1
|
Mohan SP, Priya SP, Tawfig N, Padmanabhan V, Babiker R, Palaniappan A, Prabhu S, Chaitanya NCSK, Rahman MM, Islam MS. The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves. Neurol Int 2025; 17:23. [PMID: 39997654 PMCID: PMC11858299 DOI: 10.3390/neurolint17020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peripheral nerve injuries are common complications in surgical and dental practices, often resulting in functional deficiencies and reduced quality of life. Current treatment choices, such as autografts, have limitations, including donor site morbidity and suboptimal outcomes. Adipose-derived stem cells (ADSCs) have shown assuring regenerative potential due to their accessibility, ease of harvesting and propagation, and multipotent properties. This review investigates the therapeutic potential of ADSCs in peripheral nerve regeneration, focusing on their use in bioengineered nerve conduits and supportive microenvironments. The analysis is constructed on published case reports, organized reviews, and clinical trials from Phase I to Phase III that investigate ADSCs in managing nerve injuries, emphasizing both peripheral and orofacial applications. The findings highlight the advantages of ADSCs in promoting nerve regeneration, including their secretion of angiogenic and neurotrophic factors, support for cellular persistence, and supplementing scaffold-based tissue repair. The regenerative capabilities of ADSCs in peripheral nerve injuries offer a novel approach to augmenting nerve repair and functional recovery. The accessibility of adipose tissue and the minimally invasive nature of ADSC harvesting further encourage its prospective application as an autologous cell source in regenerative medicine. Future research is needed to ascertain standardized protocols and optimize clinical outcomes, paving the way for ADSCs to become a mainstay in nerve regeneration.
Collapse
Affiliation(s)
- Sunil P. Mohan
- Department of Oral and Maxillofacial Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode 673323, Kerala, India
- Centre for Stem Cells and Regenerative Medicine, Malabar Medical College, Kozhikode 673315, Kerala, India
| | - Sivan P. Priya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Nada Tawfig
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Vivek Padmanabhan
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Rasha Babiker
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 11172, United Arab Emirates;
| | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab., Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India;
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India;
| | - Nallan CSK Chaitanya
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Muhammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| | - Md Sofiqul Islam
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras AL Khaimah P.O. Box 12973, United Arab Emirates; (N.T.); (V.P.); (N.C.C.); (M.M.R.); (M.S.I.)
| |
Collapse
|
2
|
Steiner RC, Buchen JT, Phillips ER, Fellin CR, Yuan X, Jariwala SH. FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium. PLoS One 2025; 20:e0317350. [PMID: 39792905 PMCID: PMC11723599 DOI: 10.1371/journal.pone.0317350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The extrusion bioprinting of collagen material has many applications relevant to tissue engineering and regenerative medicine. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) technology is capable of 3D printing collagen material with the specifications and details needed for precise tissue guidance, a crucial requirement for effective tissue repair. While FRESH has shown repeated success and reliability for extrusion printing, the mechanical properties of completed collagen prints can be improved further by post-print crosslinking methodologies. Photoinitiator-based crosslinking methods are simple and have proven effective in strengthening protein-based materials. The ruthenium and sodium persulfate photoinitiator system (Ru(bpy)3/SPS) has been suggested as an effective crosslinking method for collagen materials. Herein, we describe the procedure our group has developed to combine extrusion-based 3D printing of type-1 collagen using FRESH technology with Ru(bpy)3/SPS photoinitiated crosslinking methods to improve the strength and stability of 3D printed collagen structures. Mechanical testing and cell biocompatibility assessments were performed to investigate the impact of Ru(bpy)3/SPS photoinitiated crosslinking and highlight the potential limitations of this method. These results demonstrate a significant improvement in the compressive strength of type-1 collagen samples as the Ru(bpy)3/SPS concentration increases. Additionally, type-1 collagen samples crosslinked with up to 1/10 mM Ru(bpy)3/SPS support PC12 cell viability over a period of 7 days. The primary limitations that were observed and described in detail in this protocol are: the FRESH slurry preparation, printing environment, extrusion printer hardware, and quality of the ruthenium reagent.
Collapse
Affiliation(s)
- Richard C. Steiner
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Jack T. Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Evan R. Phillips
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- CytoSorbents Medical Inc., Princeton, New Jersey, United States of America
| | - Christopher R. Fellin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Xiaoning Yuan
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| | - Shailly H. Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, United States of America
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, United States of America
| |
Collapse
|
3
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Drewry MD, Shi D, Dailey MT, Rothermund K, Trbojevic S, Almarza AJ, Cui XT, Syed-Picard FN. Enhancing facial nerve regeneration with scaffold-free conduits engineered using dental pulp stem cells and their endogenous, aligned extracellular matrix. J Neural Eng 2024; 21:056015. [PMID: 39197480 PMCID: PMC11406051 DOI: 10.1088/1741-2552/ad749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/02/2024] [Accepted: 08/28/2024] [Indexed: 09/01/2024]
Abstract
Objective. Engineered nerve conduits must simultaneously enhance axon regeneration and orient axon extension to effectively restore function of severely injured peripheral nerves. The dental pulp contains a population of stem/progenitor cells that endogenously express neurotrophic factors (NTFs), growth factors known to induce axon repair. We have previously generated scaffold-free dental pulp stem/progenitor cell (DPSC) sheets comprising an aligned extracellular matrix (ECM). Through the intrinsic NTF expression of DPSCs and the topography of the aligned ECM, these sheets both induce and guide axon regeneration. Here, the capacity of bioactive conduits generated using these aligned DPSC sheets to restore function in critical-sized nerve injuries in rodents was evaluated.Approach. Scaffold-free nerve conduits were formed by culturing DPSCs on a substrate with aligned microgrooves, inducing the cells to align and deposit an aligned ECM. The sheets were then detached from the substrate and assembled into scaffold-free cylindrical tissues.Main results. In vitroanalyses confirmed that scaffold-free DPSC conduits maintained an aligned ECM and had uniformly distributed NTF expression. Implanting the aligned DPSC conduits across critical-sized defects in the buccal branch of rat facial nerves resulted in the regeneration of a fascicular nerve-like structure and myelinated axon extension across the injury site. Furthermore, compound muscle action potential and stimulated whisker movement measurements revealed that the DPSC conduit treatment promoted similar functional recovery compared to the clinical standard of care, autografts. Significance. This study demonstrates that scaffold-free aligned DPSC conduits supply trophic and guidance cues, key design elements needed to successfully promote and orient axon regeneration. Consequently, these conduits restore function in nerve injuries to similar levels as autograft treatments. These conduits offer a novel bioactive approach to nerve repair capable of improving clinical outcomes and patient quality of life.
Collapse
Affiliation(s)
- Michelle D Drewry
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Delin Shi
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matthew T Dailey
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kristi Rothermund
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sara Trbojevic
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alejandro J Almarza
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xinyan T Cui
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Fatima N Syed-Picard
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
5
|
Fakhr MJ, Kavakebian F, Ababzadeh S, Rezapour A. Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration. J Tissue Eng Regen Med 2024; 2024:8868411. [PMID: 40225756 PMCID: PMC11918807 DOI: 10.1155/2024/8868411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 04/15/2025]
Abstract
Peripheral neuropathy is painful and can cause a considerable decline in quality of life. Surgery and autograft are the current approaches and clinical standards for restoring function after nerve damage. However, they usually result in unacceptable clinical results, so we need modern peripheral nerve defect treatment approaches. Tissue engineering techniques have been developed as a promising approach, but there are some considerations for translational application. Clinical application of novel tissue engineering methods is related to combining the appropriate cell and scaffold type to introduce safe and efficient bioscaffolds. Efficient nerve regeneration occurs by mimicking the extracellular matrix and combining topographical, biochemical, mechanical, and conductive signs via different cells, biomolecules, and polymers. In brief, ideal engineered biomaterial scaffolds will have to cover all characteristics of nerve tissue, such as nerve number, myelin, and axon thickness. Nerve regeneration has a highly sensitive response to its surrounding microenvironment. For designing a suitable construct, matching the regenerative potential of the autograft as the golden standard is essential. This review article examines the newest advancements in peripheral nerve tissue engineering. Specifically, the discussion will focus on incorporating innovative cues, biological modification, biomaterials, techniques, and concepts in this area of research.
Collapse
Affiliation(s)
- Massoumeh Jabbari Fakhr
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
| | - Fatemeh Kavakebian
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research CentreQom University of Medical Sciences, Qom, Iran
| | - Alireza Rezapour
- Department of Tissue Engineering and Applied Cell SciencesSchool of MedicineQom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research CentreQom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Azapagic A, Agarwal J, Gale B, Shea J, Wojtalewicz S, Sant H. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model. Biomed Microdevices 2024; 26:34. [PMID: 39102047 DOI: 10.1007/s10544-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of in vitro experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent in vivo assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.
Collapse
Affiliation(s)
- Azur Azapagic
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA.
| | - Jayant Agarwal
- Department of Surgery, Division of Plastic Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Bruce Gale
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
- Department of Biomedical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Susan Wojtalewicz
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
| | - Himanshu Sant
- Department of Chemical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Yu L, Bennett CJ, Lin CH, Yan S, Yang J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng 2024; 21:10.1088/1741-2552/ad628d. [PMID: 38996412 PMCID: PMC11883895 DOI: 10.1088/1741-2552/ad628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Peripheral nerve injury (PNI) represents a serious clinical and public health problem due to its high incurrence and poor spontaneous recovery. Compared to autograft, which is still the best current practice for long-gap peripheral nerve defects in clinics, the use of polymer-based biodegradable nerve guidance conduits (NGCs) has been gaining momentum as an alternative to guide the repair of severe PNI without the need of secondary surgery and donor nerve tissue. However, simple hollow cylindrical tubes can barely outperform autograft in terms of the regenerative efficiency especially in critical sized PNI. With the rapid development of tissue engineering technology and materials science, various functionalized NGCs have emerged to enhance nerve regeneration over the past decades. From the aspect of scaffold design considerations, with a specific focus on biodegradable polymers, this review aims to summarize the recent advances in NGCs by addressing the onerous demands of biomaterial selections, structural designs, and manufacturing techniques that contributes to the biocompatibility, degradation rate, mechanical properties, drug encapsulation and release efficiency, immunomodulation, angiogenesis, and the overall nerve regeneration potential of NGCs. In addition, several commercially available NGCs along with their regulation pathways and clinical applications are compared and discussed. Lastly, we discuss the current challenges and future directions attempting to provide inspiration for the future design of ideal NGCs that can completely cure long-gap peripheral nerve defects.
