1
|
Murali A, Farsana A A, Subramaniam S, Eapen M, Nair IR, Pavithran K. Exceptional long term response to crizotinib in ROS 1-postive advanced non small cell lung cancer. Respirol Case Rep 2024; 12:e70033. [PMID: 39319330 PMCID: PMC11421889 DOI: 10.1002/rcr2.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer cases worldwide, with a significant proportion of patients harbouring actionable oncogenic alterations. Among these alterations, the ROS1 rearrangement represents a distinct subset with therapeutic implications. Here, we present the case of a 52-year-old man diagnosed with advanced NSCLC harbouring the ROS1 fusion gene. Despite the initial poor response to conventional chemotherapy, the patient exhibited an exceptional and sustained response to crizotinib, with a progression-free survival of 94 months and complete metabolic response on PET scan. This case underscores the importance of molecular profiling in guiding treatment decisions and highlights the efficacy of targeted therapies for ROS1-positive NSCLC.
Collapse
Affiliation(s)
- Anjali Murali
- Department of Medical Oncology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Anju Farsana A
- Department of Medical Oncology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Sobha Subramaniam
- Department of Pulmonary Medicine, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Malini Eapen
- Department of Pathology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Indu R. Nair
- Department of Pathology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| | - Keechilat Pavithran
- Department of Medical Oncology, Amrita Institute of Medical Science and Research CentreAmrita Vishwa VidyapeethamKochiIndia
| |
Collapse
|
2
|
Yu ZQ, Wang M, Zhou W, Mao MX, Chen YY, Li N, Peng XC, Cai J, Cai ZQ. ROS1-positive non-small cell lung cancer (NSCLC): biology, diagnostics, therapeutics and resistance. J Drug Target 2022; 30:845-857. [PMID: 35658765 DOI: 10.1080/1061186x.2022.2085730] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
ROS1 is a proto-oncogene encoding a receptor tyrosine protein kinase (RTK), homologous to the v - Ros sequence of University of Manchester tumours virus 2 (UR2) sarcoma virus, whose ligands are still being investigated. ROS1 fusion genes have been identified in various types of tumours. As an oncoprotein, it promotes cell proliferation, activation and cell cycle progression by activating downstream signalling pathways, accelerating the development and progression of non-small cell lung cancer (NSCLC). Studies have demonstrated that ROS1 inhibitors are effective in patients with ROS1-positive NSCLC and are used for first-line clinical treatment. These small molecule inhibitors provide a rational therapeutic option for the treatment of ROS1-positive patients. Inevitably, ROS1 inhibitor resistance mutations occur, leading to tumours recurrence or progression. Here, we comprehensively review the identified biological properties and Differential subcellular localisation of ROS1 fusion oncoprotein promotes tumours progression. We summarise recently completed and ongoing clinical trials of the classic and new ROS1 inhibitors. More importantly, we classify the complex evolving tumours cell resistance mechanisms. This review contributes to our understanding of the biological properties of ROS1 and current therapeutic advances and resistant tumours cells, and the future directions to develop ROS1 inhibitors with durable effects.
Collapse
Affiliation(s)
- Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Meng-Xia Mao
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Yuan-Yuan Chen
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Jingzhou, PR China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, PR China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| | - Zhi-Qiang Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, PR China
| |
Collapse
|
3
|
A pharmacological exploration of targeted drug therapy in non-small cell lung cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:147. [PMID: 35834033 DOI: 10.1007/s12032-022-01744-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/30/2022] [Indexed: 10/17/2022]
Abstract
Lung cancer is the prime cause of cancer-related deaths globally, with a contribution of 85% from non-small cell lung cancer. Before a few decades back, conventional chemotherapy was the most chosen treatment option for NSCLC but with side effects. Now, the treatment approaches have shifted to a new trend, targeted therapy, and a better treatment strategy with minimal side effects compared to chemotherapy. Advances in technologies and understanding the pathways lead to the discovery of new targets and through which it is possible to improve treatment outcomes and patient compliance. Unlike chemotherapy, targeted therapy focuses on the tumor cells and does not produce toxicity to healthy cells. The last two decades were very crucial in the development of many small molecules with the capability to target-specific proteins or genes in the disease progression pathway. Although the targeted therapy approach was a gemstone with many successful drugs for the treatment of NSCLC, various resistance mechanisms and activation of bypass signaling pathways put many of these drugs in the trash. In this review, we will discuss the major targeted proteins involved in NSCLC as well as the inhibitor drugs developed to target them for now and along with the future directions.
Collapse
|
4
|
Guaitoli G, Bertolini F, Bettelli S, Manfredini S, Maur M, Trudu L, Aramini B, Masciale V, Grisendi G, Dominici M, Barbieri F. Deepening the Knowledge of ROS1 Rearrangements in Non-Small Cell Lung Cancer: Diagnosis, Treatment, Resistance and Concomitant Alterations. Int J Mol Sci 2021; 22:12867. [PMID: 34884672 PMCID: PMC8657497 DOI: 10.3390/ijms222312867] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022] Open
Abstract
ROS proto-oncogene 1 (ROS1) rearrangements are reported in about 1-2% of non-squamous non-small-cell lung cancer (NSCLC). After efficacy of crizotinib was demonstrated, identification of ROS1 translocations in advanced disease became fundamental to give patients the chance of specific and effective treatment. Different methods are available for detection of rearrangements, and probably the real prevalence of ROS1 rearrangements is higher than that reported in literature, as our capacity to detect gene rearrangements is improving. In particular, with next generation sequencing (NGS) techniques, we are currently able to assess multiple genes simultaneously with increasing sensitivity. This is leading to overcome the "single oncogenic driver" paradigm, and in the very near future, the co-existence of multiple drivers will probably emerge more frequently and represent a therapeutic issue. Since recently, crizotinib has been the only available therapy, but today, many other tyrosine kinase inhibitors (TKI) are emerging and seem promising both in first and subsequent lines of treatment. Indeed, novel inhibitors are also able to overcome resistance mutations to crizotinib, hypothesizing a possible sequential strategy also in ROS1-rearranged disease. In this review, we will focus on ROS1 rearrangements, dealing with diagnostic aspects, new therapeutic options, resistance issues and the coexistence of ROS1 translocations with other molecular alterations.
