1
|
Lin Y, Zhao X, Yang Z, Dongfang Z, Zeng Y, Du C, Li J, Yin X, Xiao J, Hu C, Huang M, Huang F, Yu X. Integrating transcriptomics and network pharmacology to reveal the effect and mechanism of Bai-Jie-Jing-Xie ointment on improving skin inflammation of psoriasis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119680. [PMID: 40158831 DOI: 10.1016/j.jep.2025.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoriasis is a global chronic, immune-mediated, inflammatory skin disease. Bai-Jie-Jing-Xie (BJJX) ointment has been widely used in the clinic practice for its notable efficacy and is an empirical prescription for psoriasis treatment in hospitals. Nevertheless, its precise mechanism of action on psoriasis remains unclear. AIM OF THE STUDY To study the mechanism of action of the hospital empirical prescription BJJX in the treatment of psoriasis. MATERIAL AND METHODS Imiquimod (IMQ) was used to induce the psoriasis model in BALB/c mice and UPLC-MS/MS analysis was used for quality control. Subsequently, a combination of network pharmacology (NP) and Transcriptomic (RNA-Seq) methodology was used to assess the potential targets and mechanisms of action of BJJX on psoriasis. Finally, further validation was performed using flow cytometry, RT-qPCR, and western blotting. RESULTS BJJX significantly ameliorated IMQ-induced skin damage in psoriatic mice, reduced keratinocyte proliferation, and inhibited the levels of inflammatory factors (IL-23, IL-22, IL-17A, IL-6, IL-1β, and IL-8). NP predicts that BJJX may exert its therapeutic effects on psoriasis by modulating the IL-17 signaling pathway and Th17 cell differentiation. RNA-Seq analysis showed that BJJX regulated the expression of IL-17 pathway-related genes. Further experimental results demonstrated that BJJX treatment significantly reduced the mRNA expression of inflammatory factors CXCL2, CXCL3, MMP13, IL-1β, IL-23, IL-22, and IL-17A, as well as the proportion of Th17 cells. In addition, BJJX significantly inhibited the protein expression of JAK2 and STAT3. CONCLUSIONS BJJX attenuated IMQ-induced skin lesions in psoriasis mice by decreasing the expression of cytokines and chemokines mediated by the Th17/IL-17 axis. This study revealed, for the first time, the mechanism used by BJJX to treat psoriasis, providing a new paradigm for its pharmacological role in the clinical treatment of psoriasis.
Collapse
Affiliation(s)
- Yuping Lin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xiujuan Zhao
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Ziqing Yang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Zihan Dongfang
- School of Chinese Materia Medica, Jilin Agricultural University, Changchun, 130118, PR China
| | - Yongcheng Zeng
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chenghong Du
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Jiang Li
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Xunqing Yin
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Juan Xiao
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Chunyan Hu
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Mei Huang
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China
| | - Feng Huang
- School of Chinese Materia Medica &Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| | - Xiaoling Yu
- Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, 650500, PR China.
| |
Collapse
|
2
|
Li J, Liang H, Liu L, Gao X, Liu Y, Zhang M, Yuan X, Ren S, Zhang W. Structural diversity and biological activities of terpenoids derived from Tripterygium wilfordii Hook. f. RSC Adv 2025; 15:12594-12608. [PMID: 40264893 PMCID: PMC12012611 DOI: 10.1039/d4ra09048a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/05/2025] [Indexed: 04/24/2025] Open
Abstract
Terpenoids, a heterogeneous group of natural products, have garnered considerable attention in the field of drug discovery. This is attributed to their vast diversity, intricate structural features, and extensive biological activities. Tripterygium wilfordii Hook. f., a traditional medicinal plant with widespread application in East Asia, is particularly enriched in terpenoids, which can be classified into sesquiterpenoids, diterpenoids, and triterpenoids. The present review provides a comprehensive elaboration of the chemical structures and biological activities of 217 terpenoids isolated from T. wilfordii. The purpose is to shed light on their potential in pharmacological research and to stimulate innovative drug discovery as well as clinical applications. These terpenoids display a broad spectrum of biological activities, such as antitumor, anti - inflammatory, immunosuppressive, and other therapeutic effects. Nevertheless, their clinical application is impeded by issues related to toxicity and poor bioavailability. Future research efforts should be concentrated on exploring effective strategies to alleviate toxicity and enhance drug delivery systems. In addition, in - depth investigation into the structure-activity relationships and the identification of new active constituents are crucial for the development of more potent and safer drugs. This review serves as an exhaustive reference for the discovery and development of novel drugs based on the natural active products of T. wilfordii, providing valuable insights and guidance for researchers in the relevant field.
