusion Medicine and Hematology, Carlo Poma Hospital, Mantua, Italy
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico and University of Milan, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| |
Collapse
|
4
|
Kulus M, Farzaneh M, Sheykhi-Sabzehpoush M, Ghaedrahmati F, Mehravar F, Józkowiak M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Podhorska-Okołów M, Zabel M, Mozdziak P, Dzięgiel P, Kempisty B. Exosomes and non-coding RNAs: Exploring their roles in human myocardial dysfunction. Biomed Pharmacother 2025; 183:117853. [PMID: 39827809 DOI: 10.1016/j.biopha.2025.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Myocardial dysfunction, characterized by impaired cardiac muscle function, arises from diverse etiologies, including coronary artery disease, myocardial infarction, cardiomyopathies, hypertension, and valvular heart disease. Recent advancements have highlighted the roles of exosomes and non-coding RNAs in the pathophysiology of myocardial dysfunction. Exosomes are small extracellular vesicles released by cardiac and other cells that facilitate intercellular communication through their molecular cargo, including ncRNAs. ncRNAs are known to play critical roles in gene regulation through diverse mechanisms, impacting oxidative stress, fibrosis, and other factors associated with myocardial dysfunction. Dysregulation of these molecules correlates with disease progression, presenting opportunities for therapeutic interventions. This review explores the mechanistic interplay between exosomes and ncRNAs, underscoring their potential as biomarkers and therapeutic agents in myocardial dysfunction. Emerging evidence supports the use of engineered exosomes and modified ncRNAs to enhance cardiac repair by targeting signaling pathways associated with fibrosis, apoptosis, and angiogenesis. Despite promising preclinical results, delivery, stability, and immunogenicity challenges remain. Further research is needed to optimize clinical translation. Understanding these intricate mechanisms may drive the development of innovative strategies for diagnosing and treating myocardial dysfunction, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Mehravar
- Department of Biostatistics and Epidemiology, School of Health, Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland; Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland
| | - Marzenna Podhorska-Okołów
- Department of Human Morphology and Embryology, Division of Ultrastructure Research, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland; Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland; Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland; Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA; Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Askarizadeh A, Vahdat-Lasemi F, Karav S, Kesharwani P, Sahebkar A. Lipid nanoparticle-based delivery of small interfering RNAs: New possibilities in the treatment of diverse diseases. Eur Polym J 2025; 223:113624. [DOI: 10.1016/j.eurpolymj.2024.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Dong B, Xue R, Li J, Ling S, Xing W, Liu Z, Yuan X, Pan J, Du R, Shen X, Zhang J, Zhang Y, Li Y, Zhong G. Ckip-1 3'UTR alleviates prolonged sleep deprivation induced cardiac dysfunction by activating CaMKK2/AMPK/cTNI pathway. MOLECULAR BIOMEDICINE 2024; 5:23. [PMID: 38871861 PMCID: PMC11176284 DOI: 10.1186/s43556-024-00186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.
Collapse
Affiliation(s)
- Beilei Dong
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Rui Xue
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Jianwei Li
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325041, China
| | - Wenjuan Xing
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Zizhong Liu
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinxin Yuan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Junjie Pan
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Ruikai Du
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xinming Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jingwen Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Youzhi Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Yingxian Li
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China.
| | - Guohui Zhong
- National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, 100094, China.
| |
Collapse
|
7
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
9
|
Thau H, Neuber S, Emmert MY, Nazari-Shafti TZ. Targeting Lipoprotein(a): Can RNA Therapeutics Provide the Next Step in the Prevention of Cardiovascular Disease? Cardiol Ther 2024; 13:39-67. [PMID: 38381282 PMCID: PMC10899152 DOI: 10.1007/s40119-024-00353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
Numerous genetic and epidemiologic studies have demonstrated an association between elevated levels of lipoprotein(a) (Lp[a]) and cardiovascular disease. As a result, lowering Lp(a) levels is widely recognized as a promising strategy for reducing the risk of new-onset coronary heart disease, stroke, and heart failure. Lp(a) consists of a low-density lipoprotein-like particle with covalently linked apolipoprotein A (apo[a]) and apolipoprotein B-100, which explains its pro-thrombotic, pro-inflammatory, and pro-atherogenic properties. Lp(a) serum concentrations are genetically determined by the apo(a) isoform, with shorter isoforms having a higher rate of particle synthesis. To date, there are no approved pharmacological therapies that effectively reduce Lp(a) levels. Promising treatment approaches targeting apo(a) expression include RNA-based drugs such as pelacarsen, olpasiran, SLN360, and lepodisiran, which are currently in clinical trials. In this comprehensive review, we provide a detailed overview of RNA-based therapeutic approaches and discuss the recent advances and challenges of RNA therapeutics specifically designed to reduce Lp(a) levels and thus the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Henriette Thau
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Sebastian Neuber
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany.
- Institute for Regenerative Medicine, University of Zurich, 8044, Zurich, Switzerland.
| | - Timo Z Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Biomedical Innovation Academy, BIH Charité (Junior) (Digital) Clinician Scientist Program, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| |
Collapse
|
10
|
Khan SU, Khan MU, Suleman M, Inam A, Din MAU. Hemophilia Healing with AAV: Navigating the Frontier of Gene Therapy. Curr Gene Ther 2024; 24:265-277. [PMID: 38284735 DOI: 10.2174/0115665232279893231228065540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy for hemophilia has advanced tremendously after thirty years of continual study and development. Advancements in medical science have facilitated attaining normal levels of Factor VIII (FVIII) or Factor IX (FIX) in individuals with haemophilia, thereby offering the potential for their complete recovery. Despite the notable advancements in various countries, there is significant scope for further enhancement in haemophilia gene therapy. Adeno-associated virus (AAV) currently serves as the primary vehicle for gene therapy in clinical trials targeting haemophilia. Subsequent investigations will prioritize enhancing viral capsid structures, transgene compositions, and promoters to achieve heightened transduction efficacy, diminished immunogenicity, and more predictable therapeutic results. The present study indicates that whereas animal models have transduction efficiency that is over 100% high, human hepatocytes are unable to express clotting factors and transduction efficiency to comparable levels. According to the current study, achieving high transduction efficiency and high levels of clotting factor expression in human hepatocytes is still insufficient. It is also crucial to reduce the risk of cellular stress caused by protein overload. Despite encountering various hurdles, the field of haemophilia gene therapy holds promise for the future. As technology continues to advance and mature, it is anticipated that a personalized therapeutic approach will be developed to cure haemophilia effectively.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Amrah Inam
- School of Life Science and Technology, Institute of Biomedical Engineering and Bioinformatics, Xi'an Jiaotong University, Xi'an, China
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| |
Collapse
|