Collapse
Affiliation(s)
- Giorgia Guaitoli
- Ph.D. Program Clinical and Experimental Medicine (CEM), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Oncology and Hematology, Modena University Hospital, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.T.); (M.D.)
| | - Federica Bertolini
- Oncology and Hematology, Modena University Hospital, 41125 Modena, Italy; (F.B.); (M.M.); (F.B.)
| | - Stefania Bettelli
- Molecular Pathology, Modena University Hospital, 41125 Modena, Italy; (S.B.); (S.M.)
| | - Samantha Manfredini
- Molecular Pathology, Modena University Hospital, 41125 Modena, Italy; (S.B.); (S.M.)
| | - Michela Maur
- Oncology and Hematology, Modena University Hospital, 41125 Modena, Italy; (F.B.); (M.M.); (F.B.)
| | - Lucia Trudu
- Oncology and Hematology, Modena University Hospital, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.T.); (M.D.)
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Diagnostic and Specialty Medicine—DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy;
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults, 41125 Modena, Italy; (V.M.); (G.G.)
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults, 41125 Modena, Italy; (V.M.); (G.G.)
| | - Massimo Dominici
- Oncology and Hematology, Modena University Hospital, University of Modena and Reggio Emilia, 41125 Modena, Italy; (L.T.); (M.D.)
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, University-Hospital of Modena and Reggio Emilia, Department of Medical and Surgical Sciences for Children & Adults, 41125 Modena, Italy; (V.M.); (G.G.)
| | - Fausto Barbieri
- Molecular Pathology, Modena University Hospital, 41125 Modena, Italy; (S.B.); (S.M.)
| |
Collapse
|
5
|
Beca JM, Walsh S, Raza K, Hubay S, Robinson A, Mow E, Keech J, Chan KKW. Cost-effectiveness analysis of first-line treatment with crizotinib in ROS1-rearranged advanced non-small cell lung cancer (NSCLC) in Canada. BMC Cancer 2021; 21:1162. [PMID: 34715804 PMCID: PMC8556902 DOI: 10.1186/s12885-021-08746-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction While no direct comparative data exist for crizotinib in ROS1+ non-small cell lung cancer (NSCLC), studies have suggested clinical benefit with this targeted agent. The objective of this study was to assess the cost-effectiveness of crizotinib compared to standard platinum-doublet chemotherapy for first-line treatment of ROS1+ advanced NSCLC. Methods A Markov model was developed with a 10-year time horizon from the perspective of the Canadian publicly-funded health care system. Health states included progression-free survival (PFS), up to two further lines of therapy post-progression, palliation and death. Given a lack of comparative data and small study samples, crizotinib or chemotherapy studies with advanced ROS1+ NSCLC patients were identified and time-to-event data from digitized Kaplan-Meier curves were collected to pool PFS data. Costs of drugs, treatment administration, monitoring, adverse events and palliative care were included in 2018 Canadian dollars, with 1.5% discounting. An incremental cost-effectiveness ratio (ICER) was estimated probabilistically using 5000 simulations. Results In the base-case probabilistic analysis, crizotinib produced additional 0.885 life-years and 0.772 quality-adjusted life-years (QALYs) at an incremental cost of $238,077, producing an ICER of $273,286/QALY gained. No simulations were found to be cost-effective at a willingness-to-pay threshold of $100,000/QALY gained. A scenario analysis assuming efficacy equivalent to the ALK+ NSCLC population showed a slightly more favorable cost-effectiveness profile for crizotinib. Conclusions Available data appear to support superior activity of crizotinib compared to chemotherapy in ROS1+ advanced NSCLC. At the list price, crizotinib was not cost-effective at commonly accepted willingness-to-pay thresholds across a wide range of sensitivity analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08746-z.
Collapse
Affiliation(s)
- Jaclyn M Beca
- Ontario Health (Cancer Care Ontario), 525 University Ave, 3rd floor, Toronto, ON, M5G 2L3, Canada. .,Canadian Centre for Applied Research in Cancer Control, 525 University Ave, 3rd floor, Toronto, ON, Canada.