Collapse
Affiliation(s)
- Le Yu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Carly Jane Bennett
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Chung-Hsun Lin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Jian Yang
- Biomedical Engineering Program, Westlake University, Hangzhou, Zhejiang 310030, People’s Republic of China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, People’s Republic of China
| |
Collapse
|
8
|
Gaihre B, Potes MDA, Liu X, Tilton M, Camilleri E, Rezaei A, Serdiuk V, Park S, Lucien F, Terzic A, Lu L. Extrusion 3D-printing and characterization of poly(caprolactone fumarate) for bone regeneration applications. J Biomed Mater Res A 2024; 112:672-684. [PMID: 37971074 PMCID: PMC10948318 DOI: 10.1002/jbm.a.37646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Polycaprolactone fumarate (PCLF) is a cross-linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell-cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro-architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post-processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D-printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Emily Camilleri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Asghar Rezaei
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Vitalii Serdiuk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sungjo Park
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre Terzic
- Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Castro VO, Livi S, Sperling LE, Dos Santos MG, Merlini C. Biodegradable Electrospun Conduit with Aligned Fibers Based on Poly(lactic- co-glycolic Acid) (PLGA)/Carbon Nanotubes and Choline Bitartrate Ionic Liquid. ACS APPLIED BIO MATERIALS 2024; 7:1536-1546. [PMID: 38346264 DOI: 10.1021/acsabm.3c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Functionally active aligned fibers are a promising approach to enhance neuro adhesion and guide the extension of neurons for peripheral nerve regeneration. Therefore, the present study developed poly(lactic-co-glycolic acid) (PLGA)-aligned electrospun mats and investigated the synergic effect with carbon nanotubes (CNTs) and Choline Bitartrate ionic liquid (Bio-IL) on PLGA fibers. Morphology, thermal, and mechanical performances were determined as well as the hydrolytic degradation and the cytotoxicity. Results revealed that electrospun mats are composed of highly aligned fibers, and CNTs were aligned and homogeneously distributed into the fibers. Bio-IL changed thermal transition behavior, reduced glass transition temperature (Tg), and favored crystal phase formation. The mechanical properties increased in the presence of CNTs and slightly decreased in the presence of the Bio-IL. The results demonstrated a decrease in the degradation rate in the presence of CNTs, whereas the use of Bio-IL led to an increase in the degradation rate. Cytotoxicity results showed that all the electrospun mats display metabolic activity above 70%, which demonstrates that they are biocompatible. Moreover, superior biocompatibility was observed for the electrospun containing Bio-IL combined with higher amounts of CNTs, showing a high potential to be used in nerve tissue engineering.
Collapse
Affiliation(s)
- Vanessa Oliveira Castro
- Mechanical Engineering Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-535, Brazil
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621 Cédex, France
| | - Sébastien Livi
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne F-69621 Cédex, France
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Marcelo Garrido Dos Santos
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Claudia Merlini
- Materials Engineering Special Coordination, Universidade Federal de Santa Catarina (UFSC), Blumenau, Santa Catarina 89036-002, Brazil
| |
Collapse
|
10
|
Gutiérrez B, González-Quijón ME, Martínez-Rodríguez P, Alarcón-Apablaza J, Godoy K, Cury DP, Lezcano MF, Vargas-Chávez D, Dias FJ. Comprehensive Development of a Cellulose Acetate and Soy Protein-Based Scaffold for Nerve Regeneration. Polymers (Basel) 2024; 16:216. [PMID: 38257015 PMCID: PMC10820324 DOI: 10.3390/polym16020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The elaboration of biocompatible nerve guide conduits (NGCs) has been studied in recent years as a treatment for total nerve rupture lesions (axonotmesis). Different natural polymers have been used in these studies, including cellulose associated with soy protein. The purpose of this report was to describe manufacturing NGCs suitable for nerve regeneration using the method of dip coating and evaporation of solvent with cellulose acetate (CA) functionalized with soy protein acid hydrolysate (SPAH). METHODS The manufacturing method and bacterial control precautions for the CA/SPAH NGCs were described. The structure of the NGCs was analyzed under a scanning electron microscope (SEM); porosity was analyzed with a degassing method using a porosimeter. Schwann cell (SCL 4.1/F7) biocompatibility of cell-seeded nerve guide conduits was evaluated with the MTT assay. RESULTS The method employed allowed an easy elaboration and customization of NGCs, free of bacteria, with pores in the internal surface, and the uniform wall thickness allowed manipulation, which showed flexibility; additionally, the sample was suturable. The NGCs showed initial biocompatibility with Schwann cells, revealing cells adhered to the NGC structure after 5 days. CONCLUSIONS The fabricated CA/SPAH NGCs showed adequate features to be used for peripheral nerve regeneration studies. Future reports are necessary to discuss the ideal concentration of CA and SPAH and the mechanical and physicochemical properties of this biomaterial.
Collapse
Affiliation(s)
- Brandon Gutiérrez
- Master Program in Dental Sciences, Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Eugenia González-Quijón
- Department of Chemical Engineering, Universidad de La Frontera, Temuco 4780000, Chile;
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Paulina Martínez-Rodríguez
- Oral Biology Research Centre (CIBO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Josefa Alarcón-Apablaza
- Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karina Godoy
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Diego Pulzatto Cury
- Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil;
- Department of Cellular Biology and the Development, Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - María Florencia Lezcano
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Daniel Vargas-Chávez
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Escuela Medicina Veterinaria, Temuco 4780000, Chile
| | - Fernando José Dias
- Oral Biology Research Centre (CIBO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
11
|
Lee HY, Moon SH, Kang D, Choi E, Yang GH, Kim KN, Won JY, Yi S. A multi-channel collagen conduit with aligned Schwann cells and endothelial cells for enhanced neuronal regeneration in spinal cord injury. Biomater Sci 2023; 11:7884-7896. [PMID: 37906468 DOI: 10.1039/d3bm01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Traumatic spinal cord injury (SCI) leads to Wallerian degeneration and the accompanying disruption of vasculature leads to ischemia, which damages motor and sensory function. Therefore, understanding the biological environment during regeneration is essential to promote neuronal regeneration and overcome this phenomenon. The band of Büngner is a structure of an aligned Schwann cell (SC) band that guides axon elongation providing a natural recovery environment. During axon elongation, SCs promote axon elongation while migrating along neovessels (endothelial cells [ECs]). To model this, we used extrusion 3D bioprinting to develop a multi-channel conduit (MCC) using collagen for the matrix region and sacrificial alginate to make the channel. The MCC was fabricated with a structure in which SCs and ECs were longitudinally aligned to mimic the sophisticated recovering SCI conditions. Also, we produced an MCC with different numbers of channels. The aligned SCs and ECs in the 9-channel conduit (9MCC-SE) were more biocompatible and led to more proliferation than the 5-channel conduit (5MCC-SE) in vitro. Also, the 9MCC-SE resulted in a greater healing effect than the 5MCC-SE with respect to neuronal regeneration, remyelination, inflammation, and angiogenesis in vivo. The above tissue recovery results led to motor function repair. Our results show that our 9MCC-SE model represents a new therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Hye Yeong Lee
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Seo Hyun Moon
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Donggu Kang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Eunjeong Choi
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Gi Hoon Yang
- Research Institute of Additive Manufacturing and Regenerative Medicine, Baobab Healthcare Inc., 55 Hanyangdaehak-Ro, Ansan, Gyeonggi-Do, 15588, South Korea
| | - Keung Nyun Kim
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Joo Yun Won
- Clinical & Translational Research Institute, Anymedi INC., Seoul, South Korea
| | - Seong Yi
- Spine & Spinal Cord Institute, Department of Neurosurgery, College of Medicine, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Escobar A, Carvalho MR, Silva TH, Reis RL, Oliveira JM. Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration. IN VITRO MODELS 2023; 2:195-205. [PMID: 39872172 PMCID: PMC11756464 DOI: 10.1007/s44164-023-00050-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 01/29/2025]
Abstract
Peripheral nerve injuries represent a major clinical challenge, if nerve ends retract, there is no spontaneous regeneration, and grafts are required to proximate the nerve ends and give continuity to the nerve. The nerve guidance conduits (NGCs) presented in this work are silk fibroin (SF)-based, which is biocompatible and very versatile. The formation of conduits is obtained by forming a covalently cross-linked hydrogel in two concentric moulds, and the inner longitudinally aligned pattern of the SF NGCs is obtained through the use of a patterned inner mould. SF NGCs with two wall thicknesses of ~ 200 to ~ 400 μm are synthesized. Their physicochemical and mechanical characteristics have shown improved properties when the wall thickness is thicker such as resistance to kinking, which is of special importance as conduits might also be used to substitute nerves in flexible body parts. The Young modulus is higher for conduits with inner pattern, and none of the conduits has shown any salt deposition in presence of simulated body fluid, meaning they do not calcify; thus, the regeneration does not get impaired when conduits have contact with body fluids. In vitro studies demonstrated the biocompatibility of the SF NGCs; proliferation is enhanced when iSCs are cultured on top of conduits with longitudinally aligned pattern. BJ fibroblasts cannot infiltrate through the SF wall, avoiding scar tissue formation on the lumen of the graft when used in vivo. These conduits have been demonstrated to be very versatile and fulfil with the requirements for their use in PNR. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-023-00050-3.
Collapse
Affiliation(s)
- Ane Escobar
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Mariana R. Carvalho
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| | - J. Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Braga Portugal
| |
Collapse
|
13
|
Mahdian M, Tabatabai TS, Abpeikar Z, Rezakhani L, Khazaei M. Nerve regeneration using decellularized tissues: challenges and opportunities. Front Neurosci 2023; 17:1295563. [PMID: 37928728 PMCID: PMC10620322 DOI: 10.3389/fnins.2023.1295563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
In tissue engineering, the decellularization of organs and tissues as a biological scaffold plays a critical role in the repair of neurodegenerative diseases. Various protocols for cell removal can distinguish the effects of treatment ability, tissue structure, and extracellular matrix (ECM) ability. Despite considerable progress in nerve regeneration and functional recovery, the slow regeneration and recovery potential of the central nervous system (CNS) remains a challenge. The success of neural tissue engineering is primarily influenced by composition, microstructure, and mechanical properties. The primary objective of restorative techniques is to guide existing axons properly toward the distal end of the damaged nerve and the target organs. However, due to the limitations of nerve autografts, researchers are seeking alternative methods with high therapeutic efficiency and without the limitations of autograft transplantation. Decellularization scaffolds, due to their lack of immunogenicity and the preservation of essential factors in the ECM and high angiogenic ability, provide a suitable three-dimensional (3D) substrate for the adhesion and growth of axons being repaired toward the target organs. This study focuses on mentioning the types of scaffolds used in nerve regeneration, and the methods of tissue decellularization, and specifically explores the use of decellularized nerve tissues (DNT) for nerve transplantation.
