1
|
Chen Z, Liu X, Feng X, Lyu A, Zhou W. A systematic pharmacological strategy-based to decode the synergistic mechanism of 7,4'-dihydroxyflavone in combination with vitamin D3 against asthma. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119513. [PMID: 39971017 DOI: 10.1016/j.jep.2025.119513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 7,4'-dihydroxyflavone (74DHF), extracted from Gancao (Rhizoma Glycyrrhizae), has demonstrated to mediate the asthma pathology, while Vitamin D3 (VD3) plays a role in asthma treatment due to its immunomodulatory effects. However, the potential molecular or systems mechanism of 74DHF in combination with VD3 against asthma has not yet been elucidated. AIM OF THE STUDY The current study not only deepens our understanding of the complex synergistic mechanism of 74DHF andVD3 against asthma but also proposes a promising strategy to promote the development of combination therapy. MATERIALS AND METHODS This study employed a systems pharmacology-based approach integrating target fishing, data integration, bioinformatics analysis, network analysis, Gene Ontology (GO) enrichment analysis, pathway analysis, and in vitro experiment validation to elucidate the pharmacological mechanisms of the combination of 74DHF and VD3 for asthma treatment. RESULTS Our investigation revealed 47 overlapping targets, 20 core targets, 10 optimal common GO processes, and 10 key pathways closely associated with asthma in the combination of 74DHF and VD3. The combined treatment of 74DHF and VD3 inhibited the inflammatory response (TNF-α and IL-6) induced by LPS in macrophages and epithelial to mesenchymal transition (EMT) related genes expression (CDH1 and ACTA2) in bronchial epithelial cells under the stimulation of TGF-β1. CONCLUSION The present study deciphered the molecular mechanism of combined therapeutic effect of 74DHF and VD3 on asthma on systemic and cellular level.
Collapse
Affiliation(s)
- Ziyi Chen
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xiaoyu Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| | - Xiaoyang Feng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.
| | - Wei Zhou
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China.
| |
Collapse
|
2
|
Yuan JQ, Li XY, Fan YN, Fang N, Li P, Wen XZ, Hou Q, Zhang ZQ, Lin MB. Rosmarinic acid suppresses the progression of COPD via Syk by modulating airway inflammation and epithelial apoptosis in vivo and in vitro. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-15. [PMID: 39312447 DOI: 10.1080/10286020.2024.2403617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
Rosmarinic acid (RosA), a hydrophilic phenolic compound found in various plants, has several biological effects such as anti-inflammatory and anti-apoptosis activities. However, its potential impact on chronic obstructive pulmonary disease (COPD) and its underlying mechanism has not been investigated. In this study, we explored the potential therapeutic effects and mechanism of RosA on COPD airway inflammation and alveolar epithelial apoptosis in vivo and in vitro. Our data suggested that RosA may be a therapeutic candidate for COPD with low toxicity. The corresponding mechanism lies in its anti-inflammatory effect on macrophage and bronchial epithelial cells, as well as protective effect on lung epithelial apoptosis via the jointly cross-target spleen tyrosine kinase (Syk).
Collapse
Affiliation(s)
- Ji-Qiao Yuan
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xu-Yu Li
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yan-Nan Fan
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Nan Fang
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ping Li
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xin-Zhu Wen
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qi Hou
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zi-Qian Zhang
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ming-Bao Lin
- Laboratory of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Su D, Luo X, Chen J, Lu N, Zhao J, Wan Y, Gao Y, Liu Q, Luo Z. Construction of a three-dimensional inflammation model of human bronchial epithelial cells BEAS-2B by using the self-assembling D-form peptide Sciobio-Ⅲ. Biochem Biophys Res Commun 2024; 704:149701. [PMID: 38408415 DOI: 10.1016/j.bbrc.2024.149701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Human bronchial epithelial cells in the airway system, as the primary barrier between humans and the surrounding environment, assume a crucial function in orchestrating the processes of airway inflammation. Target to develop a new three-dimensional (3D) inflammatory model to airway system, and here we report a strategy by using self-assembling D-form peptide to cover the process. By testing physicochemical properties and biocompatibility of Sciobio-Ⅲ, we confirmed that it can rapidly self-assembles under the trigger of ions to form a 3D nanonetwork-like scaffold, which supports 3D cell culture including the cell strains like BEAS-2B cells. Subsequently, inflammation model was established by lipopolysaccharide (LPS), the expression of some markers of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8), the levels of relevant inflammatory factors were measured by RT-qPCR and the secretion profile of inflammatory cytokines by ELISA, are obtained the quite difference effects in 2D and 3D microenvironment, which suggested Sciobio-Ⅲ hydrogel is an ideal scaffold that create the microenvironment for 3D cell culture. Here we are success to establish a 3D inflammation model for airway system. This innovative model allows for rapid and accurate evaluation of drug metabolism and toxicological side effects, hope to use in drug screening for airway inflammatory diseases and beyond.