| | - Shaun Walsh
- Ontario Health (Cancer Care Ontario), 525 University Ave, 3rd floor, Toronto, ON, M5G 2L3, Canada.,Canadian Centre for Applied Research in Cancer Control, 525 University Ave, 3rd floor, Toronto, ON, Canada
| | - Kaiwan Raza
- Ontario Health (Cancer Care Ontario), 525 University Ave, 3rd floor, Toronto, ON, M5G 2L3, Canada
| | - Stacey Hubay
- Grand River Hospital, 835 King St W, Kitchener, ON, Canada
| | - Andrew Robinson
- Kingston General Hospital, 76 Stuart St, Kingston, ON, Canada
| | - Elena Mow
- Ontario Health (Cancer Care Ontario), 525 University Ave, 3rd floor, Toronto, ON, M5G 2L3, Canada
| | - James Keech
- Ontario Health (Cancer Care Ontario), 525 University Ave, 3rd floor, Toronto, ON, M5G 2L3, Canada
| | - Kelvin K W Chan
- Canadian Centre for Applied Research in Cancer Control, 525 University Ave, 3rd floor, Toronto, ON, Canada.,Sunnybrook Odette Cancer Centre, Sunnybrook Health Science Centre, 2075 Bayview Ave TG 260, Toronto, ON, Canada
| |
Collapse
|
6
|
Makarem M, Ezeife DA, Smith AC, Li JJN, Law JH, Tsao MS, Leighl NB. Reflex ROS1 IHC Screening with FISH Confirmation for Advanced Non-Small Cell Lung Cancer-A Cost-Efficient Strategy in a Public Healthcare System. Curr Oncol 2021; 28:3268-3279. [PMID: 34449580 PMCID: PMC8395515 DOI: 10.3390/curroncol28050284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
ROS1 rearrangements are identified in 1-2% of lung adenocarcinoma cases, and reflex testing is guideline-recommended. We developed a decision model for population-based ROS1 testing from a Canadian public healthcare perspective to determine the strategy that optimized detection of true-positive (TP) cases while minimizing costs and turnaround time (TAT). Eight diagnostic strategies were compared, including reflex single gene testing via immunohistochemistry (IHC) screening, fluorescence in-situ hybridization (FISH), next-generation sequencing (NGS), and biomarker-informed (EGFR/ALK/KRAS wildtype) testing initiated by pathologists and clinician-initiated strategies. Reflex IHC screening with FISH confirmation of positive cases yielded the best results for TAT, TP detection rate, and cost. IHC screening saved CAD 1,000,000 versus reflex FISH testing. NGS was the costliest reflex strategy. Biomarker-informed testing was cost-efficient but delayed TAT. Clinician-initiated testing was the least costly but resulted in long TAT and missed TP cases, highlighting the importance of reflex testing. Thus, reflex IHC screening for ROS1 with FISH confirmation provides a cost-efficient strategy with short TAT and maximizes the number of TP cases detected.
Collapse
Affiliation(s)
- Maisam Makarem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (M.M.); (A.C.S.); (J.J.N.L.); (J.H.L.); (M.-S.T.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Doreen A. Ezeife
- Tom Baker Cancer Centre, University of Calgary, Calgary, AB T2N 4N2, Canada;
| | - Adam C. Smith
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (M.M.); (A.C.S.); (J.J.N.L.); (J.H.L.); (M.-S.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Janice J. N. Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (M.M.); (A.C.S.); (J.J.N.L.); (J.H.L.); (M.-S.T.)
| | - Jennifer H. Law
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (M.M.); (A.C.S.); (J.J.N.L.); (J.H.L.); (M.-S.T.)
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (M.M.); (A.C.S.); (J.J.N.L.); (J.H.L.); (M.-S.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Natasha B. Leighl
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (M.M.); (A.C.S.); (J.J.N.L.); (J.H.L.); (M.-S.T.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
7
|
Azelby CM, Sakamoto MR, Bowles DW. ROS1 Targeted Therapies: Current Status. Curr Oncol Rep 2021; 23:94. [PMID: 34125313 DOI: 10.1007/s11912-021-01078-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Molecular drivers are increasingly identified as therapeutic targets for non-small cell lung cancer (NSCLC). This review focuses on the role of ROS1 inhibitors in treating relapsed/metastatic ROS-1 altered (ROS1+) NSCLC. RECENT FINDINGS Four FDA-approved drugs have significant activity against ROS1+ NSCLC: crizotinib, ciritinib, lorlatinib, and entrectinib. Each drug yields an overall response rates exceeding 60% with ciritinib, lorlatinib, and entrectinib possessing intracranial activity. The drugs have manageable toxicity profiles. ROS1 alterations are rare molecular drivers of NSCLC that can be effectively treated with a variety of ROS1-targetd drugs. New agents are being identified that may treat resistance mutations.
Collapse
Affiliation(s)
- Christine M Azelby
- Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, AU, USA
| | - Mandy R Sakamoto
- Department of Medicine, University of Colorado Anschutz Medical Campus, Colorado, AU, USA
| | - Daniel W Bowles
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, 1665 Aurora Court, Colorado, AU, USA. .,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
8
|
Chea V, Pleiner V, Schweizer V, Herzog B, Bode B, Tinguely M. Optimized workflow for digitalized FISH analysis in pathology. Diagn Pathol 2021; 16:42. [PMID: 33975608 PMCID: PMC8114497 DOI: 10.1186/s13000-021-01103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Effective workflow management in a diagnostic pathology laboratory is critical to achieve rapid turnover while maintaining high quality. Fluorescence in situ hybridization analysis (FISH) is the preferred technique for detecting single chromosomal aberrations in diagnostic surgical pathology. MATERIAL AND METHODS FISH analysis applying a rapid hybridization protocol and using an automated whole-slide fluorescence scanning device (3DHISTECH, Sysmex, Switzerland) were implemented in our workflow. By analyzing 42 diagnostic cases, effects of two different scanning profiles on scanning time, and device memory usage were investigated. Manual signal counting (CaseViewer) and software based signal counting (FISHQuant) were compared. RESULTS The two scanning profiles, both including a Z-stack function, differed in their exposure time and digital gain. The "low profile" setting (LP) resulted in a significantly shorter scanning time and lower storage volume compared to the "high profile" (HP) setting, making the LP ideal for routine applications. Both signal counting methods (manual versus software based) provided similar cut-offs on a test-cohort of 13 samples. CONCLUSION Scanning FISH slides provides good picture quality, reduces the analysis time and allows easy picture archiving and facilitates remote diagnostics, allowing an effective workflow.