Collapse
Affiliation(s)
- Maryam Mahdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Stocco E, Barbon S, Faccio D, Petrelli L, Incendi D, Zamuner A, De Rose E, Confalonieri M, Tolomei F, Todros S, Tiengo C, Macchi V, Dettin M, De Caro R, Porzionato A. Development and preclinical evaluation of bioactive nerve conduits for peripheral nerve regeneration: A comparative study. Mater Today Bio 2023; 22:100761. [PMID: 37600351 PMCID: PMC10433238 DOI: 10.1016/j.mtbio.2023.100761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
In severe peripheral nerve injuries, nerve conduits (NCs) are good alternatives to autografts/allografts; however, the results the available devices guarantee for are still not fully satisfactory. Herein, differently bioactivated NCs based on the new polymer oxidized polyvinyl alcohol (OxPVA) are compared in a rat model of sciatic nerve neurotmesis (gap: 5 mm; end point: 6 weeks). Thirty Sprague Dawley rats are randomized to 6 groups: Reverse Autograft (RA); Reaxon®; OxPVA; OxPVA + EAK (self-assembling peptide, mechanical incorporation); OxPVA + EAK-YIGSR (mechanical incorporation); OxPVA + Nerve Growth Factor (NGF) (adsorption). Preliminarily, all OxPVA-based devices are comparable with Reaxon® in Sciatic Functional Index score and gait analysis; moreover, all conduits sustain nerve regeneration (S100, β-tubulin) without showing substantial inflammation (CD3, F4/80) evidences. Following morphometric analyses, OxPVA confirms its potential in PNI repair (comparable with Reaxon®) whereas OxPVA + EAK-YIGSR stands out for its myelinated axons total number and density, revealing promising in injury recovery and for future application in clinical practice.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Diego Faccio
- Plastic and Reconstructive Surgery Unit, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Lucia Petrelli
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Damiana Incendi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Annj Zamuner
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- Department of Civil, Environmental and Architectural Engineering University of Padova, Via Francesco Marzolo 9, 35131, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Enrico De Rose
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
| | - Marta Confalonieri
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Francesco Tolomei
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Silvia Todros
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Cesare Tiengo
- Plastic and Reconstructive Surgery Unit, University of Padova, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Monica Dettin
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
- Department of Industrial Engineering University of Padova, Via Gradenigo 6/a, 35131, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via Aristide Gabelli 65, 35127, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via Nicolò Giustiniani 2, 35128, Padova, Italy
| |
Collapse
|
15
|
Millesi F, Mero S, Semmler L, Rad A, Stadlmayr S, Borger A, Supper P, Haertinger M, Ploszczanski L, Windberger U, Weiss T, Naghilou A, Radtke C. Systematic Comparison of Commercial Hydrogels Revealed That a Synergy of Laminin and Strain-Stiffening Promotes Directed Migration of Neural Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12678-12695. [PMID: 36876876 PMCID: PMC10020957 DOI: 10.1021/acsami.2c20040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
Hydrogels have shown potential in replacing damaged nerve tissue, but the ideal hydrogel is yet to be found. In this study, various commercially available hydrogels were compared. Schwann cells, fibroblasts, and dorsal root ganglia neurons were seeded on the hydrogels, and their morphology, viability, proliferation, and migration were examined. Additionally, detailed analyses of the gels' rheological properties and topography were conducted. Our results demonstrate vast differences on cell elongation and directed migration on the hydrogels. Laminin was identified as the driver behind cell elongation and in combination with a porous, fibrous, and strain-stiffening matrix structure responsible for oriented cell motility. This study improves our understanding of cell-matrix interactions and thereby facilitates tailored fabrication of hydrogels in the future.
Collapse
Affiliation(s)
- Flavia Millesi
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sascha Mero
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Lorenz Semmler
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anda Rad
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Sarah Stadlmayr
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Anton Borger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Paul Supper
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Maximilian Haertinger
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Leon Ploszczanski
- Institute
for Physics and Materials Science, University
of Natural Resources and Life Sciences, Vienna 1190, Austria
| | - Ursula Windberger
- Decentralized
Biomedical Facilities, Core Unit Laboratory Animal Breeding and Husbandry, Medical University Vienna, Vienna 1090, Austria
| | - Tamara Weiss
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
| | - Aida Naghilou
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Physical Chemistry, University of Vienna, Vienna 1090, Austria
| | - Christine Radtke
- Research
Laboratory of the Department of Plastic, Reconstructive and Aesthetic
Surgery, Medical University of Vienna, Vienna 1090, Austria
- Austrian
Cluster for Tissue Regeneration, Vienna 1200, Austria
- Department
of Plastic, Reconstructive
and Aesthetic Surgery, Medical University
of Vienna, Vienna 1090, Austria
| |
Collapse
|
16
|
Supra R, Agrawal DK. Peripheral Nerve Regeneration: Opportunities and Challenges. JOURNAL OF SPINE RESEARCH AND SURGERY 2023; 5:10-18. [PMID: 36873243 PMCID: PMC9983644 DOI: 10.26502/fjsrs0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Peripheral nerve injury has detrimental effects on the quality of life for patients and is a worldwide issue with high rates of morbidity. Research on the molecular mechanisms of nerve injury, microsurgical techniques, and advances in stem cell research have led to substantial progress in the field of translational neurophysiology. Current research on peripheral nerve regeneration aims to accelerate peripheral nerve development through pluripotent stem cells and potential use of smart exosomes, pharmacological agents, and bioengineering of nerve conduits. In this article critically reviewed and summarized various methods used for peripheral nerve regeneration and highlight the opportunities and challenges that come along with these strategies.
Collapse
Affiliation(s)
- Rajiv Supra
- College of Osteopathic Medicine, Touro University, Henderson, Nevada
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Pomona, California
| |
Collapse
|
17
|
Agrawal L, Vimal SK, Barzaghi P, Shiga T, Terenzio M. Biodegradable and Electrically Conductive Melanin-Poly (3-Hydroxybutyrate) 3D Fibrous Scaffolds for Neural Tissue Engineering Applications. Macromol Biosci 2022; 22:e2200315. [PMID: 36114714 DOI: 10.1002/mabi.202200315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/15/2023]
Abstract
Due to the severity of peripheral nerve injuries (PNI) and spinal cord injuries (SCI), treatment options for patients are limited. In this context, biomaterials designed to promote regeneration and reinstate the lost function are being explored. Such biomaterials should be able to mimic the biological, chemical, and physical cues of the extracellular matrix for maximum effectiveness as therapeutic agents. Development of biomaterials with desirable physical, chemical, and electrical properties, however, has proven challenging. Here a novel biomaterial formulation achieved by blending the pigment melanin and the natural polymer Poly-3-hydroxybutyrate (PHB) is proposed. Physio-chemical measurements of electrospun fibers reveal a feature rich surface nano-topography, a semiconducting-nature, and brain-tissue-like poroviscoelastic properties. Resulting fibers improve cell adhesion and growth of mouse sensory and motor neurons, without any observable toxicity. Further, the presence of polar functional groups positively affect the kinetics of fibers degradation at a pH (≈7.4) comparable to that of body fluids. Thus, melanin-PHB blended scaffolds are found to be physio-chemically, electrically, and biologically compatible with neural tissues and could be used as a regenerative modality for neural tissue injuries. A biomaterial for scaffolds intended to promote regeneration of nerve tissue after injury is developed. This biomaterial, obtained by mixing the pigment melanin and the natural polymer PHB, is biodegradable, electrically conductive, and beneficial to the growth of motor and sensory neurons. Thus, it is believed that this biomaterial can be used in the context of healthcare applications.
Collapse
Affiliation(s)
- Lokesh Agrawal
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan.,Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Sunil Kumar Vimal
- Department of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China.,Universidad Integral del Caribe y América Latina, Kaminda Cas Grandi #79, Willemstad, Curacao
| | - Paolo Barzaghi
- Scientific Imaging Section, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Takashi Shiga
- Graduate School of Comprehensive Human Sciences Kansei, Behavioral and Brain Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.,Department of Neurobiology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, 904-0412, Japan
| |
Collapse
|
18
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
19
|
Namhongsa M, Daranarong D, Sriyai M, Molloy R, Ross S, Ross GM, Tuantranont A, Tocharus J, Sivasinprasasn S, Topham PD, Tighe B, Punyodom W. Surface-Modified Polypyrrole-Coated PLCL and PLGA Nerve Guide Conduits Fabricated by 3D Printing and Electrospinning. Biomacromolecules 2022; 23:4532-4546. [PMID: 36169096 DOI: 10.1021/acs.biomac.2c00626] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these "PLCL-3D/E" and "PLGA-3D/E" scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm-1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.
Collapse
Affiliation(s)
- Manasanan Namhongsa
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Montira Sriyai
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Gareth M Ross
- Center of Excellence in Biomaterials, Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Adisorn Tuantranont
- National Security and Dual-Use Technology Center, National Science and Technology Development Agency, Khlong Luang 12120, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paul D Topham
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Brian Tighe
- Aston Institute of Materials Research, Aston University, Birmingham B4 7ET, United Kingdom
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Vallejo FA, Diaz A, Errante EL, Smartz T, Khan A, Silvera R, Brooks AE, Lee YS, Burks SS, Levi AD. Systematic review of the therapeutic use of Schwann cells in the repair of peripheral nerve injuries: Advancements from animal studies to clinical trials. Front Cell Neurosci 2022; 16:929593. [PMID: 35966198 PMCID: PMC9372346 DOI: 10.3389/fncel.2022.929593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objective To systematically evaluate the literature on the therapeutic use of Schwann cells (SC) in the repair of peripheral nerve injuries. Methods The Cochrane Library and PubMed databases were searched using terms [(“peripheral nerve injury” AND “Schwann cell” AND “regeneration”) OR (“peripheral nerve injuries”)]. Studies published from 2008 to 2022 were eligible for inclusion in the present study. Only studies presenting data from in-vivo investigations utilizing SCs in the repair of peripheral nerve injuries qualified for review. Studies attempting repair of a gap of ≥10 mm were included. Lastly, studies needed to have some measure of quantifiable regenerative outcome data such as histomorphometry, immunohistochemical, electrophysiology, or other functional outcomes. Results A search of the PubMed and Cochrane databases revealed 328 studies. After screening using the abstracts and methods, 17 studies were found to meet our inclusion criteria. Good SC adherence and survival in conduit tubes across various studies was observed. Improvement in morphological and functional outcomes with the use of SCs in long gap peripheral nerve injuries was observed in nearly all studies. Conclusion Based on contemporary literature, SCs have demonstrated clear potential in the repair of peripheral nerve injury in animal studies. It has yet to be determined which nerve conduit or graft will prove superior for delivery and retention of SCs for nerve regeneration. Recent developments in isolation and culturing techniques will enable further translational utilization of SCs in future clinical trials.