Collapse
Affiliation(s)
- Jiping Li
- School of Public Health, Qiqihar Medical University Qiqihar 161006 China
| | - Hong Liang
- School of Public Health, Qiqihar Medical University Qiqihar 161006 China
| | - Likun Liu
- Research Institute of Medicine of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Xiuli Gao
- Research Institute of Medicine of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Yang Liu
- Office of Academic Research, Qiqihar Medical University Qiqihar 161006 China
| | - Meng Zhang
- Office of Academic Research, Qiqihar Medical University Qiqihar 161006 China
| | - Xiaoan Yuan
- Research Institute of Medicine of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Shan Ren
- Research Institute of Medicine of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Wei Zhang
- Office of Academic Research, Qiqihar Medical University Qiqihar 161006 China
| |
Collapse
|
3
|
Hong Y, Li W, Xing Z, Lu M, Tang T, Zhu L, Xiong W, Zhang H, Liu W, Ren S. LRRK2 reduces the sensitivity to TKI and PD-1 blockade in ccRCC via activating LPCAT1. Oncogene 2025:10.1038/s41388-025-03289-0. [PMID: 40121376 DOI: 10.1038/s41388-025-03289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 03/25/2025]
Abstract
Tyrosine kinase inhibitor (TKI) and immune checkpoint inhibitor (ICI) combination therapy is emerging as a major therapeutic strategy for advanced clear cell renal cell carcinoma (ccRCC). To define the druggable targets for improvement of TKI and ICI combination therapy in ccRCC, we analyzed a commercial protein kinase inhibitor dataset and a public ccRCC dataset and identified LRRK2 as a potential candidate that can be targeted by a small molecule inhibitor. We demonstrated that LRRK2 was transcriptionally upregulated by HIF2A and enabled to drive proliferation of ccRCC cells in a manner independent of its kinase activity. LRRK2 inhibits the RBX1-mediated degradation of lipid metabolism modulator LPCAT1 to reducing the sensitivity to TKI and PD-1 blockade in ccRCC. Specifically, LRRK2/LPCAT1 upregulated IL-1β expression levels through AKT and also increased IL-1β shearing by activating inflammasome. To target the kinase-independent activity of LRRK2, we developed an LR-protac and showed that LR-protac decreased LRRK2 protein level and enhanced the antitumor effect of PD-1 blockade and TKI in ccRCC. These data indicate that LRRK2 is a viable target for improvement of the efficacy of PD-1 blockade and TKI in ccRCC.
Collapse
Affiliation(s)
- Yulong Hong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Zhuo Xing
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Minghao Lu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Urologic Science and Technology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tianyu Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Institute of Urologic Science and Technology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Wei Xiong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Huan Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wentao Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China.