Collapse
Affiliation(s)
- Vira Chea
- Institute of Pathology Enge, Hardturmstr. 133, CH-8055, Zurich, Switzerland
| | - Valerie Pleiner
- Institute of Pathology Enge, Hardturmstr. 133, CH-8055, Zurich, Switzerland
| | - Viviane Schweizer
- Institute of Pathology Enge, Hardturmstr. 133, CH-8055, Zurich, Switzerland
| | | | - Beata Bode
- Institute of Pathology Enge, Hardturmstr. 133, CH-8055, Zurich, Switzerland
| | - Marianne Tinguely
- Institute of Pathology Enge, Hardturmstr. 133, CH-8055, Zurich, Switzerland.
| |
Collapse
|
9
|
Drilon A, Jenkins C, Iyer S, Schoenfeld A, Keddy C, Davare MA. ROS1-dependent cancers - biology, diagnostics and therapeutics. Nat Rev Clin Oncol 2021; 18:35-55. [PMID: 32760015 PMCID: PMC8830365 DOI: 10.1038/s41571-020-0408-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.
Collapse
Affiliation(s)
- Alexander Drilon
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Chelsea Jenkins
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Sudarshan Iyer
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Schoenfeld
- Early Drug Development and Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare Keddy
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Monika A Davare
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
10
|
Mazzoni F, Petreni P, Vasile E, Panebianco M, Casadei-Gardini A, Negri F, Lunghi A, Pillozzi S, Vivaldi C, Gervasi E, Frassineti GL, Messerini L, Jocollé G, Bisagni A, Antonuzzo L, Rossi G. ROS1 rearrangements are uncommon in biliary tract cancers. Oncol Lett 2020; 20:316. [PMID: 33133252 DOI: 10.3892/ol.2020.12179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/31/2020] [Indexed: 11/06/2022] Open
Abstract
Biliary tract cancers (BTCs) are a pool of diseases with poor prognosis and there is no orphan drug available. Currently, no molecular targets have been tested as druggable oncogenic drivers. C-ros oncogene 1 (ROS1) rearrangements have been previously described in various tumors, including BTCs; however, data regarding their incidence and biological significance are controversial. Therefore, a retrospective multicenter study was performed to assess the incidence of ROS1 rearrangements in BTCs by means of immunohistochemistry and fluorescence in situ hybridization (FISH). The present study failed to demonstrate ROS1 expression in a multicenter series of 150 cases with BTCs and revealed that D4D6 was the most specific clone compared with other ROS1 primary antibodies, namely PA1-30318 and EPMGHR2. Notably, negative results obtained with D4D6 completely matched to data sorted out by FISH analysis, thus confirming a lack of ROS1 gene rearrangements in BTCs and false positive results when PA1-30318 and EPMGHR2 clones were used. These results suggest that ROS1 rearrangements may not be targets for molecular therapy of BTCs with specific inhibitors.
Collapse
Affiliation(s)
- Francesca Mazzoni
- Medical Oncology Unit, AOU Careggi Hospital, I-50134 Florence, Italy
| | - Paolo Petreni
- Medical Oncology Unit, Alta Val d'Elsa Hospital, I-53036 Poggibonsi, Italy
| | - Enrico Vasile
- Medical Oncology Unit, AOU Pisana Hospital, I-56126 Pisa, Italy
| | | | | | - Francesca Negri
- Medical Oncology Unit, AOU Parma Hospital, I-43126 Parma, Italy
| | - Alice Lunghi
- Medical Oncology Unit, San Luca Hospital, I-55100 Lucca, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, AOU Careggi Hospital, I-50134 Florence, Italy.,Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| | | | | | | | - Luca Messerini
- Anatomical Pathology Unit, AOU Careggi Hospital, I-50134 Florence, Italy
| | | | | | - Lorenzo Antonuzzo
- Medical Oncology Unit, AOU Careggi Hospital, I-50134 Florence, Italy
| | - Giulio Rossi
- Operative Unit of Pathologic Anatomy, Santa Maria delle Croci Hospital, I-48121 Ravenna, Italy
| |
Collapse
|
11
|
中国临床肿瘤学会非小细胞肺癌专家委员会. [Chinese Expert Consensus on Next Generation Sequencing Diagnosis
for Non-small Cell Lung Cancer (2020 Edition)]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:741-761. [PMID: 32957170 PMCID: PMC7519957 DOI: 10.3779/j.issn.1009-3419.2020.101.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Bi H, Ren D, Ding X, Yin X, Cui S, Guo C, Wang H. Clinical characteristics of patients with ROS1 gene rearrangement in non-small cell lung cancer: a meta-analysis. Transl Cancer Res 2020; 9:4383-4392. [PMID: 35117804 PMCID: PMC8797378 DOI: 10.21037/tcr-20-1813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND ROS1 gene rearrangement has been reported in several types of cancers, including non-small cell lung cancer (NSCLC). It is reported that tyrosine kinase inhibitors are effective in the treatment of ROS1-rearranged NSCLC. Therefore, the identification of ROS1 rearrangement can be used as potential therapeutic target in lung cancer. Epidemiological data indicates that ROS1 gene rearrangement occurs in approximately 1-2% of NSCLC patients. The small sample sizes of the existing associated studies only represent the characteristics of patients in specific regions or countries, and there is still no latest statistical analysis on ROS1 gene rearrangement anywhere in the world. METHODS We conducted a systematic search of the PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), CBM, CNKI, Wanfang, and