Collapse
Affiliation(s)
- Frederic A. Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Diaz
- Department of Neurosurgery, University of Connecticut, Farmington, CT, United States
| | - Emily L. Errante
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Taylor Smartz
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aisha Khan
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Risset Silvera
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adriana E. Brooks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yee-Shuan Lee
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephen Shelby Burks
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Allan D. Levi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Allan D. Levi
| |
Collapse
|
21
|
Human IL12p80 Promotes Murine Oligodendrocyte Differentiation to Repair Nerve Injury. Int J Mol Sci 2022; 23:ijms23137002. [PMID: 35806005 PMCID: PMC9266749 DOI: 10.3390/ijms23137002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Nerve injury of the central nervous system and the peripheral nervous system still poses a major challenge in modern clinics. Understanding the roles of neurotrophic factors and their molecular mechanisms on neuro-regeneration will not only benefit patients with neural damage but could potentially treat neurodegenerative disorders, such as amyotrophic lateral sclerosis. In this study, we showed that human IL12 p40-p40 homodimer (hIL12p80) within PLA and PLGA conduits improved sciatic nerve regeneration in mice. As such, the group of conduits with NSCs and hIL12p80 (CNI) showed the best recovery among the groups in the sciatic functional index (SFI), compound muscle action potential (CMAP), and Rotarod performance analyses. In addition, the CNI group had a faster recovery and outperformed the other groups in SFI and Rotarod performance tests beginning in the fourth week post-surgery. Immunohistochemistry showed that the CNI group increased the diameter of the newly regenerated nerve by two-fold (p < 0.01). In vitro studies showed that hIL12p80 stimulated differentiation of mouse NSCs to oligodendrocyte lineages through phosphorylation of Stat3 at Y705 and S727. Furthermore, implantation using PLGA conduits (C2.0 and C2.1) showed better recovery in the Rotarod test and CMAP than using PLA conduits in FVB mice. In B6 mice, the group with C2.1 + NSCs + hIL12p80 (C2.1NI) not only promoted sciatic functional recovery but also reduced the rate of experimental autotomy. These results suggested that hIL12p80, combined with NSCs, enhanced the functional recovery and accelerated the regeneration of damaged nerves in the sciatic nerve injury mice. Our findings could further shed light on IL12′s application not only in damaged nerves but also in rectifying the oligodendrocytes’ defects in neurodegenerative diseases, such as amyotrophic lateral sclerosis and multiple sclerosis.
Collapse
|
22
|
Yan Y, Yao R, Zhao J, Chen K, Duan L, Wang T, Zhang S, Guan J, Zheng Z, Wang X, Liu Z, Li Y, Li G. Implantable nerve guidance conduits: Material combinations, multi-functional strategies and advanced engineering innovations. Bioact Mater 2022; 11:57-76. [PMID: 34938913 PMCID: PMC8665266 DOI: 10.1016/j.bioactmat.2021.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 01/15/2023] Open
Abstract
Nerve guidance conduits (NGCs) have attracted much attention due to their great necessity and applicability in clinical use for the peripheral nerve repair. Great efforts in recent years have been devoted to the development of high-performance NGCs using various materials and strategies. The present review provides a comprehensive overview of progress in the material innovation, structural design, advanced engineering technologies and multi functionalization of state-of-the-art nerve guidance conduits NGCs. Abundant advanced engineering technologies including extrusion-based system, laser-based system, and novel textile forming techniques in terms of weaving, knitting, braiding, and electrospinning techniques were also analyzed in detail. Findings arising from this review indicate that the structural mimetic NGCs combined with natural and synthetic materials using advanced manufacturing technologies can make full use of their complementary advantages, acquiring better biomechanical properties, chemical stability and biocompatibility. Finally, the existing challenges and future opportunities of NGCs were put forward aiming for further research and applications of NGCs.
Collapse
Affiliation(s)
- Yixin Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ruotong Yao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jingyuan Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Kaili Chen
- Department of Materials, Imperial College London, SW7 2AZ, UK
| | - Lirong Duan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Tian Wang
- Wilson College of Textiles, North Carolina State University, Raleigh, 27695, USA
| | - Shujun Zhang
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jinping Guan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zekun Liu
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yi Li
- Department of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
23
|
NANOCOMPOSITES BASED ON SINGLECOMPONENT AND MULTICOMPONENT POLYMER MATRICES FOR BIOMEDICAL APPLICATIONS. Polym J 2022. [DOI: 10.15407/polymerj.44.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to analysis of the publications in the area of polymers of biomedical applications. Different types of the polymer matrices for drug delivery are analyzed, including polyurethanes, hydroxyacrylates, and multicomponent polymer matrices, which created by method of interpenetrating polymer networks. Particular attention is paid to description of synthesized and investigated nanocomposites based on polyurethane / poly (2-hydroxyethyl methacrylate) polymer matrix and nanooxides modified by biologically active compounds.
Collapse
|
24
|
Liu K, Yan L, Li R, Song Z, Ding J, Liu B, Chen X. 3D Printed Personalized Nerve Guide Conduits for Precision Repair of Peripheral Nerve Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103875. [PMID: 35182046 PMCID: PMC9036027 DOI: 10.1002/advs.202103875] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/25/2021] [Indexed: 05/07/2023]
Abstract
The treatment of peripheral nerve defects has always been one of the most challenging clinical practices in neurosurgery. Currently, nerve autograft is the preferred treatment modality for peripheral nerve defects, while the therapy is constantly plagued by the limited donor, loss of donor function, formation of neuroma, nerve distortion or dislocation, and nerve diameter mismatch. To address these clinical issues, the emerged nerve guide conduits (NGCs) are expected to offer effective platforms to repair peripheral nerve defects, especially those with large or complex topological structures. Up to now, numerous technologies are developed for preparing diverse NGCs, such as solvent casting, gas foaming, phase separation, freeze-drying, melt molding, electrospinning, and three-dimensional (3D) printing. 3D printing shows great potential and advantages because it can quickly and accurately manufacture the required NGCs from various natural and synthetic materials. This review introduces the application of personalized 3D printed NGCs for the precision repair of peripheral nerve defects and predicts their future directions.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Lesan Yan
- Biomedical Materials and Engineering Research Center of Hubei ProvinceState Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology122 Luoshi RoadWuhan430070P. R. China
| | - Ruotao Li
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Zhiming Song
- Department of Sports MedicineThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Bin Liu
- Department of Hand and Foot SurgeryThe First Hospital of Jilin University1 Xinmin StreetChangchun130061P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
25
|
Li S, Yu X, Li Y, Zhang T. Conductive polypyrrole-coated electrospun chitosan nanoparticles/poly(D,L-lactide) fibrous mat: influence of drug delivery and Schwann cells proliferation. Biomed Phys Eng Express 2022; 8. [PMID: 35168214 DOI: 10.1088/2057-1976/ac5528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/15/2022] [Indexed: 11/11/2022]
Abstract
For nerve tissue engineering (NTE), scaffolds with the ability to release drugs under control and support the rapid proliferation of cells are very important for the repair of nerve defects. This study aimed to fabricate a conductive drug-loaded fiber mat by electrospinning and assess its potential as a scaffold for Schwann cells proliferation. The conductive polypyrrole (PPy) was coated on an electrospun poly (D, L-lactide) (PLA) fibrous mat, which was simultaneously embedded with protein-loaded chitosan nanoparticles and ibuprofen as a model small molecule drug. The fibrous mat shows suitable conductivity, mechanical properties, and hydrophilicity for NTE. For drug release and degradation studies, the fibrous mat can achieve sustained release of bovine serum albumin (BSA) and ibuprofen, and the PPy coating can increase the surface wettability and conductivity while slowing down the degradation of the fibrous mat. The application of electrical stimulation (ES) to the fibrous mat can accelerate the release of ibuprofen, but there was no significant effect on the release rate of the protein. The fibrous mat showed no cytotoxicityin vitro, and Schwann cells (SCs) can adhere, grow, and proliferate well on mats. At the 120th hour of culturein vitro, the relative growth rate of SCs on the conductive drug-loaded fibrous mat reached 198.22 ± 2.34%, which was an increase of 37.93% compared to the SCs on the drug-loaded fibrous mat with ES. The density and elongation of SCs on the conductive drug-loaded fibrous mat were greater than those on the PLA fibrous mat, indicating that the conductive polypyrrole-coated electrospun chitosan nanoparticles/PLA fibrous mat has good potential for application in nerve regeneration.
Collapse
Affiliation(s)
- Siqi Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China.,Wuhan University of Technology Sanya Science and Education Innovation Park, Sanya 572024, People's Republic of China.,State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
26
|
A ‘Relay’-Type Drug-Eluting Nerve Guide Conduit: Computational Fluid Dynamics Modeling of the Drug Eluting Efficiency of Various Drug Release Systems. Pharmaceutics 2022; 14:pharmaceutics14020230. [PMID: 35213963 PMCID: PMC8874367 DOI: 10.3390/pharmaceutics14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Nerve guidance conduits (NGCs) are tubular scaffolds that act as a bridge between the proximal and distal ends of the native nerve to facilitate the nerve regeneration. The application of NGCs is mostly limited to nerve defects less than 3 mm due to the lack of sufficient cells in the lumen. The development of drug-release-system-embedded NGCs has the potential to improve the nerve regeneration performance by providing long-term release of growth factors. However, most of the past works only focused on one type of drug release system, limiting the variation in drug release system types and features. Therefore, in this study, computer-aided design (CAD) models were constructed and Computational Fluid Dynamics (CFD) simulations were carried out to investigate the effect of growth factor transporting efficiency on different drug release systems. To overcome the challenges posed by the current NGCs in treating long nerve gap injuries (>4 cm), a novel ‘relay’ NGC design is first proposed in this paper and has the potential to improve the nerve regeneration performance to next level. The intermediate cavities introduced along the length of the multi-channel NGCs act as a relay to further enhance the cell concentrations or growth factor delivery as well as the regeneration performance. Four different drug release systems, namely, a single-layer microsphere system, a double-layer microsphere system, bulk hydrogel, and hydrogel film, were chosen for the simulation. The results show that the double-layer microsphere system achieves the highest growth factor volume fraction among all the drug release systems. For the single-layer microsphere system, growth factor concentration can be significantly improved by increasing the microsphere quantities and decreasing the diameter and adjacent distance of microspheres. Bulk hydrogel systems hold the lowest growth factor release performance, and the growth factor concentration monotonically increased with the increase of film thickness in the hydrogel film system. Owing to the easy fabrication of hydrogel film and the even distribution of growth factors, the hydrogel film system can be regarded as a strong candidate in drug-eluting NGCs. The use of computational simulations can be regarded as a guideline for the design and application of drug release systems, as well as a promising tool for further nerve tissue engineering study.
