1
|
Schoepflin ZR, Academia E, Osataphan SA, Rangachari D, Sharifi S, VanderLaan PA, Costa DB. ALK Deletion Exons 2 to 19: Case Report of a Rare ALK Inhibitor-Responsive Lung Cancer Driver Oncogene. JTO Clin Res Rep 2023; 4:100489. [PMID: 36994308 PMCID: PMC10040877 DOI: 10.1016/j.jtocrr.2023.100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/28/2023] Open
Abstract
ALK internal deletions of nonkinase domain exons occur in 0.01% of lung cancers with ALK genomic aberrations. We report a lung adenocarcinoma with a previously undescribed somatic ALK deletion of exons 2 to 19 with dramatic and sustained (>23 mo) response to alectinib. Our and other reported cases with ALK nonkinase domain deletions (between introns and exons 1-19) can display positive results in nonsequencing-based lung cancer diagnostic tests (such as immunohistochemistry) used to screen for more common ALK rearrangements. This case report emphasizes that "ALK-driven" lung cancers should be expanded to encompass those harboring not only ALK rearrangements with other genes but also ALK nonkinase domain deletions.
Collapse
Affiliation(s)
- Zachary R. Schoepflin
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Emmeline Academia
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Soravis A. Osataphan
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Deepa Rangachari
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sheida Sharifi
- Department of Pathology, Lahey Hospital and Medical Center, Burlington, Massachusetts
| | - Paul A. VanderLaan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Daniel B. Costa
- Department of Medicine, Division of Medical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Milbury CA, Creeden J, Yip WK, Smith DL, Pattani V, Maxwell K, Sawchyn B, Gjoerup O, Meng W, Skoletsky J, Concepcion AD, Tang Y, Bai X, Dewal N, Ma P, Bailey ST, Thornton J, Pavlick DC, Frampton GM, Lieber D, White J, Burns C, Vietz C. Clinical and analytical validation of FoundationOne®CDx, a comprehensive genomic profiling assay for solid tumors. PLoS One 2022; 17:e0264138. [PMID: 35294956 PMCID: PMC8926248 DOI: 10.1371/journal.pone.0264138] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
FoundationOne®CDx (F1CDx) is a United States (US) Food and Drug Administration (FDA)-approved companion diagnostic test to identify patients who may benefit from treatment in accordance with the approved therapeutic product labeling for 28 drug therapies. F1CDx utilizes next-generation sequencing (NGS)-based comprehensive genomic profiling (CGP) technology to examine 324 cancer genes in solid tumors. F1CDx reports known and likely pathogenic short variants (SVs), copy number alterations (CNAs), and select rearrangements, as well as complex biomarkers including tumor mutational burden (TMB) and microsatellite instability (MSI), in addition to genomic loss of heterozygosity (gLOH) in ovarian cancer. CGP services can reduce the complexity of biomarker testing, enabling precision medicine to improve treatment decision-making and outcomes for cancer patients, but only if test results are reliable, accurate, and validated clinically and analytically to the highest standard available. The analyses presented herein demonstrate the extensive analytical and clinical validation supporting the F1CDx initial and subsequent FDA approvals to ensure high sensitivity, specificity, and reliability of the data reported. The analytical validation included several in-depth evaluations of F1CDx assay performance including limit of detection (LoD), limit of blank (LoB), precision, and orthogonal concordance for SVs (including base substitutions [SUBs] and insertions/deletions [INDELs]), CNAs (including amplifications and homozygous deletions), genomic rearrangements, and select complex biomarkers. The assay validation of >30,000 test results comprises a considerable and increasing body of evidence that supports the clinical utility of F1CDx to match patients with solid tumors to targeted therapies or immunotherapies based on their tumor's genomic alterations and biomarkers. F1CDx meets the clinical needs of providers and patients to receive guideline-based biomarker testing, helping them keep pace with a rapidly evolving field of medicine.
Collapse
Affiliation(s)
- Coren A. Milbury
- Department Product Development, Cambridge, MA, United States of America
| | - James Creeden
- Global Medical Affairs, Basel, MA, United States of America
| | - Wai-Ki Yip
- Department Product Development, Cambridge, MA, United States of America
| | - David L. Smith
- Department of Franchise Development, Cambridge, MA, United States of America
| | - Varun Pattani
- Department Product Development, Cambridge, MA, United States of America
| | - Kristi Maxwell
- Department of Health Economic and Outcomes Research & Payer Policy, Reimbursement, Cambridge, MA, United States of America
| | - Bethany Sawchyn
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Ole Gjoerup
- Department of Scientific and Medical Publications, Clinical Operations, Cambridge, MA, United States of America
| | - Wei Meng
- Department Product Development, Cambridge, MA, United States of America
| | - Joel Skoletsky
- Department Product Development, Cambridge, MA, United States of America
| | | | - Yanhua Tang
- Department Product Development, Cambridge, MA, United States of America
| | - Xiaobo Bai
- Department Product Development, Cambridge, MA, United States of America
| | - Ninad Dewal
- Department Product Development, Cambridge, MA, United States of America
| | - Pei Ma
- Department Product Development, Cambridge, MA, United States of America
| | - Shannon T. Bailey
- Department Product Development, Cambridge, MA, United States of America
| | - James Thornton
- Department Product Development, Cambridge, MA, United States of America
| | - Dean C. Pavlick
- Department of Cancer Genomics, Cambridge, MA, United States of America
| | | | - Daniel Lieber
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Jared White
- Department of Computational Biology, Cambridge, MA, United States of America
| | - Christine Burns
- Department Product Development, Cambridge, MA, United States of America
| | - Christine Vietz
- Department Product Development, Cambridge, MA, United States of America
| |
Collapse
|