Collapse
Affiliation(s)
- Di Su
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; Department of Materials Science and Engineering, University of California, Irvine, CA, 92697, USA
| | - Jialei Chen
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Na Lu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jiawei Zhao
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuan Wan
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, IA, 52242, USA
| | - Yu Gao
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Zhou Y, Zhang Y, Yu W, Qin Y, He H, Dai F, Wang Y, Zhu F, Zhou G. Immunomodulatory role of spleen tyrosine kinase in chronic inflammatory and autoimmune diseases. Immun Inflamm Dis 2023; 11:e934. [PMID: 37506139 PMCID: PMC10373573 DOI: 10.1002/iid3.934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The high prevalence of chronic inflammatory diseases or autoimmune reactions is a major source of concern and affects the quality of life of patients. Chronic inflammatory or autoimmune diseases are associated with many diseases in humans, including asthma, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease and cancer. Splenic tyrosine kinase (SYK) is a non-receptor tyrosine kinase that plays an important role in immune receptor signalling in immune and inflammatory responses. METHODS This is a review article in which we searched for keywords "splenic tyrosine kinase", "inflammation" and "autoimmune diseases" in published literature such as Pubmed and Web of Science to collect relevant information and then conducted a study focusing on the latest findings on the involvement of SYK in chronic inflammatory or autoimmune diseases. RESULTS This paper reviews the regulation of Fcγ, NF-κB, B cell and T cell-related signalling pathways by SYK, which contributes to disease progression in chronic inflammatory and autoimmune diseases such as airway fibrosis, inflammatory skin disease and inflammatory bowel disease. CONCLUSION This paper shows that SYK plays an important role in chronic inflammatory and autoimmune diseases. syk targets hematological, autoimmune and other inflammatory diseases and therefore, inhibition of SYK expression or blocking its related pathways may provide new ideas for clinical prevention and treatment of inflammatory or autoimmune diseases.
Collapse
Affiliation(s)
- Yaqi Zhou
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Yaowen Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Wei Yu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yufen Qin
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengxian Dai
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Guangxi Zhou
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
5
|
Nie H, Wang F, Zeng X, Bao H, Liu X. Analysis of Communal Molecular Mechanism Between Chronic Obstructive Pulmonary Disease and Osteoporosis. Int J Chron Obstruct Pulmon Dis 2023; 18:259-271. [PMID: 36937804 PMCID: PMC10017835 DOI: 10.2147/copd.s395492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) patients with osteoporosis (OP) usually experience more frequent exacerbations, worse quality of life, and heavier economic burden, however, few studies have investigated common molecular mechanisms of COPD and OP. Objective To explore the relationship between COPD and OP through bioinformatics analysis. Methods The miRNA microarray data of COPD and OP were retrieved from the Gene Expression Database (GEO), and the differentially expressed microRNAs (DEmiRNAs) were screened and the intersection was obtained. The Targetscan, miRDB, and miRWalk databases were used to predict the target genes of DEmiRNA, and the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the R package clusterProfiler, the STRING database was used to analyze the target protein-protein interaction network (PPI) and screens to determine the core modules and core genes. Results Two DEmiRNAs (miR-23a-5p, miR-194-3p) have been found in COPD and OP, which have predicted 76 and 114 target genes, respectively. GO functional annotations of miR-23a-5p were significantly enriched in CD40 signaling pathway, ubiquitin-conjugating enzyme activity, etc; KEGG pathways of miR-23a-5p were significantly enriched in ubiquitin-mediated proteolysis, folate biosynthesis, and regulation of actin cytoskeleton. GO function annotations of miR-194-3p were significantly enriched in T cell activation regulation, ubiquitin protein ligase activity, and DNA transcription factor binding; KEGG pathways of miR-194-3p were significantly enriched in cell adhesion molecules, intercellular tight junctions, and lysosomal pathway. PPI analysis found target coding proteins formed complex regulatory networks. Ten core genes (TP53, SRC, PXN, CHD4, SYK, TNRC6B, PML, KAT5, BRD1 and IGF2) were picked out among them, then we used the MCODE plugin found three core subnetworks. Conclusion Two identical DEmiRNAs (miR-23a-5p, miR-194-3p) exist in the peripheral blood of COPD and OP patients, which are important biomarkers for COPD patients with OP and may represent novel targets for diagnosis and treatment of COPD patients with OP.
