1
|
Cowley JM, Deering-Rice CE, Lamb JG, Romero EG, Almestica-Roberts M, Serna SN, Sun L, Kelly KE, Whitaker RT, Cheminant J, Venosa A, Reilly CA. Pro-inflammatory effects of inhaled Great Salt Lake dust particles. Part Fibre Toxicol 2025; 22:2. [PMID: 39819386 PMCID: PMC11737234 DOI: 10.1186/s12989-025-00618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Climate change and human activities have caused the drying of marine environments around the world. An example is the Great Salt Lake in Utah, USA which is at a near record low water level. Adverse health effects have been associated with exposure to windblown dust originating from dried lakebed sediments, but mechanistic studies evaluating the health effects of these dusts are limited. RESULTS Monitoring data and images highlight the impact of local crustal and Great Salt Lake sediment dusts on the Salt Lake Valley/Wasatch front airshed. Great Salt Lake sediment and derived PM< 3.1 (quasi-PM2.5 or qPM2.5) contained metals/salts, natural and anthropogenic chemicals, and bacteria. Exposure of mice via inhalation and oropharyngeal aspiration caused neutrophilia, increased expression of mRNA for Il6, Cxcl1, Cxcl2, and Muc5ac in the lungs, and increased IL6 and CXCL1 in bronchoalveolar lavage. Inhaled GSLD qPM2.5 caused a greater neutrophilic response than coal fly ash qPM2.5 and was more cytotoxic to human airway epithelial cells (HBEC3-KT) in vitro. Pro-inflammatory biomarker mRNA induction was replicated in vitro using HBEC3-KT and differentiated monocyte-derived (macrophage-like) THP-1 cells. In HBEC3-KT cells, IL6 and IL8 (the human analogue of Cxcl1 and Cxcl2) mRNA induction was attenuated by ethylene glycol-bis(β-aminoethyl ether)-N, N,N',N'-tetraacetic acid (EGTA) and ruthenium red (RR) co-treatment, and by TRPV1 and TRPV3 antagonists, but less by the Toll-like Receptor-4 (TLR4) inhibitor TAK-242 and deferoxamine. Accordingly, GSLD qPM2.5 activated human TRPV1 as well as other human TRP channels. Dust from the Salton Sea playa (SSD qPM2.5) also stimulated IL6 and IL8 mRNA expression and activated TRPV1 in vitro, but inhibition by TRPV1 and V3 antagonists was dose dependent. Alternatively, responses of THP-1 cells to the Great Salt Lake and Salton Sea dusts were partially mediated by TLR4 as opposed to TRPV1. Finally, "humanized" Trpv1N606D mice exhibited greater neutrophilia than C57Bl/6 mice following GSLD qPM2.5 inhalation. CONCLUSIONS Dust from the GSL playa and similar dried lakebeds may affect human respiratory health via activation of TRPV1, TRPV3, TLR4, and oxidative stress.
Collapse
Affiliation(s)
- Jacob M Cowley
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - John G Lamb
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Erin G Romero
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Samantha N Serna
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Kerry E Kelly
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ross T Whitaker
- Department of Computer Science, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jenna Cheminant
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, 30 S. 2000 E., Room 201 Skaggs Hall, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
2
|
Cowley JM, Deering-Rice CE, Lamb JG, Romero EG, Almestica-Roberts M, Serna SN, Sun L, Kelly KE, Whitaker RT, Cheminant J, Venosa A, Reilly CA. Pro-Inflammatory Effects of Inhaled Great Salt Lake Dust Particles. RESEARCH SQUARE 2024:rs.3.rs-4650606. [PMID: 39108472 PMCID: PMC11302694 DOI: 10.21203/rs.3.rs-4650606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Climatological shifts and human activities have decimated lakes worldwide. Water in the Great Salt Lake, Utah, USA is at near record lows which has increased risks for exposure to windblown dust from dried lakebed sediments. Formal studies evaluating the health effects of inhaled Great Salt Lake dust (GSLD) have not been performed despite the belief that the dust is harmful. The objectives of this study were to illustrate windblown dust events, assess the impact of inhaled dust on the lungs, and to identify mechanisms that could contribute to the effects of GSLD in the lungs. Results An animation, hourly particle and meteorological data, and images illustrate the impact of dust events on the Salt Lake Valley/Wasatch front airshed. Great Salt Lake sediment and PM2.5 contained metals, lipopolysaccharides, natural and anthropogenic chemicals, and bacteria. Inhalation and oropharyngeal delivery of PM2.5 triggered neutrophilia and the expression of mRNA for Il6, Cxcl1, Cxcl2, and Muc5ac in mouse lungs, was more potent than coal fly ash (CFA) PM2.5, and more cytotoxic to human airway epithelial cells (HBEC3-KT) in vitro. Induction of IL6 and IL8 was replicated in vitro using HBEC3-KT and THP-1 cells. For HBEC3-KT cells, IL6 induction was variably attenuated by EGTA/ruthenium red, the TLR4 inhibitor TAK-242, and deferoxamine, while IL8 was attenuated by EGTA/ruthenium red. Inhibition of mRNA induction by EGTA/ruthenium red suggested roles for transition metals, calcium, and calcium channels as mediators of the responses. Like CFA, GSLD and a similar dust from the Salton Sea in California, activated human TRPA1, M8, and V1. However, only inhibition of TRPV1, TRPV3, and a combination of both channels impacted cytokine mRNA induction in HBEC3-KT cells. Responses of THP1 cells were partially mediated by TLR4 as opposed to TRP channels and mice expressing a "humanized" form of TRPV1 exhibited greater neutrophilia when exposed to GSLD via inhalation. Conclusions This study suggests that windblown dust from Great Salt Lake and similar lake sediments could pose a risk to humans via mechanisms including the activation of TRPV1/V3, TLR4, and possibly oxidative stress.