Collapse
|
27
|
Li Y, Fraser D, Mereness J, Van Hove A, Basu S, Newman M, Benoit DSW. Tissue Engineered Neurovascularization Strategies for Craniofacial Tissue Regeneration. ACS APPLIED BIO MATERIALS 2022; 5:20-39. [PMID: 35014834 PMCID: PMC9016342 DOI: 10.1021/acsabm.1c00979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Craniofacial tissue injuries, diseases, and defects, including those within bone, dental, and periodontal tissues and salivary glands, impact an estimated 1 billion patients globally. Craniofacial tissue dysfunction significantly reduces quality of life, and successful repair of damaged tissues remains a significant challenge. Blood vessels and nerves are colocalized within craniofacial tissues and act synergistically during tissue regeneration. Therefore, the success of craniofacial regenerative approaches is predicated on successful recruitment, regeneration, or integration of both vascularization and innervation. Tissue engineering strategies have been widely used to encourage vascularization and, more recently, to improve innervation through host tissue recruitment or prevascularization/innervation of engineered tissues. However, current scaffold designs and cell or growth factor delivery approaches often fail to synergistically coordinate both vascularization and innervation to orchestrate successful tissue regeneration. Additionally, tissue engineering approaches are typically investigated separately for vascularization and innervation. Since both tissues act in concert to improve craniofacial tissue regeneration outcomes, a revised approach for development of engineered materials is required. This review aims to provide an overview of neurovascularization in craniofacial tissues and strategies to target either process thus far. Finally, key design principles are described for engineering approaches that will support both vascularization and innervation for successful craniofacial tissue regeneration.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - David Fraser
- Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jared Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Amy Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Sayantani Basu
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Maureen Newman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Sciences Program, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, New York 14642, United States
| |
Collapse
|
28
|
Mirancea N, Mirancea GV, Moroşanu AM, Moroşanu AM. Telocytes inside of the peripheral nervous system - a 3D endoneurial network and putative role in cell communication. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2022; 63:335-347. [PMID: 36374139 PMCID: PMC9804078 DOI: 10.47162/rjme.63.2.05] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we developed the hypothesis concerning the reasons to assimilate endoneurial fibroblast-like dendritic phenotype [shortly termed endoneurial dendritic cells (EDCs)] to the endoneurial telocytes (TCs). We reviewed the literature concerning EDCs status and report our observations on ultrastructure and some immune electron microscopic aspects of the cutaneous peripheral nerves. Our data demonstrate that EDCs long time considered as fibroblasts or fibroblast-like, with an ovoidal nucleus and one or more moniliform cell extensions [telopodes (Tps)], which perform homocellular junctions, also able to shed extracellular microvesicles can be assimilated to TC phenotype. Sometimes, small profiles of basement membrane accompany to some extent Tps. Altogether data resulted from scientific literature and our results strength the conclusion EDCs are really TCs inside of the peripheral nervous system. The inner three-dimensional (3D) network of endoneurial TCs by their homo- and heterocellular communications appears as a genuine cell-to-cell communication system inside of each peripheral nerve.
Collapse
Affiliation(s)
- Nicolae Mirancea
- Department of Developmental Biology, Institute of Biology Bucharest of Romanian Academy, Bucharest, Romania;
| | | | - Ana-Maria Moroşanu
- Department of Developmental Biology, Institute of
Biology Bucharest of Romanian Academy, Bucharest, Romania
| | | | | | | |
Collapse
|
29
|
Poongodi R, Chen YL, Yang TH, Huang YH, Yang KD, Lin HC, Cheng JK. Bio-Scaffolds as Cell or Exosome Carriers for Nerve Injury Repair. Int J Mol Sci 2021; 22:13347. [PMID: 34948144 PMCID: PMC8707664 DOI: 10.3390/ijms222413347] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Central and peripheral nerve injuries can lead to permanent paralysis and organ dysfunction. In recent years, many cell and exosome implantation techniques have been developed in an attempt to restore function after nerve injury with promising but generally unsatisfactory clinical results. Clinical outcome may be enhanced by bio-scaffolds specifically fabricated to provide the appropriate three-dimensional (3D) conduit, growth-permissive substrate, and trophic factor support required for cell survival and regeneration. In rodents, these scaffolds have been shown to promote axonal regrowth and restore limb motor function following experimental spinal cord or sciatic nerve injury. Combining the appropriate cell/exosome and scaffold type may thus achieve tissue repair and regeneration with safety and efficacy sufficient for routine clinical application. In this review, we describe the efficacies of bio-scaffolds composed of various natural polysaccharides (alginate, chitin, chitosan, and hyaluronic acid), protein polymers (gelatin, collagen, silk fibroin, fibrin, and keratin), and self-assembling peptides for repair of nerve injury. In addition, we review the capacities of these constructs for supporting in vitro cell-adhesion, mechano-transduction, proliferation, and differentiation as well as the in vivo properties critical for a successful clinical outcome, including controlled degradation and re-absorption. Finally, we describe recent advances in 3D bio-printing for nerve regeneration.
Collapse
Affiliation(s)
- Raju Poongodi
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ying-Lun Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tao-Hsiang Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
| | - Ya-Hsien Huang
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Kuender D. Yang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Pediatrics, Mackay Memorial Hospital, Taipei 10449, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Hsin-Chieh Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Jen-Kun Cheng
- Department of Medical Research, Mackay Memorial Hospital, Taipei 10449, Taiwan; (R.P.); (T.-H.Y.)
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei 10449, Taiwan; (Y.-L.C.); (Y.-H.H.)
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| |
Collapse
|
30
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
31
|
Pozzobon LG, Sperling LE, Teixeira CE, Malysz T, Pranke P. Development of a conduit of PLGA-gelatin aligned nanofibers produced by electrospinning for peripheral nerve regeneration. Chem Biol Interact 2021; 348:109621. [PMID: 34450165 DOI: 10.1016/j.cbi.2021.109621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/27/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
A promising alternative to conventional nerve grafting is the use of artificial grafts made from biodegradable and biocompatible materials and support cells. The aim of this study has been to produce a biodegradable nerve conduit and investigate the cytocompatibility with stem cells and its regeneration promoting properties in a rat animal model. A poly (lactic-co-glycolic acid) (PLGA) conduit of aligned nanofibers was produced by the electrospinning method, functionalized with gelatin and seeded either with mouse embryonic stem cells (mESCs) or with human mesenchymal stem cells (SHED). The cell proliferation and viability were analyzed in vitro. The conduits were implanted in a rat model of sciatic nerve lesion by transection. The functional recovery was monitored for 8 weeks using the Sciatic Functional Index (SFI) and histological analyses were used to assess the nerve regeneration. Scaffolds of aligned PLGA fibers with an average diameter of 0.90 ± 0.36 μm and an alignment coefficient of 0.817 ± 0.07 were produced. The treatment with gelatin increased the fiber diameter to 1.05 ± 0.32 μm, reduced the alignment coefficient to 0.655 ± 0.045 and made the scaffold very hydrophilic. The cell viability and Live/dead assay showed that the stem cells remained viable and proliferated after 7 days in culture. Confocal images of phalloidin/DAPI staining showed that the cells adhered and proliferated widely, in fully adaptation with the biomaterial. The SFI values of the group that received the conduit were similar to the values of the control lesioned group. In conclusion, conduits composed of PLGA-gelatin nanofibers were produced and promoted a very good interaction with the stem cells. Although in vitro studies have shown this biomaterial to be a promising biomaterial for the regeneration of nerve tissue, in vivo studies of this graft have not shown significant improvements in nerve regeneration.
Collapse
Affiliation(s)
- Laura Gonçalves Pozzobon
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Laura Elena Sperling
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristian E Teixeira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tais Malysz
- Instituto de Ciências básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Av. Ipiranga 2752, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Stem Cell Laboratory, Fundamental Health Science Institute, Rua Sarmento Leite, 500, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto de Pesquisa com Células-tronco, IPCT, Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Hayakawa N, Matsumine H, Fujii K, Osaki H, Ueta Y, Kamei W, Niimi Y, Miyata M, Sakurai H. Facial nerve regeneration with bioabsorbable collagen conduits filled with collagen filaments: An experimental study. Regen Ther 2021; 18:302-308. [PMID: 34522722 PMCID: PMC8413834 DOI: 10.1016/j.reth.2021.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 11/03/2022] Open
Abstract
Introduction A bioabsorbable collagen conduit (Renerve™) filled with collagen filaments is currently approved as an artificial nerve conduit in Japan and is mainly used for connecting and repairing peripheral nerves after traumatic nerve injury. However, there are few reports on its applications for reconstructing and repairing the facial nerve. The present study evaluated the efficacy of the conduit on promoting nerve regeneration in a murine model with a nerve defect at the buccal branch of the facial nerve. Methods Under inhalational anesthesia and microscopic guidance, the buccal branch of the left facial nerve in an 8-week-old Lewis rat was exposed, and a 7 mm gap was created in the nerve. The gap was then connected with either the nerve conduits (NC group) or an autologous nerve graft (the autograft group). At 13 weeks after the procedure, we compared the histological and physiological regenerations in the both groups. Results We found compound muscle action potential amplitude is significantly larger in the autograft group (2.8 ± 1.4 mV) than in NC group (1.3 ± 0.5 mV) (p < 0.05). The number of myelinated fibers of the autograft group was higher (3634 ± 1645) than that of NC group (1112 ± 490) (p < 0.01). The fiber diameter of the autograft group (4.8 ± 1.9 μm) was larger than that of NC group (3.8 ± 1.4 μm) (p < 0.05). The myelin thickness of the autograft group was thicker than that of NC group (0.6 ± 0.3 μm vs. 0.4 ± 0.1 μm) (p < 0.05). G-ratio of the autograft group (0.74 ± 0.19) was lower than that of NC group (0.79 ± 0.10) (p < 0.05). Conclusion This study demonstrated the efficacy of collagen nerve conduit for facial nerve reconstruction following nerve injury. However, the effectiveness of the conduit on the promotion of nerve regeneration was inferior to that of the autograft.
