3
|
Zou Z, Shao S, Zou R, Qi J, Chen L, Zhang H, Shen Q, Yang Y, Ma L, Guo R, Li H, Tian H, Li P, Yu M, Wang L, Kong W, Li C, Yu Z, Huang Y, Chen L, Shao Q, Gao X, Chen X, Zhang Z, Yan J, Shao X, Pan R, Xu L, Fang J, Zhao L, Huang Y, Li A, Zhang Y, Huang W, Tian K, Hu M, Xie L, Wu L, Wu Y, Luo Z, Xiao W, Ma S, Wang J, Huang K, He S, Yang F, Zhou S, Jia M, Zhang H, Lu H, Wang X, Tan J. Linking the low-density lipoprotein receptor-binding segment enables the therapeutic 5-YHEDA peptide to cross the blood-brain barrier and scavenge excess iron and radicals in the brain of senescent mice. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:717-731. [PMID: 31921964 PMCID: PMC6944740 DOI: 10.1016/j.trci.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Introduction Iron accumulates in the brain during aging, which catalyzes radical formation, causing neuronal impairment, and is thus considered a pathogenic factor in Alzheimer's disease (AD). To scavenge excess iron-catalyzed radicals and thereby protect the brain and decrease the incidence of AD, we synthesized a soluble pro-iron 5-YHEDA peptide. However, the blood-brain barrier (BBB) blocks large drug molecules from entering the brain and thus strongly reduces their therapeutic effects. However, alternative receptor- or transporter-mediated approaches are possible. Methods A low-density lipoprotein receptor (LDLR)-binding segment of Apolipoprotein B-100 was linked to the 5-YHEDA peptide (bs-5-YHEDA) and intracardially injected into senescent (SN) mice that displayed symptoms of cognitive impairment similar to those of people with AD. Results We successfully delivered 5-YHEDA across the BBB into the brains of the SN mice via vascular epithelium LDLR-mediated endocytosis. The data showed that excess brain iron and radical-induced neuronal necrosis were reduced after the bs-5-YHEDA treatment, together with cognitive amelioration in the SN mouse, and that the senescence-associated ferritin and transferrin increase, anemia and inflammation reversed without kidney or liver injury. Discussion bs-5-YHEDA may be a mild and safe iron remover that can cross the BBB and enter the brain to relieve excessive iron- and radical-induced cognitive disorders.
Collapse
Affiliation(s)
- Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China.,Medical School of Taizhou University, Taizhou, ZJ, China.,Biochemistry Department, Purdue University, West Lafayette, USA
| | - Shengxi Shao
- Division of Cell and Molecular Biology, Imperial College London, London, United Kingdom
| | - Ruyi Zou
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Jini Qi
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Liguan Chen
- Zhejiang Armed Police Corps, Hangzhou, ZJ, China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, HN, China
| | - Qiqiong Shen
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Yue Yang
- Clinical Laboratory Department, Wenzhou Medical University, ZJ, China
| | - Liman Ma
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Ruzeng Guo
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Hongwen Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Haibo Tian
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Pengxin Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Mingfang Yu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Lu Wang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Wenjuan Kong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Caiyu Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Zhenhai Yu
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Yuping Huang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Li Chen
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Qi Shao
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Xinyan Gao
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Xiaolin Chen
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Zhengbo Zhang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Jianguo Yan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Xiaoyun Shao
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Ru Pan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| | - Lu Xu
- Clinical Laboratory of Jingyou Hospital, Xiaoshan, ZJ, China
| | - Jing Fang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Lei Zhao
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Yaohui Huang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Anqi Li
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Yuchong Zhang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Wenkao Huang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Kechun Tian
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Minxin Hu
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Linchao Xie
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Lingbin Wu
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Yu Wu
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Zhen Luo
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Wenxin Xiao
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Shanshan Ma
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Jianan Wang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Kaixin Huang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Siyuan He
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Fan Yang
- Chemistry Engineering Department, Shangrao Normal University, Shangrao, JX, China
| | - Shuni Zhou
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Mo Jia