VIP databases to identify studies on ROS1 gene rearrangement in NSCLC patients from January 1, 2015 to October 27, 2019. We conducted a meta-analysis to investigate the relationship between ROS1 gene rearrangement and clinical characteristics of NSCLC patients. The four clinical features are as follows: gender, smoking status, pathological type, and lung cancer stage. RESULTS Thirty-nine studies constituting of 25,055 NSCLC patients were eligible for inclusion in this meta-analysis. A prominently higher rate of ROS1 gene rearrangement was observed in female NSCLC patients (OR =1.94, 95% CI: 1.62-2.32%, P<0.05), patients with no smoking history (OR =2.82, 95% CI: 2.24-3.55%, P<0.05), patients with adenocarcinoma (OR =1.55, 95% CI: 1.14-2.11%, P<0.05), and patients with stage III-IV disease (OR =1.50, 95% CI: 1.15-1.94%, P<0.05). Our meta-analysis also showed that the prevalence of ROS1 rearrangement in adenocarcinoma was 2.49% (95% CI: 1.92-3.11%), while it was lower in non-adenocarcinoma patients (1.37%). CONCLUSIONS ROS1 gene rearrangement was more predominant in female patients, patients without smoking history, patients with adenocarcinoma and patients with advanced-stage disease (stages III to IV).
Collapse
Affiliation(s)
- Huanhuan Bi
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Dunqiang Ren
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaoqian Ding
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaojiao Yin
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Shichao Cui
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Caihong Guo
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongmei Wang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
13
|
Li XZ, Jin F, Zhang JG, Deng YF, Shu W, Qin JM, Ma X, Pang Y. Treatment of coronavirus disease 2019 in Shandong, China: a cost and affordability analysis. Infect Dis Poverty 2020; 9:78. [PMID: 32600426 PMCID: PMC7322714 DOI: 10.1186/s40249-020-00689-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is now a global public threat. Given the pandemic of COVID-19, the economic impact of COVID-19 is essential to add value to the policy-making process. We retrospectively conducted a cost and affordability analysis to determine the medical costs of COVID-19 patients in China, and also assess the factors affecting their costs. Methods This analysis was retrospectively conducted in Shandong Provincial Chest Hospital between 24 January and 16 March 2020. The total direct medical expenditures were analyzed by cost factors. We also assessed affordability by comparing the simulated out-of-pocket expenditure of COVID-19 cases relative to the per capita disposable income. Differences between groups were tested by student t test and Mann-Whitney test when appropriate. A multiple logistic regression model was built to determine the risk factors associated with high cost. Results A total of 70 COVID-19 patients were included in the analysis. The overall mean cost was USD 6827 per treated episode. The highest mean cost was observed in drug acquisition, accounting for 45.1% of the overall cost. Total mean cost was significantly higher in patients with pre-existing diseases compared to those without pre-existing diseases. Pre-existing diseases and the advanced disease severity were strongly associated with higher cost. Around USD 0.49 billion were expected for clinical manage of COVID-19 in China. Among rural households, the proportions of health insurance coverage should be increased to 70% for severe cases, and 80% for critically ill cases to avoid catastrophic health expenditure. Conclusions Our data demonstrate that clinical management of COVID-19 patients incurs a great financial burden to national health insurance. The cost for drug acquisition is the major contributor to the medical cost, whereas the risk factors for higher cost are pre-existing diseases and severity of COVID-19. Improvement of insurance coverage will need to address the barriers of rural patients to avoid the occurrence of catastrophic health expenditure.
Collapse
Affiliation(s)
- Xue-Zheng Li
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Feng Jin
- Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Jian-Guo Zhang
- Department of Planning and Finance, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Yun-Feng Deng
- Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Wei Shu
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China
| | - Jing-Min Qin
- Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China
| | - Xin Ma
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China. .,Provincial Key Laboratory for Respiratory Infectious Diseases in Shandong, Shandong Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China. .,Katharine Hsu International Research Center of Human Infectious Diseases, Shandon Provincial Chest Hospital, Cheeloo College of Medicine, Shandong University, No. 44 Wenhuaxi Road, Lixia District, 250012, Jinan, People's Republic of China.
| | - Yu Pang
- National Clinical Laboratory on Tuberculosis, Beijing Key laboratory on Drug-resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, No 9, Beiguan Street, Tongzhou District, Beijing, 101149, People's Republic of China.