Collapse
Affiliation(s)
- Nami Hayakawa
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hajime Matsumine
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Kaori Fujii
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironobu Osaki
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yoshifumi Ueta
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Wataru Kamei
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yosuke Niimi
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Mariko Miyata
- Department of Physiology, Division of Neurophysiology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroyuki Sakurai
- Department of Plastic and Reconstructive Surgery, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
33
|
Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, Nottelet B, Gilbert RJ. Assessing the combination of magnetic field stimulation, iron oxide nanoparticles, and aligned electrospun fibers for promoting neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater 2021; 131:302-313. [PMID: 34271170 PMCID: PMC8373811 DOI: 10.1016/j.actbio.2021.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Magnetic fiber composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and electrospun fibers have shown promise in tissue engineering fields. Controlled grafting of SPIONs to the fibers post-electrospinning generates biocompatible magnetic composites without altering desired fiber morphology. Here, for the first time, we assess the potential of SPION-grafted scaffolds combined with magnetic fields to promote neurite outgrowth by providing contact guidance from the aligned fibers and mechanical stimulation from the SPIONs in the magnetic field. Neurite outgrowth from primary rat dorsal root ganglia (DRG) was assessed from explants cultured on aligned control and SPION-grafted electrospun fibers as well as on non-grafted fibers with SPIONs dispersed in the culture media. To determine the optimal magnetic field stimulation to promote neurite outgrowth, we generated a static, alternating, and linearly moving magnet and simulated the magnetic flux density at different areas of the scaffold over time. The alternating magnetic field increased neurite length by 40% on control fibers compared to a static magnetic field. Additionally, stimulation with an alternating magnetic field resulted in a 30% increase in neurite length and 62% increase in neurite area on SPION-grafted fibers compared to DRG cultured on PLLA fibers with untethered SPIONs added to the culture media. These findings demonstrate that SPION-grafted fiber composites in combination with magnetic fields are more beneficial for stimulating neurite outgrowth on electrospun fibers than dispersed SPIONs. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers improve axonal regeneration by acting as a passive guidance cue but do not actively interact with cells, while magnetic nanoparticles can be remotely manipulated to interact with neurons and elicit neurite outgrowth. Here, for the first time, we examine the combination of magnetic fields, magnetic nanoparticles, and aligned electrospun fibers to enhance neurite outgrowth. We show an alternating magnetic field alone increases neurite outgrowth on aligned electrospun fibers. However, combining the alternating field with magnetic nanoparticle-grafted fibers does not affect neurite outgrowth compared to control fibers but improves outgrowth compared to freely dispersed magnetic nanoparticles. This study provides the groundwork for utilizing magnetic electrospun fibers and magnetic fields as a method for promoting axonal growth.
Collapse
Affiliation(s)
- Jessica L Funnell
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alexis M Ziemba
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - James F Nowak
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hussein Awada
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicos Prokopiou
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Johnson Samuel
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Ryan J Gilbert
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
34
|
Yang Z, Yang Y, Xu Y, Jiang W, Shao Y, Xing J, Chen Y, Han Y. Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration. Stem Cell Res Ther 2021; 12:442. [PMID: 34362437 PMCID: PMC8343914 DOI: 10.1186/s13287-021-02528-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/18/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient and stable delivery of neurotrophic factors (NTFs) is crucial to provide suitable microenvironment for peripheral nerve regeneration. Neurotrophin-3 (NT-3) is an important NTF during peripheral nerve regeneration which is scarce in the first few weeks of nerve defect. Exosomes are nanovesicles and have been served as promising candidate for biocarrier. In this work, NT-3 mRNA was encapsulated in adipose-derived stem cell (ADSC)-derived exosomes (ExoNT-3). These engineered exosomes were applied as NT-3 mRNA carrier and then were loaded in nerve guidance conduit (ExoNT-3-NGC) to bridge rat sciatic nerve defect. METHOD NT-3 mRNA was encapsulated in exosomes by forcedly expression of NT-3 mRNA in the donor ADSCs. ExoNT-3 were co-cultured with SCs in vitro; after 24 h of culture, the efficiency of NT-3 mRNA delivery was evaluated by qPCR, western blotting and ELISA. Then, ExoNT-3 were loaded in alginate hydrogel to construct the nerve guidance conduits (ExoNT-3-NGC). ExoNT-3-NGC were implanted in vivo to reconstruct 10 mm rat sciatic nerve defect. The expression of NT-3 was measured 2 weeks after the implantation operation. The sciatic nerve functional index (SFI) was examined at 2 and 8 weeks after the operation. Moreover, the therapeutic effect of ExoNT-3-NGC was also evaluated by morphology assay, immunofluorescence staining of regenerated nerves, function evaluation of gastrocnemius muscles after 8 weeks of implantation. RESULTS The engineered exosomes could deliver NT-3 mRNA to the recipient cells efficiently and translated into functional protein. The constructed NGC could realize stable release of exosomes at least for 2 weeks. After NGC implantation in vivo, ExoNT-3-NGC group significantly promote nerve regeneration and improve the function recovery of gastrocnemius muscles compared with control exosomes (Exoempty-NGC) group. CONCLUSION In this work, NGC was constructed to allow exosome-mediated NT-3 mRNA delivery. After ExoNT-3-NGC implantation in vivo, the level of NT-3 could restore which enhance the nerve regeneration. Our study provide a potential approach to improve nerve regeneration.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Xi'an Daxing Hospital, Xi'an, 710016, Shaanxi, China
| | - Yichi Xu
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Weiqian Jiang
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Shao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiahua Xing
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Youbai Chen
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan Han
- Department of Plastic Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Lu Q, Zhang F, Cheng W, Gao X, Ding Z, Zhang X, Lu Q, Kaplan DL. Nerve Guidance Conduits with Hierarchical Anisotropic Architecture for Peripheral Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100427. [PMID: 34038626 PMCID: PMC8295195 DOI: 10.1002/adhm.202100427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Nerve guidance conduits with multifunctional features could offer microenvironments for improved nerve regeneration and functional recovery. However, the challenge remains to optimize multiple cues in nerve conduit systems due to the interplay of these factors during fabrication. Here, a modular assembly for the fabrication of nerve conduits is utilized to address the goal of incorporating multifunctional guidance cues for nerve regeneration. Silk-based hollow conduits with suitable size and mechanical properties, along with silk nanofiber fillers with tunable hierarchical anisotropic architectures and microporous structures, are developed and assembled into conduits. These conduits supported improves nerve regeneration in terms of cell proliferation (Schwann and PC12 cells) and growth factor secretion (BDNF, brain-derived neurotrophic factor) in vitro, and the in vivo repair and functional recovery of rat sciatic nerve defects. Nerve regeneration using these new conduit designs is comparable to autografts, providing a path towards future clinical impact.
Collapse
Affiliation(s)
- Qingqing Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Feng Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Xiang Gao
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Xiaoyi Zhang
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
36
|
Yahya EB, Amirul AA, H.P.S. AK, Olaiya NG, Iqbal MO, Jummaat F, A.K. AS, Adnan AS. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers (Basel) 2021; 13:1612. [PMID: 34067569 PMCID: PMC8156123 DOI: 10.3390/polym13101612] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
The global transplantation market size was valued at USD 8.4 billion in 2020 and is expected to grow at a compound annual growth rate of 11.5% over the forecast period. The increasing demand for tissue transplantation has inspired researchers to find alternative approaches for making artificial tissues and organs function. The unique physicochemical and biological properties of biopolymers and the attractive structural characteristics of aerogels such as extremely high porosity, ultra low-density, and high surface area make combining these materials of great interest in tissue scaffolding and regenerative medicine applications. Numerous biopolymer aerogel scaffolds have been used to regenerate skin, cartilage, bone, and even heart valves and blood vessels by growing desired cells together with the growth factor in tissue engineering scaffolds. This review focuses on the principle of tissue engineering and regenerative medicine and the role of biopolymer aerogel scaffolds in this field, going through the properties and the desirable characteristics of biopolymers and biopolymer tissue scaffolds in tissue engineering applications. The recent advances of using biopolymer aerogel scaffolds in the regeneration of skin, cartilage, bone, and heart valves are also discussed in the present review. Finally, we highlight the main challenges of biopolymer-based scaffolds and the prospects of using these materials in regenerative medicine.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - A. A. Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Niyi Gideon Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology, PMB 704 Akure, Nigeria;
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (F.J.); (A.S.A.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (F.J.); (A.S.A.)
| |
Collapse
|
37
|
Ansari S, Sami N, Yasin D, Ahmad N, Fatma T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 2021; 183:549-563. [PMID: 33932421 DOI: 10.1016/j.ijbiomac.2021.04.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.