Collapse
|
3
|
Nelson TM, Quiros KAM, Dominguez EC, Ulu A, Nordgren TM, Eskandari M. Diseased and healthy murine local lung strains evaluated using digital image correlation. Sci Rep 2023; 13:4564. [PMID: 36941463 PMCID: PMC10026788 DOI: 10.1038/s41598-023-31345-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/09/2023] [Indexed: 03/22/2023] Open
Abstract
Tissue remodeling in pulmonary disease irreversibly alters lung functionality and impacts quality of life. Mechanical ventilation is amongst the few pulmonary interventions to aid respiration, but can be harmful or fatal, inducing excessive regional (i.e., local) lung strains. Previous studies have advanced understanding of diseased global-level lung response under ventilation, but do not adequately capture the critical local-level response. Here, we pair a custom-designed pressure-volume ventilator with new applications of digital image correlation, to directly assess regional strains in the fibrosis-induced ex-vivo mouse lung, analyzed via regions of interest. We discuss differences between diseased and healthy lung mechanics, such as distensibility, heterogeneity, anisotropy, alveolar recruitment, and rate dependencies. Notably, we compare local and global compliance between diseased and healthy states by assessing the evolution of pressure-strain and pressure-volume curves resulting from various ventilation volumes and rates. We find fibrotic lungs are less-distensible, with altered recruitment behaviors and regional strains, and exhibit disparate behaviors between local and global compliance. Moreover, these diseased characteristics show volume-dependence and rate trends. Ultimately, we demonstrate how fibrotic lungs may be particularly susceptible to damage when contrasted to the strain patterns of healthy counterparts, helping to advance understanding of how ventilator induced lung injury develops.
Collapse
Affiliation(s)
- T M Nelson
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - K A M Quiros
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - E C Dominguez
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
| | - A Ulu
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
| | - T M Nordgren
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California Riverside, Riverside, CA, USA
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Eskandari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
4
|
Biddle TA, Yisrael K, Drover R, Li Q, Maltz MR, Topacio TM, Yu J, Del Castillo D, Gonzales D, Freund HL, Swenson MP, Shapiro ML, Botthoff JK, Aronson E, Cocker DR, Lo DD. Aerosolized aqueous dust extracts collected near a drying lake trigger acute neutrophilic pulmonary inflammation reminiscent of microbial innate immune ligands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159882. [PMID: 36334668 DOI: 10.1016/j.scitotenv.2022.159882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms. OBJECTIVES Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust. Playa emissions may be concentrating dissolved material from the lake, with microbial components capable of inducing pulmonary innate immune responses. To test this hypothesis, we used a mouse model of aerosol exposures to assess the effects of playa dust. METHODS From dust collected around the Salton Sea region, aqueous extracts were used to generate aerosols, which were injected into an environmental chamber for mouse exposure studies. We compared the effects of exposure to Salton Sea aerosols, as well as to known immunostimulatory reference materials. Acute 48-h and chronic 7-day exposures were compared, with lungs analyzed for inflammatory cell recruitment and gene expression. RESULTS Dust from sites nearest to the Salton Sea triggered lung neutrophil inflammation that was stronger at 48-h but reduced at 7-days. This acute inflammatory profile and kinetics resembled the response to innate immune ligands LTA and LPS while distinct from the classic allergic response to Alternaria. CONCLUSION Lung inflammatory responses to Salton Sea dusts are similar to acute innate immune responses, raising the possibility that microbial components are entrained in the dust, promoting inflammation. This effect highlights the health risks at drying terminal lakes from inflammatory components in dust emissions from exposed lakebed.