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Xu B, Wang Z, Zhang H, Xu X, Tang M, Wang G, Ding Z, Yu R, Ding M, Zhang T, Shi S. The Cytoprotective Effect of C60 Derivatives in the Self-Microemulsifying Drug Delivery System against Triptolide-Induced Cytotoxicity In Vitro. Molecules 2024; 29:4073. [PMID: 39274920 PMCID: PMC11396586 DOI: 10.3390/molecules29174073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE The aim of this study was to optimize the formulation of a C60-modified self-microemulsifying drug delivery system loaded with triptolide (C60-SMEDDS/TP) and evaluate the cytoprotective effect of the C60-SMEDDS/TP on normal human cells. RESULTS The C60-SMEDDS/TP exhibited rapid emulsification, an optimal particle size distribution of 50 ± 0.19 nm (PDI 0.211 ± 0.049), and a near-neutral zeta potential of -1.60 mV. The release kinetics of TP from the C60-SMEDDS/TP exhibited a sustained release profile and followed pseudo-first-order release kinetics. Cellular proliferation and apoptosis analysis indicated that the C60-SMEDDS/TP (with a mass ratio of TP: DSPE-PEG-C60 = 1:10) exhibited lower toxicity towards L02 and GES-1 cells. This was demonstrated by a higher IC50 (40.88 nM on L02 cells and 17.22 nM on GES-1 cells) compared to free TP (21.3 nM and 11.1 nM), and a lower apoptosis rate (20.8% on L02 cells and 26.3% on GES-1 cells, respectively) compared to free TP (50.5% and 47.0%) at a concentration of 50 nM. In comparison to the free TP group, L02 cells and GES-1 cells exposed to the C60-SMEDDS/TP exhibited a significant decrease in intracellular ROS and an increase in mitochondrial membrane potential (ΔψM). On the other hand, the C60-SMEDDS/TP demonstrated a similar inhibitory effect on BEL-7402 cells (IC50 = 28.9 nM) and HepG2 cells (IC50 = 107.6 nM), comparable to that of the free TP (27.2 nM and 90.4 nM). The C60-SMEDDS/TP group also exhibited a similar intracellular level of ROS and mitochondrial membrane potential compared to the SMEDDS/TP and free TP groups. METHOD Fullerenol-Grafted Distearoyl Phosphatidylethanolamine-Polyethylene Glycol (DSPE-PEG-C60) was synthesized and applied in the self-microemulsifying drug delivery system. The C60-SMEDDS/TP was formulated using Cremophor EL, medium-chain triglycerides (MCT), PEG-400, and DSPE-PEG-C60, and loaded with triptolide (TP). The toxicity and bioactivity of the C60-SMEDDS/TP were assessed using normal human liver cell lines (L02 cells), normal human gastric mucosal epithelial cell lines (GES-1 cells), and liver cancer cell lines (BEL-7402 cells and HepG2 cells). The production of reactive oxygen species (ROS) after the C60-SMEDDS/TP treatment was assessed using 2',7'-dichlorofluorescein diacetate (DCFDA) staining. The alterations in mitochondrial membrane potential (ΔψM) were assessed by measuring JC-1 fluorescence. CONCLUSIONS The cytoprotection provided by the C60-SMEDDS/TP favored normal cells (L02 and GES-1) over tumor cells (BEL-7402 and HepG2 cells) in vitro. This suggests a promising approach for the safe and effective treatment of TP.
Collapse
Affiliation(s)
- Beihua Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Zhenyu Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Huimin Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Xiao Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Mengjie Tang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Gang Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Zhongpeng Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Ruihao Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Meihong Ding
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Ting Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311400, China
| |
Collapse
|
5
|
Lu HJ, Cen JK, Ren Y, Li MX. Evaluation of the Anti-Inflammatory Pain Effect of Ginsenoside-Conjugated O-Carboxymethyl Chitosan Particles. Polymers (Basel) 2023; 15:4011. [PMID: 37836060 PMCID: PMC10574890 DOI: 10.3390/polym15194011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Nanoparticle delivery of functional molecules or vaccines is an effective method for the treatment of many diseases. This study aims to design ginsenoside Rh2-conjugated O-carboxymethyl chitosan (O-CMC/Rh2) as a drug delivery system and explore its anti-nociceptive effects. O-CMC/Rh2 was synthesized with an esterification reaction, and its chemical composition and morphology were evaluated using proton nuclear magnetic resonance (1H NMR), the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and scanning electron microscopy (SEM). In addition, the in vitro cumulative release of Rh2 from the O-CMC/Rh2 was also evaluated under different pH conditions. The results showed that the ginsenoside Rh2 was successfully conjugated to the O-CMC matrix and exhibited a highly porous structure after conjugation, facilitating the release of Rh2 from O-CMC. Complete Freund's adjuvant (CFA) and burn injury-induced pain models were used to evaluate the anti-nociceptive effects of O-CMC/Rh2 on inflammatory pain. O-CMC/Rh2 reduced CFA-induced pain hypersensitivity in a dose-dependent manner and had a longer analgesic effect than Rh2. In addition, O-CMC/Rh2 also relieved the chronic pain induced by bury injury. These results indicated that O-CMC/Rh2 could be useful in reducing inflammatory pain, thus possessing a potential medicinal application in pain therapy.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China; (H.-J.L.); (J.-K.C.)