Collapse
Affiliation(s)
- Hui Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoli Zeng
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Hairong Bao
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, Lanzhou, People’s Republic of China
- Correspondence: Xiaoju Liu, Department of Gerontal Respiratory Medicine, the First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People’s Republic of China, Email
| |
Collapse
|
6
|
Diver S, Brightling CE, Greening NJ. Novel Therapeutic Strategies in Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:671-690. [DOI: 10.1016/j.iac.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Okwuofu EO, Hui AYC, Woei JLC, Stanslas J. Molecular and Immunomodulatory Actions of New Antiasthmatic Agents: Exploring the Diversity of Biologics in Th2 Endotype Asthma. Pharmacol Res 2022; 181:106280. [PMID: 35661709 DOI: 10.1016/j.phrs.2022.106280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
Abstract
Asthma is a major respiratory disorder characterised by chronic inflammation and airway remodelling. It affects about 1-8% of the global population and is responsible for over 461,000 deaths annually. Until recently, the pharmacotherapy of severe asthma involved high doses of inhaled corticosteroids in combination with β-agonist for prolonged action, including theophylline, leukotriene antagonist or anticholinergic yielding limited benefit. Although the use of newer agents to target Th2 asthma endotypes has improved therapeutic outcomes in severe asthmatic conditions, there seems to be a paucity of understanding the diverse mechanisms through which these classes of drugs act. This article delineates the molecular and immunomodulatory mechanisms of action of new antiasthmatic agents currently being trialled in preclinical and clinical studies to remit asthmatic conditions. The ultimate goal in developing antiasthmatic agents is based on two types of approaches: either anti-inflammatory or bronchodilators. Biologic and most small molecules have been shown to modulate specific asthma endotypes, targeting thymic stromal lymphopoietin, tryptase, spleen tyrosine kinase (Syk), Janus kinase, PD-L1/PD-L2, GATA-3, and CD38 for the treatment and management of Th2 endotype asthma.
Collapse
Affiliation(s)
- Emmanuel Oshiogwe Okwuofu
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Jonathan Lim Chee Woei
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Chen YC, Chang YP, Huang KT, Hsu PY, Hsiao CC, Lin MC. Unraveling the Pathogenesis of Asthma and Chronic Obstructive Pulmonary Disease Overlap: Focusing on Epigenetic Mechanisms. Cells 2022; 11:cells11111728. [PMID: 35681424 PMCID: PMC9179497 DOI: 10.3390/cells11111728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/05/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
Asthma and COPD overlap (ACO) is characterized by patients presenting with persistent airflow limitation and features of both asthma and COPD. It is associated with a higher frequency and severity of exacerbations, a faster lung function decline, and a higher healthcare cost. Systemic inflammation in COPD and asthma is driven by type 1 T helper (Th1) and Th2 immune responses, respectively, both of which may contribute to airway remodeling in ACO. ACO-related biomarkers can be classified into four categories: neutrophil-mediated inflammation, Th2 cell responses, arachidonic acid-eicosanoids pathway, and metabolites. Gene–environment interactions are key contributors to the complexity of ACO and are regulated by epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs. Thus, this review focuses on the link between epigenetics and ACO, and outlines the following: (I) inheriting epigenotypes without change with environmental stimuli, or epigenetic changes in response to long-term exposure to inhaled particles plus intermittent exposure to specific allergens; (II) epigenetic markers distinguishing ACO from COPD and asthma; (III) potential epigenetic drugs that can reverse oxidative stress, glucocorticoid insensitivity, and cell injury. Improved understanding of the epigenetic regulations holds great value to give deeper insight into the mechanisms, and clarify their implications for biomedical research in ACO.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Kuo-Tung Huang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
| | - Chang-Chun Hsiao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; (Y.-P.C.); (K.-T.H.); (P.-Y.H.)
- Correspondence: (Y.-C.C.); (C.-C.H.); (M.-C.L.); Tel.: +886-7-731-7123 (ext. 8199) (Y.-C.C. & M.-C.L.); +886-7-731-7123 (ext. 8979) (C.-C.H.)
| |
Collapse
|
9
|
Ou G, Zhu M, Huang Y, Luo W, Zhao J, Zhang W, Xia H, Wang S, He R, Xiao Q, Deng Y, Qiu R. HSP60 regulates the cigarette smoke-induced activation of TLR4-NF-κB-MyD88 signalling pathway and NLRP3 inflammasome. Int Immunopharmacol 2022; 103:108445. [PMID: 34998273 DOI: 10.1016/j.intimp.2021.108445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by increased cellular stress and inflammation. Heat shock protein 60 (HSP60) is a highly conserved stress protein that acts as a cellular "danger" signal for immune reactions. In this study, we investigated the role of HSP60 in COPD and explored the underlying mechanisms. Expression levels of HSP60 in patients with acute exacerbation of COPD (AECOPD), stable COPD, and healthy people were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). Moreover, the effect and molecular mechanism of HSP60 in COPD were studied in cigarette smoke (CS)-treated C57BL/6 mice and macrophages. The results showed significant upregulation of HSP60 expression in the peripheral blood mononuclear cells (PBMCs) and sera of patients with AECOPD compared to those with stable COPD or healthy people. CS induced the expression of HSP60 in the COPD mouse model, accelerated the activation of toll-like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) signalling pathways, promoted the increase of inflammatory cells in alveolar lavage fluid and serum inflammatory factors, and induced destruction of lung tissue structure. Furthermore, HSP60 knockdown affected TLR4 and MyD88 expression, IκBα degradation, and nuclear localization of NF-κB and NLRP3 inflammasome activity. Our study revealed that CS stimulates the expression of HSP60, activating the TLR4-MyD88-NF-κB signalling pathway and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Guochun Ou
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Mingmei Zhu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Yufang Huang
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Wen Luo
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Wenbo Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hangbiao Xia
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Shuhong Wang
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Rong He
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Qing Xiao
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China
| | - Rong Qiu
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan 629000, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| |
Collapse
|