Collapse
Affiliation(s)
- Trevor A Biddle
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Keziyah Yisrael
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Ryan Drover
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Qi Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Mia R Maltz
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Talyssa M Topacio
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Jasmine Yu
- School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Diana Del Castillo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Daniel Gonzales
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Hannah L Freund
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Mark P Swenson
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Malia L Shapiro
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Jon K Botthoff
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Emma Aronson
- Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA; Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - David R Cocker
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - David D Lo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Luedders J, Poole JA. Influence of Rural Environmental Factors in Asthma. Immunol Allergy Clin North Am 2022; 42:817-830. [PMID: 36265978 PMCID: PMC10884762 DOI: 10.1016/j.iac.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE The objective of this article is to review recent literature on the implications of agricultural factors including pesticides, animal/livestock production facilities, agricultural dust, endotoxin, biomass/crop burning, and nutritional factors with respiratory health. METHODS PubMed, Embase, and CINAHL literature searches for the years 2016 to 2021 were conducted with librarian assistance. RESULTS Several studies suggest increased risk for asthma or wheeze with certain rural exposures, particularly for pesticides, livestock production facilities, agricultural dust, and biomass and crop burning. CONCLUSION A complex network of environmental factors exists, which may have detrimental effects on the respiratory health of rural residents.
Collapse
Affiliation(s)
- Jennilee Luedders
- Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jill A Poole
- Division of Allergy and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Nelson TM, Quiros KAM, Mariano CA, Sattari S, Ulu A, Dominguez EC, Nordgren TM, Eskandari M. Associating local strains to global pressure-volume mouse lung mechanics using digital image correlation. Physiol Rep 2022; 10:e15466. [PMID: 36207795 PMCID: PMC9547081 DOI: 10.14814/phy2.15466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pulmonary diseases alter lung mechanical properties, can cause loss of function, and necessitate use of mechanical ventilation, which can be detrimental. Investigations of lung tissue (local) scale mechanical properties are sparse compared to that of the whole organ (global) level, despite connections between regional strain injury and ventilation. We examine ex vivo mouse lung mechanics by investigating strain values, local compliance, tissue surface heterogeneity, and strain evolutionary behavior for various inflation rates and volumes. A custom electromechanical, pressure-volume ventilator is coupled with digital image correlation to measure regional lung strains and associate local to global mechanics by analyzing novel pressure-strain evolutionary measures. Mean strains at 5 breaths per minute (BPM) for applied volumes of 0.3, 0.5, and 0.7 ml are 5.0, 7.8, and 11.3%, respectively, and 4.7, 8.8, and 12.2% for 20 BPM. Similarly, maximum strains among all rate and volume combinations range 10.7%-22.4%. Strain values (mean, range, mode, and maximum) at peak inflation often exhibit significant volume dependencies. Additionally, select evolutionary behavior (e.g., local lung compliance quantification) and tissue heterogeneity show significant volume dependence. Rate dependencies are generally found to be insignificant; however, strain values and surface lobe heterogeneity tend to increase with increasing rates. By quantifying strain evolutionary behavior in relation to pressure-volume measures, we associate time-continuous local to global mouse lung mechanics for the first time and further examine the role of volume and rate dependency. The interplay of multiscale deformations evaluated in this work can offer insights for clinical applications, such as ventilator-induced lung injury.