| | - Jian-Ke Cen
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China; (H.-J.L.); (J.-K.C.)
| | - Yu Ren
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, School of Textile and Clothing, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Song J, He GN, Dai L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed Pharmacother 2023; 162:114705. [PMID: 37062220 DOI: 10.1016/j.biopha.2023.114705] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/18/2023] Open
Abstract
Celastrol, triptolide and triptonide are the most significant active ingredients of Tripterygium wilfordii Hook F (TWHF). In 2007, the 'Cell' journal ranked celastrol, triptolide, artemisinin, capsaicin and curcumin as the five natural drugs that can be developed into modern medicinal compounds. In this review, we collected relevant data from the Web of Science, PubMed and China Knowledge Resource Integrated databases. Some information was also acquired from government reports and conference papers. Celastrol, triptolide and triptonide have potent pharmacological activity and evident anti-cancer, anti-tumor, anti-obesity and anti-diabetes effects. Because these compounds have demonstrated unique therapeutic potential for acute and chronic inflammation, brain injury, vascular diseases, immune diseases, renal system diseases, bone diseases and cardiac diseases, they can be used as effective drugs in clinical practice in the future. However, celastrol, triptolide and triptonide have certain toxic effects on the liver, kidney, cholangiocyte heart, ear and reproductive system. These shortcomings limit their clinical application. Suitable combination therapy, new dosage forms and new routes of administration can effectively reduce toxicity and increase the effect. In recent years, the development of different targeted drug delivery formulations and administration routes of celastrol and triptolide to overcome their toxic effects and maximise their efficacy has become a major focus of research. However, in-depth investigation is required to elucidate the mechanisms of action of celastrol, triptolide and triptonide, and more clinical trials are required to assess the safety and clinical value of these compounds.
Collapse
Affiliation(s)
- Jing Song
- School of Pharmacy, Binzhou Medical University, Yantai, China; Shandong Yuze Pharmaceutical Industry Technology Research Institute Co., Ltd, Dezhou, China
| | - Guan-Nan He
- Shandong University of Traditional Chinese Medicine, Ji'nan 250014, China
| | - Long Dai
- School of Pharmacy, Binzhou Medical University, Yantai, China.
| |
Collapse
|
7
|
Ling Y, Nie D, Huang Y, Deng M, Liu Q, Shi J, Ouyang S, Yang Y, Deng S, Lu Z, Yang J, Wang Y, Huang R, Shi W. Antioxidant Cascade Nanoenzyme Antagonize Inflammatory Pain by Modulating MAPK/p-65 Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206934. [PMID: 36808856 PMCID: PMC10131840 DOI: 10.1002/advs.202206934] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic pain has attracted wide interest because it is a major obstacle affecting the quality of life. Consequently, safe, efficient, and low-addictive drugs are highly desirable. Nanoparticles (NPs) with robust anti-oxidative stress and anti-inflammatory properties possess therapeutic possibilities for inflammatory pain. Herein, a bioactive zeolitic imidazolate framework (ZIF)-8-capped superoxide dismutase (SOD) and Fe3 O4 NPs (SOD&Fe3 O4 @ZIF-8, SFZ) is developed to achieve enhanced catalytic, antioxidative activities, and inflammatory environment selectivity, ultimately improving analgesic efficacy. SFZ NPs reduce tert-butyl hydroperoxide (t-BOOH)-induced reactive oxygen species (ROS) overproduction, thereby depressing the oxidative stress and inhibiting the lipopolysaccharide (LPS)-induced inflammatory response in microglia. After intrathecal injection, SFZ NPs efficiently accumulate at the lumbar enlargement of the spinal cord and significantly relieve complete Freund's adjuvant (CFA)-induced inflammatory pain in mice. Moreover, the detailed mechanism of inflammatory pain therapy via SFZ NPs is further studied, where SFZ NPs inhibit the activation of the mitogen-activated protein kinase (MAPK)/p-65 signaling pathway, leading to reductions in phosphorylated protein levels (p-65, p-ERK, p-JNK, and p-p38) and inflammatory factors (tumor necrosis factor [TNF]-α, interleukin [IL]-6, and IL-1β), thereby preventing microglia and astrocyte activation for acesodyne. This study provides a new cascade nanoenzyme for antioxidant treatments and explores its potential applications as non-opioid analgesics.