Collapse
Affiliation(s)
- Sabbir Ansari
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Neha Sami
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Nazia Ahmad
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
38
|
Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front Bioeng Biotechnol 2021; 9:622524. [PMID: 33937212 PMCID: PMC8081831 DOI: 10.3389/fbioe.2021.622524] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
The implantation of any foreign material into the body leads to the development of an inflammatory and fibrotic process-the foreign body reaction (FBR). Upon implantation into a tissue, cells of the immune system become attracted to the foreign material and attempt to degrade it. If this degradation fails, fibroblasts envelop the material and form a physical barrier to isolate it from the rest of the body. Long-term implantation of medical devices faces a great challenge presented by FBR, as the cellular response disrupts the interface between implant and its target tissue. This is particularly true for nerve neuroprosthetic implants-devices implanted into nerves to address conditions such as sensory loss, muscle paralysis, chronic pain, and epilepsy. Nerve neuroprosthetics rely on tight interfacing between nerve tissue and electrodes to detect the tiny electrical signals carried by axons, and/or electrically stimulate small subsets of axons within a nerve. Moreover, as advances in microfabrication drive the field to increasingly miniaturized nerve implants, the need for a stable, intimate implant-tissue interface is likely to quickly become a limiting factor for the development of new neuroprosthetic implant technologies. Here, we provide an overview of the material-cell interactions leading to the development of FBR. We review current nerve neuroprosthetic technologies (cuff, penetrating, and regenerative interfaces) and how long-term function of these is limited by FBR. Finally, we discuss how material properties (such as stiffness and size), pharmacological therapies, or use of biodegradable materials may be exploited to minimize FBR to nerve neuroprosthetic implants and improve their long-term stability.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Shao-Tuan Chen
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Huang L, Yang X, Deng L, Ying D, Lu A, Zhang L, Yu A, Duan B. Biocompatible Chitin Hydrogel Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16106-16117. [PMID: 33787211 DOI: 10.1021/acsami.1c01904] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nerve guidance conduit (NGC) is a promising clinical strategy for regenerating the critical-sized peripheral nerve injury. In this study, the polysaccharide chitin is used to fabricate the hydrogel film for inducing the impaired sciatic nerve regeneration through incorporating the conductive poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) and modifying with cell adhesive tetrapeptide Cys-Arg-Gly-Asp (CRGD) (ChT-PEDOT-p). The partial deacetylation process of chitin for exposing the amino groups is performed to (i) improve the electrostatic interaction between chitin and the negatively charged PEDOT for enhancing the composite hydrogel strength and (ii) offer the active sites for peptide modification. The as-prepared hydrogel remarkably promotes the in vitro RSC-96 cell adhesion and proliferation, as well as the Schwann cell activity-related gene S100, NF-200, and myelin basic protein (MBP) expression. Function of gastrocnemius muscle and thickness of myelinated axon in chitin/PEDOT groups are analogous to the autograft in 10 mm rat sciatic nerve defect. Immunofluorescence, immunohistochemistry, western blotting, and toluidine blue staining analyses on the regenerated sciatic nerve explain that the attachment and proliferation enhancement of Schwann cells and angiogenesis are the vital factors for the chitin/PEDOT composite to facilitate the nerve regeneration. This work provides an applicable chitin-based NGC material for accelerating the peripheral nerve restoration.
Collapse
Affiliation(s)
- Lin Huang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiaqing Yang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Linglong Deng
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Daofa Ying
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ang Lu
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-based Medical Materials, and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
40
|
Kornfeld T, Nessler J, Helmer C, Hannemann R, Waldmann KH, Peck CT, Hoffmann P, Brandes G, Vogt PM, Radtke C. Spider silk nerve graft promotes axonal regeneration on long distance nerve defect in a sheep model. Biomaterials 2021; 271:120692. [PMID: 33607544 DOI: 10.1016/j.biomaterials.2021.120692] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injuries with substantial tissue loss require autologous nerve transplantation or alternatively reconstruction with nerve conduits. Axonal elongation after nerve transection is about 1 mm/day. The precise time course of axonal regeneration on an ultrastructural level in nerve gap repair using either autologous or artificial implants has not been described. As peripheral nerve regeneration is a highly time critical process due to deterioration of the neuromuscular junction, this in vivo examination in a large animal model was performed in order to investigate axonal elongation rates and spider silk material degradation in a narrowly delimited time series (20, 30, 40, 50, 90, 120, 150 and 180 days) by using a novel spider silk based artificial nerve graft as a critical prerequisite for clinical translation. Autologous nerves or artificial nerve conduits based on spider silk of the spider species Trichonephila edulis were transplanted in a 6.0 cm nerve defect model in the black headed mutton. At each of the post-implant time point, electrophysiology recordings were performed to assess functional reinnervation of axonal fibers into the implants. Samples were analyzed by histology and immunofluorescence in order to verify the timeline of axonal regeneration including axonal regeneration rates of the spider silk implant and the autologous transplant groups. Spider silk was degraded within 3 month by a light immune response mainly mediated by Langhans Giant cells. In conjunction with behavioral analysis and electrophysiological measurements, the results indicate that the spider silk nerve implant supported an axonal regeneration comparable to an autologous nerve graft which is the current gold standard in nerve repair surgery. These findings indicate that a biomaterial based spider silk nerve conduit is as effective as autologous nerve implants and may be an important approach for long nerve defects.
Collapse
Affiliation(s)
- T Kornfeld
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany; Department of Plastic, and Reconstructive Surgery, Medical School of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - J Nessler
- Clinic for Small Animals, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - C Helmer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - R Hannemann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - K H Waldmann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - C T Peck
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - P Hoffmann
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - G Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - P M Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - C Radtke
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany; Department of Plastic, and Reconstructive Surgery, Medical School of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
41
|
Mendibil X, González-Pérez F, Bazan X, Díez-Ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021; 7:672-689. [DOI: 10.1021/acsbiomaterials.0c01476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xabier Mendibil
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco González-Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Xabier Bazan
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Ruth Díez-Ahedo
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Iban Quintana
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Caroline S. Taylor
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - John W. Haycock
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Patrick Duffy
- Ashland Specialties Ireland, Synergy Centre, Dublin Road, Petitswood Mullingar, Co. Westmeath N91 F6PD, Ireland
| | - Santos Merino
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
42
|
Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020; 8:4. [PMID: 33383759 PMCID: PMC7823609 DOI: 10.3390/bioengineering8010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospinning is a fabrication technique used to produce nano- or micro- diameter fibers to generate biocompatible, biodegradable scaffolds for tissue engineering applications. Electrospun fiber scaffolds are advantageous for neural regeneration because they mimic the structure of the nervous system extracellular matrix and provide contact guidance for regenerating axons. Glia are non-neuronal regulatory cells that maintain homeostasis in the healthy nervous system and regulate regeneration in the injured nervous system. Electrospun fiber scaffolds offer a wide range of characteristics, such as fiber alignment, diameter, surface nanotopography, and surface chemistry that can be engineered to achieve a desired glial cell response to injury. Further, electrospun fibers can be loaded with drugs, nucleic acids, or proteins to provide the local, sustained release of such therapeutics to alter glial cell phenotype to better support regeneration. This review provides the first comprehensive overview of how electrospun fiber alignment, diameter, surface nanotopography, surface functionalization, and therapeutic delivery affect Schwann cells in the peripheral nervous system and astrocytes, oligodendrocytes, and microglia in the central nervous system both in vitro and in vivo. The information presented can be used to design and optimize electrospun fiber scaffolds to target glial cell response to mitigate nervous system injury and improve regeneration.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Derek W. Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Manoj K. Gottipati
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
- Center for Brain and Spinal Cord Repair, Department of Neuroscience, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; (D.L.P.); (J.L.F.); (D.W.N.); (M.K.G.)
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
43
|
Fornasari BE, Carta G, Gambarotta G, Raimondo S. Natural-Based Biomaterials for Peripheral Nerve Injury Repair. Front Bioeng Biotechnol 2020; 8:554257. [PMID: 33178670 PMCID: PMC7596179 DOI: 10.3389/fbioe.2020.554257] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury treatment is a relevant problem because of nerve lesion high incidence and because of unsatisfactory regeneration after severe injuries, thus resulting in a reduced patient's life quality. To repair severe nerve injuries characterized by substance loss and to improve the regeneration outcome at both motor and sensory level, different strategies have been investigated. Although autograft remains the gold standard technique, a growing number of research articles concerning nerve conduit use has been reported in the last years. Nerve conduits aim to overcome autograft disadvantages, but they must satisfy some requirements to be suitable for nerve repair. A universal ideal conduit does not exist, since conduit properties have to be evaluated case by case; nevertheless, because of their high biocompatibility and biodegradability, natural-based biomaterials have great potentiality to be used to produce nerve guides. Although they share many characteristics with synthetic biomaterials, natural-based biomaterials should also be preferable because of their extraction sources; indeed, these biomaterials are obtained from different renewable sources or food waste, thus reducing environmental impact and enhancing sustainability in comparison to synthetic ones. This review reports the strengths and weaknesses of natural-based biomaterials used for manufacturing peripheral nerve conduits, analyzing the interactions between natural-based biomaterials and biological environment. Particular attention was paid to the description of the preclinical outcome of nerve regeneration in injury repaired with the different natural-based conduits.
Collapse
Affiliation(s)
- Benedetta E. Fornasari
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giacomo Carta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
44
|
Pohan G, Mattiassi S, Yao Y, Zaw AM, Anderson DE, Cutiongco MF, Hinds MT, Yim EK. Effect of Ethylene Oxide Sterilization on Polyvinyl Alcohol Hydrogel Compared with Gamma Radiation. Tissue Eng Part A 2020; 26:1077-1090. [PMID: 32264787 PMCID: PMC7580577 DOI: 10.1089/ten.tea.2020.0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effects of terminal sterilization of polyvinyl alcohol (PVA) biomaterials using clinically translatable techniques, specifically ethylene oxide (EtO) and gamma (γ) irradiation. While a few studies have reported the possibility of sterilizing PVA with γ-radiation, the use of EtO sterilization of PVA requires additional study. PVA solutions were chemically crosslinked with trisodium trimetaphosphate and sodium hydroxide. The three experimental groups included untreated control, EtO, and γ-irradiation, which were tested for the degree of swelling and water content, and mechanical properties such as radial compliance, longitudinal tensile, minimum bend radius, burst pressure, and suture retention strength. In addition, samples were characterized with scanning electron microscopy, differential scanning calorimetry, X-ray photoelectron spectroscopy, and water contact angle measurements. Cell attachment was assessed using the endothelial cell line EA.hy926, and the sterilized PVA cytotoxicity was studied with a live/dead stain. Platelet and fibrin accumulation was measured using an ex vivo shunt baboon model. Finally, the immune responses of PVA implants were analyzed after a 21-day subcutaneous implantation in rats and a 30-day implantation in baboon. EtO sterilization reduced the PVA graft wall thickness, its degree of swelling, and water content compared with both γ-irradiated and untreated PVA. Moreover, EtO sterilization significantly reduced the radial compliance and increased Young's modulus. EtO did not change PVA hydrophilicity, while γ-irradiation increased the water contact angle of the PVA. Consequently, endothelial cell attachment on the EtO-sterilized PVA showed similar results to the untreated PVA, while cell attachment significantly improved on the γ-irradiated PVA. When exposing the PVA grafts to circulating whole blood, fibrin accumulation of EtO-sterilized PVA was found to be significantly lower than γ-irradiated PVA. The immune responses of γ-irradiated PVA, EtO-treated PVA, and untreated PVA were compared. Implanted EtO-treated PVA showed the least MAC387 reaction. The terminal sterilization methods in this study changed PVA hydrogel properties; nevertheless, based on the characterizations performed, both sterilization methods were suitable for sterilizing PVA. We concluded that EtO can be used as an alternative method to sterilize PVA hydrogel material. Impact statement Polyvinyl alcohol (PVA) hydrogels have been used for a variety of tissue replacements, including neural, cardiac, meniscal, cartilage, muscle, pancreatic, and ocular applications. In addition, PVA can be made into a tubular shape and used as a small-diameter vascular graft. Ethylene oxide (EtO) is one of the Food and Drug Administration-approved methods for sterilization, but its effect on PVA has not been studied extensively. The outcome of this study provides the effects of EtO and γ-irradiation of PVA grafts on both the material properties and the in vivo responses, particularly for vascular applications. Knowledge of these effects may ultimately improve the success rate of PVA vascular grafts.