Collapse
Affiliation(s)
- Talyah M. Nelson
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | | | - Crystal A. Mariano
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Samaneh Sattari
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Arzu Ulu
- BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Division of Biomedical SciencesSchool of Medicine, University of CaliforniaRiversideCaliforniaUSA
| | - Edward C. Dominguez
- BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Division of Biomedical SciencesSchool of Medicine, University of CaliforniaRiversideCaliforniaUSA
| | - Tara M. Nordgren
- BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Division of Biomedical SciencesSchool of Medicine, University of CaliforniaRiversideCaliforniaUSA
| | - Mona Eskandari
- Department of Mechanical EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,BREATHE CenterSchool of Medicine University of CaliforniaRiversideCaliforniaUSA,Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
7
|
Quiros KAM, Nelson TM, Sattari S, Mariano CA, Ulu A, Dominguez EC, Nordgren TM, Eskandari M. Mouse lung mechanical properties under varying inflation volumes and cycling frequencies. Sci Rep 2022; 12:7094. [PMID: 35501363 PMCID: PMC9059689 DOI: 10.1038/s41598-022-10417-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/30/2022] [Indexed: 01/23/2023] Open
Abstract
Respiratory pathologies alter the structure of the lung and impact its mechanics. Mice are widely used in the study of lung pathologies, but there is a lack of fundamental mechanical measurements assessing the interdependent effect of varying inflation volumes and cycling frequency. In this study, the mechanical properties of five male C57BL/6J mice (29-33 weeks of age) lungs were evaluated ex vivo using our custom-designed electromechanical, continuous measure ventilation apparatus. We comprehensively quantify and analyze the effect of loading volumes (0.3, 0.5, 0.7, 0.9 ml) and breathing rates (5, 10, 20 breaths per minute) on pulmonary inflation and deflation mechanical properties. We report means of static compliance between 5.4-16.1 µl/cmH2O, deflation compliance of 5.3-22.2 µl/cmH2O, percent relaxation of 21.7-39.1%, hysteresis of 1.11-7.6 ml•cmH2O, and energy loss of 39-58% for the range of four volumes and three rates tested, along with additional measures. We conclude that inflation volume was found to significantly affect hysteresis, static compliance, starting compliance, top compliance, deflation compliance, and percent relaxation, and cycling rate was found to affect only hysteresis, energy loss, percent relaxation, static compliance and deflation compliance.
Collapse
Affiliation(s)
- K A M Quiros
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - T M Nelson
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - S Sattari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - C A Mariano
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - A Ulu
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - E C Dominguez
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
| | - T M Nordgren
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Eskandari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
8
|
Zhu Y, Shan D, Guo L, Chen S, Li X. Immune-Related lncRNA Pairs Clinical Prognosis Model Construction for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1919-1931. [PMID: 35237066 PMCID: PMC8882675 DOI: 10.2147/ijgm.s343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. Methods Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. Results A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan–Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. Conclusion The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yinghui Zhu
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Dezhi Shan
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianyi Guo
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shujia Chen
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xiaofei Li
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Correspondence: Xiaofei Li, Jinzhou, Liaoning, 121000, People’s Republic of China, Email
| |
Collapse
|
9
|
Bedford R, Perkins E, Clements J, Hollings M. Recent advancements and application of in vitro models for predicting inhalation toxicity in humans. Toxicol In Vitro 2021; 79:105299. [PMID: 34920082 DOI: 10.1016/j.tiv.2021.105299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/20/2021] [Accepted: 12/10/2021] [Indexed: 12/01/2022]
Abstract
Animals have been indispensable in testing chemicals that can pose a risk to human health, including those delivered by inhalation. In recent years, the combination of societal debate on the use of animals in research and testing, the drive to continually enhance testing methodologies, and technology advancements have prompted a range of initiatives to develop non-animal alternative approaches for toxicity testing. In this review, we discuss emerging in vitro techniques being developed for the testing of inhaled compounds. Advanced tissue models that are able to recreate the human response to toxic exposures alongside examples of their ability to complement in vivo techniques are described. Furthermore, technology being developed that can provide multi-organ toxicity assessments are discussed.
Collapse
Affiliation(s)
- R Bedford
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - E Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - J Clements
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - M Hollings
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| |
Collapse
|