| |
Collapse
|
14
|
Riccardo F, Barutello G, Petito A, Tarone L, Conti L, Arigoni M, Musiu C, Izzo S, Volante M, Longo DL, Merighi IF, Papotti M, Cavallo F, Quaglino E. Immunization against ROS1 by DNA Electroporation Impairs K-Ras-Driven Lung Adenocarcinomas . Vaccines (Basel) 2020; 8:vaccines8020166. [PMID: 32268572 PMCID: PMC7349290 DOI: 10.3390/vaccines8020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is still the leading cause of cancer death worldwide. Despite the introduction of tyrosine kinase inhibitors and immunotherapeutic approaches, there is still an urgent need for novel strategies to improve patient survival. ROS1, a tyrosine kinase receptor endowed with oncoantigen features, is activated by chromosomal rearrangement or overexpression in NSCLC and in several tumor histotypes. In this work, we have exploited transgenic mice harboring the activated K-Ras oncogene (K-RasG12D) that spontaneously develop metastatic NSCLC as a preclinical model to test the efficacy of ROS1 immune targeting. Indeed, qPCR and immunohistochemical analyses revealed ROS1 overexpression in the autochthonous primary tumors and extrathoracic metastases developed by K-RasG12D mice and in a derived transplantable cell line. As proof of concept, we have evaluated the effects of the intramuscular electroporation (electrovaccination) of plasmids coding for mouse- and human-ROS1 on the progression of these NSCLC models. A significant increase in survival was observed in ROS1-electrovaccinated mice challenged with the transplantable cell line. It is worth noting that tumors were completely rejected, and immune memory was achieved, albeit only in a few mice. Most importantly, ROS1 electrovaccination was also found to be effective in slowing the development of autochthonous NSCLC in K-RasG12D mice.
Collapse
Affiliation(s)
- Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Angela Petito
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Chiara Musiu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Stefania Izzo
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Marco Volante
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), Italian National Research Council (CNR), 10126 Torino, Italy;
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
| | - Mauro Papotti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (S.I.); (M.V.); (M.P.)
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (F.R.); (G.B.); (A.P.); (L.T.); (L.C.); (M.A.); (C.M.); (I.F.M.)
- Correspondence: (F.C.); (E.Q.); Tel.: +39-011670-6457 (F.C. & E.Q.)
| |
Collapse
|
15
|
Cheng YY, Rath EM, Linton A, Yuen ML, Takahashi K, Lee K. The Current Understanding Of Asbestos-Induced Epigenetic Changes Associated With Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2020; 11:1-11. [PMID: 32021524 PMCID: PMC6955579 DOI: 10.2147/lctt.s186843] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Asbestos is a naturally occurring mineral consisting of extremely fine fibres that can become trapped in the lungs after inhalation. Occupational and environmental exposures to asbestos are linked to development of lung cancer and malignant mesothelioma, a cancer of the lining surrounding the lung. This review discusses the factors that are making asbestos-induced lung cancer a continuing problem, including the extensive historic use of asbestos and decades long latency between exposure and disease development. Genomic mutations of DNA nucleotides and gene rearrangements driving lung cancer are well-studied, with biomarkers and targeted therapies already in clinical use for some of these mutations. The genes involved in these mutation biomarkers and targeted therapies are also involved in epigenetic mechanisms and are discussed in this review as it is hoped that identification of epigenetic aberrations in these genes will enable the same gene biomarkers and targeted therapies to be used. Currently, understanding of how asbestos fibres trapped in the lungs leads to epigenetic changes and lung cancer is incomplete. It has been shown that oxidoreduction reactions on fibre surfaces generate reactive oxygen species (ROS) which in turn damage DNA, leading to genetic and epigenetic alterations that reduce the activity of tumour suppressor genes. Epigenetic DNA methylation changes associated with lung cancer are summarised in this review, and some of these changes will be due to asbestos exposure. So far, little research has been carried out to separate the asbestos driven epigenetic changes from those due to non-asbestos causes of lung cancer. Asbestos-associated lung cancers exhibit less methylation variability than lung cancers in general, and in a large proportion of samples variability has been found to be restricted to promoter regions. Epigenetic aberrations in cancer are proving to be promising biomarkers for diagnosing cancers. It is hoped that further understanding of epigenetic changes in lung cancer can result in useful asbestos-associated lung cancer biomarkers to guide treatment. Research is ongoing into the detection of lung cancer epigenetic alterations using non-invasive samples of blood and sputum. These efforts hold the promise of non-invasive cancer diagnosis in the future. Efforts to reverse epigenetic aberrations in lung cancer by epigenetic therapies are ongoing but have not yet yielded success.
Collapse
Affiliation(s)
- Yuen Yee Cheng
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma M Rath
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anthony Linton
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Man Lee Yuen
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ken Takahashi
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Kenneth Lee
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Nong L, Zhang Z, Xiong Y, Zheng Y, Li X, Li D, He Q, Li T. Comparison of next-generation sequencing and immunohistochemistry analysis for targeted therapy-related genomic status in lung cancer patients. J Thorac Dis 2019; 11:4992-5003. [PMID: 32030215 DOI: 10.21037/jtd.2019.12.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Some drugs that target molecular pathways are available for the targeted treatment of lung cancer. Multiple tests are needed to detect the status of the known molecular targets to determine whether the patients can respond to the drugs. An integrated platform for various gene alteration detection including both mutations and rearrangements is necessary for patients, especially those without enough tissue. Methods In our study, detections of EGFR mutations, ALK rearrangement, ROS1 rearrangement, and alterations of other nine important lung cancer-related genes were integrated into a single next-generation sequencing (NGS) platform. The NGS analysis was performed in 107 cases of non-small cell lung cancer (NSCLC). Meanwhile, hot spots such as EGFR L858R, EGFR E746-A750Del mutations and gene rearrangement of ALK and ROS1 were detected by immunohistochemical (IHC) staining. Results NGS could explore various gene mutations and gene rearrangements with a reduced experiment time and lower amounts of tumor tissues than multiple IHC staining experiments. NGS results were more informative and reliable than IHC staining for EGFR gene alterations, especially for the exon 19 region. NGS could also increase the positive rate of ALK rearrangement and decrease the false positive results of ROS1 rearrangements detected by IHC staining. Conclusions NGS is effective for confirmation the status of various important lung cancer-related gene alterations. Furthermore, NGS is necessary for the confirmation of the IHC results of ALK and ROS1 rearrangements.