Collapse
Affiliation(s)
- Grace Pohan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Yuan Yao
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Aung Moe Zaw
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
| | - Deirdre E.J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Marie F.A. Cutiongco
- Mechanobiology Institute Singapore, National University of Singapore, Singapore, Singapore
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Evelyn K.F. Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, Canada
- Center for Biotechnology and Bioengineering, University of Waterloo, Waterloo, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Canada
| |
Collapse
|
45
|
Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, Hu F, Wang X, Wang L, Xiao J, Li L, Wang J, Higuchi A, Ye Q. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater 2020; 6:638-654. [PMID: 33005828 PMCID: PMC7509005 DOI: 10.1016/j.bioactmat.2020.08.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/09/2023] Open
Abstract
Due to the limitations in autogenous nerve grafting or Schwann cell transplantation, large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit. Cell based therapies provide a novel treatment for peripheral nerve injuries. In this study, we first experimented an optimal scaffold material synthesis protocol, from where we selected the 10% GFD formula (10% GelMA hydrogel, recombinant human basic fibroblast growth factor and dental pulp stem cells (DPSCs)) to fill a cellulose/soy protein isolate composite membrane (CSM) tube to construct a third generation of nerve regeneration conduit, CSM-GFD. Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model. After 12 week post implant surgery, at histologic level, we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers. At physical level, CSM-GFD achieved functional recovery assessed by a sciatic functional index study. In both levels, CSM-GFD performed like what gold standard, the nerve autograft, could do. Further, we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD. In conclusion, we claimed that this third-generation nerve regeneration conduit, CSM-GFD, could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries. A novel 3rd generation nerve conduit was successfully constructed and applied for repairing peripheral nerve injuries (PNI). Dental pulp stem cells (DPSCs) was optimized as an ideal seeding cells for nerve regeneration. A bioactive system combining GelMA with human bFGF and DPSCs could reconstruct the long gap PNI within 12 weeks in vivo. Our system could achieve the same outcome in nerve repair as that of autografting, a routine treatment for PNI. The proposed bioactive system may trigger an evolutional change into the current clinical practice in managing PNI. The majority of the regenerated nerve tissue was originated from the donor’s dental pulp stem cells.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Ling Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fernando P Guastaldi
- Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | | | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingli Li
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianming Wang
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Akon Higuchi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
46
|
Stewart CE, Kan CFK, Stewart BR, Sanicola HW, Jung JP, Sulaiman OAR, Wang D. Machine intelligence for nerve conduit design and production. J Biol Eng 2020; 14:25. [PMID: 32944070 PMCID: PMC7487837 DOI: 10.1186/s13036-020-00245-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023] Open
Abstract
Nerve guidance conduits (NGCs) have emerged from recent advances within tissue engineering as a promising alternative to autografts for peripheral nerve repair. NGCs are tubular structures with engineered biomaterials, which guide axonal regeneration from the injured proximal nerve to the distal stump. NGC design can synergistically combine multiple properties to enhance proliferation of stem and neuronal cells, improve nerve migration, attenuate inflammation and reduce scar tissue formation. The aim of most laboratories fabricating NGCs is the development of an automated process that incorporates patient-specific features and complex tissue blueprints (e.g. neurovascular conduit) that serve as the basis for more complicated muscular and skin grafts. One of the major limitations for tissue engineering is lack of guidance for generating tissue blueprints and the absence of streamlined manufacturing processes. With the rapid expansion of machine intelligence, high dimensional image analysis, and computational scaffold design, optimized tissue templates for 3D bioprinting (3DBP) are feasible. In this review, we examine the translational challenges to peripheral nerve regeneration and where machine intelligence can innovate bottlenecks in neural tissue engineering.
Collapse
Affiliation(s)
- Caleb E. Stewart
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Chin Fung Kelvin Kan
- Current Affiliation: Department of General Surgery, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Brody R. Stewart
- Current Affiliation: Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Henry W. Sanicola
- Current Affiliation: Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport Louisiana, USA
| | - Jangwook P. Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Olawale A. R. Sulaiman
- Ochsner Neural Injury & Regeneration Laboratory, Ochsner Clinic Foundation, New Orleans, LA 70121 USA
- Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, 70121 USA
| | - Dadong Wang
- Quantitative Imaging Research Team, Data 61, Commonwealth Scientific and Industrial Research Organization, Marsfield, NSW 2122 Australia
| |
Collapse
|
47
|
Muangsanit P, Day A, Dimiou S, Ataç AF, Kayal C, Park H, Nazhat SN, Phillips JB. Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. J Neural Eng 2020; 17:046036. [DOI: 10.1088/1741-2552/abaa9c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Puhl DL, Funnell JL, D’Amato AR, Bao J, Zagorevski DV, Pressman Y, Morone D, Haggerty AE, Oudega M, Gilbert RJ. Aligned Fingolimod-Releasing Electrospun Fibers Increase Dorsal Root Ganglia Neurite Extension and Decrease Schwann Cell Expression of Promyelinating Factors. Front Bioeng Biotechnol 2020; 8:937. [PMID: 32923432 PMCID: PMC7456907 DOI: 10.3389/fbioe.2020.00937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 01/05/2023] Open
Abstract
Researchers are investigating the use of biomaterials with aligned guidance cues, like those provided by aligned electrospun fibers, to facilitate axonal growth across critical-length peripheral nerve defects. To enhance the regenerative outcomes further, these aligned fibers can be designed to provide local, sustained release of therapeutics. The drug fingolimod improved peripheral nerve regeneration in preclinical rodent models by stimulating a pro-regenerative Schwann cell phenotype and axonal growth. However, the systemic delivery of fingolimod for nerve repair can lead to adverse effects, so it is necessary to develop a means of providing sustained delivery of fingolimod local to the injury. Here we created aligned fingolimod-releasing electrospun fibers that provide directional guidance cues in combination with the local, sustained release of fingolimod to enhance neurite outgrowth and stimulate a pro-regenerative Schwann cell phenotype. Electrospun fiber scaffolds were created by blending fingolimod into poly(lactic-co-glycolic acid) (PLGA) at a w/w% (drug/polymer) of 0.0004, 0.02, or 0.04%. We examined the effectiveness of these scaffolds to stimulate neurite extension in vitro by measuring neurite outgrowth from whole and dissociated dorsal root ganglia (DRG). Subsequently, we characterized Schwann cell migration and gene expression in vitro. The results show that drug-loaded PLGA fibers released fingolimod for 28 days, which is the longest reported release of fingolimod from electrospun fibers. Furthermore, the 0.02% fingolimod-loaded fibers enhanced neurite outgrowth from whole and dissociated DRG neurons, increased Schwann cell migration, and reduced the Schwann cell expression of promyelinating factors. The in vitro findings show the potential of the aligned fingolimod-releasing electrospun fibers to enhance peripheral nerve regeneration and serve as a basis for future in vivo studies.
Collapse
Affiliation(s)
- Devan L. Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica L. Funnell
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Anthony R. D’Amato
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jonathan Bao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Dmitri V. Zagorevski
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Morone
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Agnes E. Haggerty
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL, United States
- Department of Physical Therapy and Human Movement Sciences and Department of Physiology, Northwestern University, Chicago, IL, United States
- Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, China
- Edward Hines, Jr. VA Hospital, Hines, IL, United States
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
49
|
Cellular Mechanisms of Rejection of Optic and Sciatic Nerve Transplants: An Observational Study. Transplant Direct 2020; 6:e589. [PMID: 32766437 PMCID: PMC7382554 DOI: 10.1097/txd.0000000000001012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background. Organ transplantation is a standard therapeutic strategy for irreversible organ damage, but the utility of nerve transplantation remains generally unexplored, despite its potential benefit to a large patient population. Here, we aimed to establish a feasible preclinical mouse model for understanding the cellular mechanisms behind the rejection of peripheral and optic nerves. Methods. We performed syngenic and allogenic transplantation of optic and sciatic nerves in mice by inserting the nerve grafts inside the kidney capsule, and we assessed the allografts for signs of rejection through 14 d following transplantation. Then, we assessed the efficacy of CTLA4 Ig, Rapamycin, and anti-CD3 antibody in suppressing immune cell infiltration of the nerve allografts. Results. By 3 d posttransplantation, both sciatic and optic nerves transplanted from BALB/c mice into C57BL/6J recipients contained immune cell infiltrates, which included more CD11b+ macrophages than CD3+ T cells or B220+ B cells. Ex vivo immunogenicity assays demonstrated that sciatic nerves demonstrated higher alloreactivity in comparison with optic nerves. Interestingly, optic nerves contained higher populations of anti-inflammatory PD-L1+ cells than sciatic nerves. Treatment with anti-CD3 antibody reduced immune cell infiltrates in the optic nerve allograft, but exerted no significant effect in the sciatic nerve allograft. Conclusions. These findings establish the feasibility of a preclinical allogenic nerve transplantation model and provide the basis for future testing of directed, high-intensity immunosuppression in these mice.
Collapse
|
50
|
Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020; 12:E1637. [PMID: 32717878 PMCID: PMC7465920 DOI: 10.3390/polym12081637] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fabrication of nerve conduits for perfectly repairing or replacing damaged peripheral nerve is an urgent demand worldwide, but it is also a formidable clinical challenge. In the last decade, with the rapid development of manufacture technologies, 3D printing and bioprinting have been becoming remarkable stars in the field of neural engineering. In this review, we explore that the biomaterial inks (hydrogels, thermoplastic, and thermoset polyesters and composite) and bioinks have been selected for 3D printing and bioprinting of peripheral nerve conduits. This review covers 3D manufacturing technologies, including extrusion printing, inkjet printing, stereolithography, and bioprinting with inclusion of cells, bioactive molecules, and drugs. Finally, an outlook on the future directions of 3D printing and 4D printing in customizable nerve therapies is presented.
Collapse
Affiliation(s)
- Xiaoling Yu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| | - Tian Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|