1
|
Ismail J, Klepsch LC, Dahlke P, Tsarenko E, Vollrath A, Pretzel D, Jordan PM, Rezaei K, Czaplewska JA, Stumpf S, Beringer-Siemers B, Nischang I, Hoeppener S, Werz O, Schubert US. PEG-Lipid-PLGA Hybrid Particles for Targeted Delivery of Anti-Inflammatory Drugs. Pharmaceutics 2024; 16:187. [PMID: 38399248 PMCID: PMC10891717 DOI: 10.3390/pharmaceutics16020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Hybrid nanoparticles (HNPs) were designed by combining a PLGA core with a lipid shell that incorporated PEG-Lipid conjugates with various functionalities (-RGD, -cRGD, -NH2, and -COOH) to create targeted drug delivery systems. Loaded with a neutral lipid orange dye, the HNPs were extensively characterized using various techniques and investigated for their uptake in human monocyte-derived macrophages (MDMs) using FC and CLSM. Moreover, the best-performing HNPs (i.e., HNP-COOH and HNP-RGD as well as HNP-RGD/COOH mixed) were loaded with the anti-inflammatory drug BRP-201 and prepared in two size ranges (dH ~140 nm and dH ~250 nm). The HNPs were examined further for their stability, degradation, MDM uptake, and drug delivery efficiency by studying the inhibition of 5-lipoxygenase (5-LOX) product formation, whereby HNP-COOH and HNP-RGD both exhibited superior uptake, and the HNP-COOH/RGD (2:1) displayed the highest inhibition.
Collapse
Affiliation(s)
- Jana Ismail
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Lea C Klepsch
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Philipp Dahlke
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Ekaterina Tsarenko
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Antje Vollrath
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kourosh Rezaei
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Justyna A Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Baerbel Beringer-Siemers
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743 Jena, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743 Jena, Germany
| |
Collapse
|
2
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
3
|
Wang X, Guo W, Shi X, Chen Y, Yu Y, Du B, Tan M, Tong L, Wang A, Yin X, Guo J, Martin RC, Bai O, Li Y. S1PR1/S1PR3-YAP signaling and S1P-ALOX15 signaling contribute to an aggressive behavior in obesity-lymphoma. J Exp Clin Cancer Res 2023; 42:3. [PMID: 36600310 PMCID: PMC9814427 DOI: 10.1186/s13046-022-02589-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Excess body weight has been found to associate with an increased risk of lymphomas and some metabolic pathways are currently recognized in lymphomagenesis. Bioactive lipid metabolites such as sphingosine-1-phosphate (S1P) have been proposed to play an important role linking obesity and lymphomas. However, the underlying mechanism(s) of S1P signaling in obesity-lymphomagenesis have not been well addressed. METHODS The gene expression of sphingosine kinase (SPHK), lymphoma prognosis, and S1P production were analyzed using Gene Expression Omnibus (GEO) and human lymphoma tissue array. Obesity-lymphoma mouse models and lymphoma cell lines were used to investigate the S1P/SPHK-YAP axis contributing to obesity-lymphomagenesis. By using the mouse models and a monocyte cell line, S1P-mediated polarization of macrophages in the tumor microenvironment were investigated. RESULTS In human study, up-regulated S1P/SPHK1 was found in human lymphomas, while obesity negatively impacted progression-free survival and overall survival in lymphoma patients. In animal study, obesity-lymphoma mice showed an aggressive tumor growth pattern. Both in vivo and in vitro data suggested the existence of S1P-YAP axis in lymphoma cells, while the S1P-ALOX15 signaling mediated macrophage polarization towards TAMs exacerbated the lymphomagenesis. In addition, treatment with resveratrol in obesity-lymphoma mice showed profound effects of anti-lymphomagenesis, via down-regulating S1P-YAP axis and modulating polarization of macrophages. CONCLUSION S1P/S1PR initiated the feedback loops, whereby S1P-S1PR1/S1PR3-YAP signaling mediated lymphomagenesis contributing to tumor aggressive growth, while S1P-ALOX15 signaling mediated TAMs contributing to immunosuppressive microenvironment in obesity-lymphoma. S1P-targeted therapy could be potentially effective and immune-enhancive against obesity-lymphomagenesis.
Collapse
Affiliation(s)
- Xingtong Wang
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, Jilin, China
| | - Wei Guo
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiaoju Shi
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yujia Chen
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Youxi Yu
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union hospital of Jilin University, Changchun, 130033, China
| | - Min Tan
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
| | - Li Tong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Anna Wang
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, Jilin, China
| | - Xianying Yin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, Jilin, China
| | - Jing Guo
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, Jilin, China
| | - Robert C Martin
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA
| | - Ou Bai
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, No. 71. Xinmin Street, Changchun, 130021, Jilin, China.
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, 511 S Floyd ST MDR Bldg Rm326A, Louisville, KY, 40202, USA.
| |
Collapse
|