Collapse
Affiliation(s)
- Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | | | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Yalin Zheng
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Xin Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Dong Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Qiye He
- Singlera Genomics Inc., Shanghai 201318, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
17
|
Facchinetti F, Friboulet L. Profile of entrectinib and its potential in the treatment of ROS1-positive NSCLC: evidence to date. LUNG CANCER (AUCKLAND, N.Z.) 2019; 10:87-94. [PMID: 31572036 PMCID: PMC6747675 DOI: 10.2147/lctt.s190786] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022]
Abstract
ROS1 inhibition provides impressive survival benefits in ROS1-rearranged non-small cell lung cancer (NSCLC) patients. Crizotinib is the only tyrosine kinase inhibitor (TKI) approved by both FDA and EMA for the treatment of ROS1-positive lung cancer. In addition, several TKI have been tested with preliminary proofs of success in this oncogene-driven disease, either in the post-crizotinib setting or as first-line targeted agents. Here we present the evidence concerning entrectinib, an ALK/ROS1/NTRK inhibitor developed across different tumor types harboring rearrangements in these genes, in the context of ROS1-driven NSCLC. Of interest, in August 2019 entrectinib was granted by FDA accelerated approval for the treatment of ROS1-rearranged NSCLC, as well as of NTRK-driven solid tumors.
Collapse
Affiliation(s)
- Francesco Facchinetti
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| |
Collapse
|
18
|
Bebb DG, Agulnik J, Albadine R, Banerji S, Bigras G, Butts C, Couture C, Cutz JC, Desmeules P, Ionescu DN, Leighl NB, Melosky B, Morzycki W, Rashid-Kolvear F, Lab C, Sekhon HS, Smith AC, Stockley TL, Torlakovic E, Xu Z, Tsao MS. Crizotinib inhibition of ROS1-positive tumours in advanced non-small-cell lung cancer: a Canadian perspective. Curr Oncol 2019; 26:e551-e557. [PMID: 31548824 PMCID: PMC6726257 DOI: 10.3747/co.26.5137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ros1 kinase is an oncogenic driver in non-small-cell lung cancer (nsclc). Fusion events involving the ROS1 gene are found in 1%-2% of nsclc patients and lead to deregulation of a tyrosine kinase-mediated multi-use intracellular signalling pathway, which then promotes the growth, proliferation, and progression of tumour cells. ROS1 fusion is a distinct molecular subtype of nsclc, found independently of other recognized driver mutations, and it is predominantly identified in younger patients (<50 years of age), women, never-smokers, and patients with adenocarcinoma histology. Targeted inhibition of the aberrant ros1 kinase with crizotinib is associated with increased progression-free survival (pfs) and improved quality-of-life measures. As the sole approved treatment for ROS1-rearranged nsclc, crizotinib has been demonstrated, through a variety of clinical trials and retrospective analyses, to be a safe, effective, well-tolerated, and appropriate treatment for patients having the ROS1 rearrangement. Canadian physicians endorse current guidelines which recommend that all patients with nonsquamous advanced nsclc, regardless of clinical characteristics, be tested for ROS1 rearrangement. Future integration of multigene testing panels into the standard of care could allow for efficient and cost-effective comprehensive testing of all patients with advanced nsclc. If a ROS1 rearrangement is found, treatment with crizotinib, preferably in the first-line setting, constitutes the standard of care, with other treatment options being investigated, as appropriate, should resistance to crizotinib develop.