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Hui Zhang
- Pathology Department, Affiliated Hospital of Taizhou University, ZJ, China
| | - Hongsheng Lu
- Pathology Department, Affiliated Hospital of Taizhou University, ZJ, China
| | - Xinjuan Wang
- Medical School of Taizhou University, Taizhou, ZJ, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX, China
| |
Collapse
|
4
|
Zou Z, Cai J, Zhong A, Zhou Y, Wang Z, Wu Z, Yang Y, Li X, Cheng X, Tan J, Fan Y, Zhang X, Lu Y, Zhou Y, Yang L, Zhang C, Zhao Q, Fu D, Shen Q, Chen J, Bai S, Wu L, Chen Y, Chen X, Chen J, Zheng H, Wang H, Lou Y, Ding Y, Shen S, Ye Y, Chen L, Lin Y, Huang J, Zou K, Zhang J, Bian B, Huang C, Rong C, Dai L, Xu Y, Cheng L, Chen Y, Luo Y, Zhang S, Li L. Using the synthesized peptide HAYED (5) to protect the brain against iron catalyzed radical attack in a naturally senescence Kunming mouse model. Free Radic Biol Med 2019; 130:458-470. [PMID: 30448512 DOI: 10.1016/j.freeradbiomed.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/27/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease of the brain. It cannot be cured currently, and those suffering from AD place a great burden on their caregivers and society. AD is characterized by high levels of iron ions in the brain, which catalyze radicals that damage the neurons. Knowing that the Aβ42 peptide precipitates iron by binding iron ions at amino acid residues D1, E3, H11, H13, and H14, we synthesized a 5-repeat (HAYED) sequence peptide. By treating iron-stressed SH-SY5Y cells with it and injecting it into the cerebrospinal fluid (CSF) of naturally senescence Kunming mouse, which displaying AD-similar symptoms such as learning and memory dysfunction, neuron degeneration and high level of iron in brain, we found that HAYED (5) decreased the iron and radical levels in the cell culture medium and in the CSF. Specially, the synthesized peptide prevented cell and brain damage. Furthermore, functional magnetic resonance imaging (fMRI), Morris water maze and passive avoidance tests demonstrated that the peptide ameliorated brain blood-oxygen metabolism and slowed cognitive loss in the experimental senescence mice, and clinical and blood tests showed that HAYED (5) was innoxious to the kidney, the liver and blood and offset the AD-associated inflammation and anemia.
Collapse
Affiliation(s)
- Zhenyou Zou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China; Medical School of Taizhou University, Taizhou, ZJ 318000, China; Biochemistry Department, Purdue University, West Lafayette, IN 47906, USA.
| | - Jing Cai
- Genetic Department of Nanjing Medical University, Nanjing, JS 210000, China
| | - Aiguo Zhong
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yong Zhou
- Clinical Laboratory of Affiliated Hospital of Taizhou University, Taizhou, ZJ 318000, China.
| | - Zengxian Wang
- Medical Image Center of Affiliated Hospital of Taizhou University, Taizhou, ZJ 318000, China.
| | - Zhongmin Wu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yue Yang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xin Li
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xiaoying Cheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| | - Yihao Fan
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xiaotong Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yuxiang Lu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yaping Zhou
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Liu Yang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | | | - Qiang Zhao
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Derong Fu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Qiqiong Shen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jie Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shi Bai
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lijuan Wu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yongfeng Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Xin Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jiaren Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Hongjie Zheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Hongdian Wang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yingjie Lou
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yarong Ding
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shiyi Shen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Ying Ye
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lifen Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yukai Lin
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Jue Huang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Kechun Zou
- Shangli Teacher Training School, Pingxiang, JX 337009, China
| | - Jianxing Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Baohua Bian
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Chengbo Huang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Cuiping Rong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| | - Limiao Dai
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yali Xu
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Lin Cheng
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Ye Chen
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Yewen Luo
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Shanshan Zhang
- Medical School of Taizhou University, Taizhou, ZJ 318000, China
| | - Liangxian Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, GX 541199, China
| |
Collapse
|