Collapse
Affiliation(s)
- Yuejuan Ling
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
- Institute of Pain Medicine and Special Environmental MedicineNantong UniversityNantong226001P. R. China
| | - Dekang Nie
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
- Department of NeurosurgeryYancheng First HospitalAffiliated Hospital of Nanjing University Medical SchoolThe First people's Hospital of Yancheng224001YanchengP. R. China
| | - Yue Huang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Mengyuan Deng
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Qianqian Liu
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Jinlong Shi
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Siguang Ouyang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Yu Yang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Song Deng
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Zhichao Lu
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Junling Yang
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| | - Yi Wang
- Center for Advanced Low‐dimension MaterialsState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of ChemistryChemical Engineering and BiotechnologyDonghua UniversityShanghai201620P. R. China
| | - Rongqin Huang
- Department of PharmaceuticsSchool of PharmacyKey Laboratory of Smart Drug DeliveryMinistry of EducationFudan UniversityShanghai215537P. R. China
| | - Wei Shi
- Department of NeurosurgeryResearch Center of Clinical MedicineNeuro‐Microscopy and Minimally Invasive Translational Medicine Innovation CenterAffiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantong University226001NantongP. R. China
| |
Collapse
|
8
|
Li Z, Geng Y, Wu Q, Jin X, Seshadri VD, Liu H. Triptonide, a Diterpenoid Displayed Anti-Inflammation, Antinociceptive, and Anti-Asthmatic Efficacy in Ovalbumin-Induced Mouse Model. Appl Biochem Biotechnol 2023; 195:1736-1751. [PMID: 36383309 DOI: 10.1007/s12010-022-04167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
The present study was intended to explore the valuable effects of triptonide on inflammation, asthmatic, and nociceptive. Triptonide possesses numerous beneficial effects extensively managed in the treatment of inflammation disease condition. Initially, triptonide showed anti-inflammation properties over lipopolysaccharide-induced RAW 264.7 cells. Hence, the present study was directed to explore the protecting efficacy of triptonide in ovalbumin (OVA)-induced asthma in mice. Asthma was induced intraperitoneally administration (200μL) in female BALB/c mice with suspension which has ovalbumin (100 μg/mL) and aluminum hydroxide (10 mg/mL). Triptonide (30 mg/kg) over OVA-induced experimental animals altered lung mass, nitric oxide, myeloperoxidase, immunoglobulin E status, interleukins (4, 5, and 13) inflammatory cytokines status, and histological modifications. Animals were also managed with the standard drug dexamethasone (50 mg/kg) followed by the asthma induction, which is also efficient over OVA-induced experimental animals. The nociception was provoked in male Swiss mice by various chemicals (acetic acid, capsaicin, and glutamate). The animals were administered with triptonide (5, 10, and 15 mg/kg) and separate standard drugs like diclofenac sodium (10 mg/kg) and morphine (5 mg/kg) over chemical-induced nociceptive animals. The present outcome evidently established that the triptonide considerably reduced the various chemical-induced nociception in mice (Fig. 7A, B, and C). Ultimately, the present work explored the evident powerful anti-inflammation, antinociceptive, and anti-asthma properties of a diterpenoid, triptonide experimental animal models. And it is recommended that triptonide is an excellent compound in the management of asthma and its related diseases.
Collapse
Affiliation(s)
- Zhen Li
- Department of Pulmonary and Critical Care Medicine, Shandong Second Provincial General Hospital, Shandong Province, Jinan, 250012, China
| | - Yanhong Geng
- Department of Respiratory Medicine, PKU Care Zibo Hospital, Shandong Province, Zibo, 255000, China
| | - Qingke Wu
- Anser Science Joint Laboratory Platform, Anser Press Group, Shandong Province, Jinan, 250000, China
| | - Xin Jin
- Anser Science Joint Laboratory Platform, Anser Press Group, Shandong Province, Jinan, 250000, China
| | - Vidya Devanathadesikan Seshadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdul Aziz University, Al-Kharj, Kingdom of Saudi Arabia
| | - Hao Liu
- Department of Anesthesiology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Shandong Province, Jinan, 250014, China. .,Department of Anesthesiology, Central Hospital Affiliated to Shandong First Medical University, Shandong Province, Jinan, 250014, China.