Collapse
Affiliation(s)
- D G Bebb
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - J Agulnik
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - R Albadine
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - S Banerji
- Manitoba: Department of Medical Oncology, University of Manitoba, Winnipeg (Banerji)
| | - G Bigras
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - C Butts
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - C Couture
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - J C Cutz
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - P Desmeules
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
| | - D N Ionescu
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
| | - N B Leighl
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - B Melosky
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
| | - W Morzycki
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
| | - F Rashid-Kolvear
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
- Quebec: Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal (Agulnik); Department of Pathology, Centre hospitalier de l'Université de Montréal, Montreal (Albadine); Service d'anatomopathologie et de cytologie, Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Quebec City (Couture, Desmeules)
- Manitoba: Department of Medical Oncology, University of Manitoba, Winnipeg (Banerji)
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
- British Columbia: Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver (Ionescu); BC Cancer-Vancouver Centre, Vancouver (Melosky)
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
- Saskatchewan: Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon (Torlakovic)
| | - Clin Lab
- Alberta: Tom Baker Cancer Centre and University of Calgary, Calgary (Bebb); Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton (Bigras); Cross Cancer Institute and University of Alberta, Edmonton (Butts); Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, and Calgary Laboratory Services, Calgary (Rashid-Kolvear)
| | - H S Sekhon
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - A C Smith
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - T L Stockley
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| | - E Torlakovic
- Saskatchewan: Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon (Torlakovic)
| | - Z Xu
- Nova Scotia: Queen Elizabeth iiHealth Sciences Centre and Dalhousie University, Halifax (Morzycki, Xu)
| | - M S Tsao
- Ontario: St. Joseph's Healthcare, Hamilton Regional Laboratory Medicine Program, Department of Pathology and Molecular Medicine, McMaster University, Hamilton (Cutz); Princess Margaret Cancer Centre, University of Toronto, Toronto (Leighl); Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa (Sekhon); Department of Clinical Laboratory Genetics, Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto (Smith, Stockley); Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Centre, Toronto (Tsao)
| |
Collapse
|
19
|
Chen Y, Li G, Lei Y, Yang K, Niu H, Zhao J, He R, Ning H, Huang Q, Zhou Q, Huang Y. Lung cancer family history and exposure to occupational/domestic coal combustion contribute to variations in clinicopathologic features and gene fusion patterns in non-small cell lung cancer. Thorac Cancer 2019; 10:695-707. [PMID: 30775858 PMCID: PMC6449330 DOI: 10.1111/1759-7714.12987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Both genetic and environmental factors contribute to the development of cancer and its mutant spectrum. Lung cancer has familial aggregation. Lung cancer caused by non-tobacco factors has unique pathological and molecular characteristics. The interaction between genetic lung cancer susceptibility and carcinogens from coal burning remains complex and understudied. METHODS We selected 410 non-small cell lung cancer (NSCLC) patients with a family history of lung cancer (FLC) and exposure to coal combustion between 2014 and 2017. Clinicopathologic parameters were analyzed. Reverse transcription-PCR was performed to detect ALK, ROS1, RET, and NTRK1 rearrangement. RESULTS Among the 410 NSCLC patients, 192 had FLC and 204 (49.8%) were exposed to occupational or domestic coal combustion. FLC patients had the same characteristics regardless of gender and coal exposure: younger age, high female ratio, adenocarcinoma, increased metastasis, later stage at diagnosis, and higher frequency of gene fusion. Sixty-seven patients (16.3%) had gene rearrangement: 51 (12.4%) harbored EML4-ALK fusions and 16 ROS1 fusions (3.9%). The highest gene fusion rate (35.1%, 33/94) occurred in patients with both FLC and high tobacco and coal exposure. ALK fusions and total gene rearrangement were closely associated with women, never smokers, younger age, FLC, and coal exposure. CONCLUSION FLC and exposure to coal combustion have an important impact on the clinicopathological characteristics and gene fusion mode of NSCLC, particularly in cases of higher levels of carcinogens, and genetic susceptibility has a greater impact. Our findings may help evaluate the effect of FLC and coal exposure on the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Guangjian Li
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Kaiyun Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Huatao Niu
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Jie Zhao
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Rui He
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Huanqi Ning
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Qiubo Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Qinghua Zhou
- Lung Cancer Center, Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, The International Cooperation Key Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| |
Collapse
|
20
|
Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N, Kuckovic A, Singh S, Miller RJ, Puri N. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel) 2018; 10:E224. [PMID: 29973561 PMCID: PMC6071023 DOI: 10.3390/cancers10070224] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is treated with many conventional therapies, such as surgery, radiation, and chemotherapy. However, these therapies have multiple undesirable side effects. To bypass the side effects elicited by these conventional treatments, molecularly-targeted therapies are currently in use or under development. Current molecularly-targeted therapies effectively target specific biomarkers, which are commonly overexpressed in lung cancers and can cause increased tumorigenicity. Unfortunately, several molecularly-targeted therapies are associated with initial dramatic responses followed by acquired resistance due to spontaneous mutations or activation of signaling pathways. Acquired resistance to molecularly targeted therapies presents a major clinical challenge in the treatment of lung cancer. Therefore, to address this clinical challenge and to improve lung cancer patient prognosis, we need to understand the mechanism of acquired resistance to current therapies and develop additional novel therapies. This review concentrates on various lung cancer biomarkers, including EGFR, ALK, and BRAF, as well as their potential mechanisms of drug resistance.
Collapse
Affiliation(s)
- Zachary Schrank
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Gagan Chhabra
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Leo Lin
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Tsatsral Iderzorig
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Chike Osude
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Nabiha Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Adijan Kuckovic
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Sanjana Singh
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Rachel J Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA.
| |
Collapse
|
21
|
Abstract
The identification of certain genomic alterations (EGFR, ALK, ROS1, BRAF) or immunological markers (PD-L1) in tissues or cells has led to targeted treatment for patients presenting with late stage or metastatic lung cancer. These biomarkers can be detected by immunohistochemistry (IHC) and/or by molecular biology (MB) techniques. These approaches are often complementary but depending on, the quantity and quality of the biological material, the urgency to get the results, the access to technological platforms, the financial resources and the expertise of the team, the choice of the approach can be questioned. The possibility of detecting simultaneously several molecular targets, and of analyzing the degree of tumor mutation burden and of the micro-satellite instability, as well as the recent requirement to quantify the expression of PD-L1 in tumor cells, has led to case by case development of algorithms and international recommendations, which depend on the quality and quantity of biological samples. This review will highlight the different predictive biomarkers detected by IHC for treatment of lung cancer as well as the present advantages and limitations of this approach. A number of perspectives will be considered.
Collapse
|