| |
Collapse
|
9
|
Abdul M, Yan HQ, Zhao WN, Lyu XB, Xu Z, Yu XL, Gao YH, Cao JL. VTA-NAc glutaminergic projection involves in the regulation of pain and pain-related anxiety. Front Mol Neurosci 2022; 15:1083671. [PMID: 36590915 PMCID: PMC9798784 DOI: 10.3389/fnmol.2022.1083671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Besides the established role of dopamine neurons and projections in nociceptive stimuli, the involvement of ventral tegmental area (VTA) glutamatergic projections to nucleus accumbens (NAc) in pain remains unknown. In the present study, we aimed to examine the role of VTA glutamatergic projections to NAc in painful stimuli and its related behavioral changes. Methods Unilateral chronic constrictive injury (CCI) of sciatic nerve or intraplantar hind paw injections (i.pl.) of complete Freund's adjuvant (CFA) were used to develop pathological pain models in wild-type and VGluT2-Cre mice. The involvement of VTA glutamatergic neurons with projections to NAc in CCI-induced pain model was noted by c-Fos labeling and firing rate recordings. Pain response and pain-related behavior changes to the artificial manipulation of the VTA glutamatergic projections to NAc were observed by Hargreaves tests, von Frey tests, open field tests, elevated maze tests, and sucrose preference tests. Results Glutamatergic neurons in VTA had efferent inputs to shell area of the NAc. The CCI pain model significantly increased neuronal activity and firing rate in VTA glutamate neurons with projections to NAc. The photoinhibition of these glutamatergic projections relieved CCI-induced neuropathic pain and CFA-induced acute and chronic inflammatory pain. Moreover, pathological neuropathic pain-induced anxiety and less sucrose preference were also relieved by inhibiting the VTA glutamatergic projections to NAc. Conclusion Together, glutamatergic inputs from VTA to NAc contribute to chronic neuropathic and inflammatory pain and pain-related anxiety and depressive behaviors, providing a mechanism for developing novel therapeutic methods.
Collapse
Affiliation(s)
- Mannan Abdul
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao-Qi Yan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Bin Lyu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Lu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China,NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China,Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China,*Correspondence: Jun-Li Cao,
| |
Collapse
|
10
|
Zhang X, Peng L, Liu D. Pregabalin alleviates neuropathic pain via inhibition of the PKCε/TRPV1 pathway. Neurosci Lett 2022; 766:136348. [PMID: 34785308 DOI: 10.1016/j.neulet.2021.136348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Pregabalin has been increasingly used in recent years, and becoming a first-line medication for the clinical treatment of neuropathic pain. However, the mechanisms underlying pregabalin-induced neuropathic pain alleviation remain unclear. In this study, we aimed to investigate whether PKC epsilon (PKCε)/ transient receptor potential vanilloid subtype 1(TRPV1) signaling pathway participated in pregabalin-induced analgesia during treatment of neuropathic pain using rat models of spared nerve injury (SNI). The left hind paw withdrawal mechanical thresholds (PWMT) of rats were measured preoperatively one day before and on day 1, 4, 7 and 14 after surgery. On day 7 after SNI surgery, the rats received ligation operation were administrated with pregabalin intraperitoneally and were intrathecally injected with PKC Inhibitor BIM Ⅰ or PKC agonist PMA for seven consecutive days, IL-1β and IL-6 expression levels in the spinal cord of rats were then assessed. Furthermore, we analyzed the PKCε, TRPV1, pTRPV1 and Glial fibrillary acidic protein (GFAP) protein levels and the expression of reactive astrocytes and the PKCε, TRPV1 and pTRPV1 positive cells on day 14 after SNI. Our findings indicated that pregabalin could relieve neuropathic pain to a certain extent by suppressing the PKCε/TRPV1 signaling pathway and inhibiting inflammatory processes in the spinal cord.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Lihua Peng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| | - Danyan Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|