1
|
Liu T, Yu Y, Mi L, Zhao Z, Liu M, Wang J, Wang X, Sha Z, Nie M, Jiang W, Wu C, Yuan J, Lv C, Zhao B, Lin K, Li Z, Luo Z, Liu X, Qian Y, Jiang R. Efficacy and safety of compound porcine cerebroside and ganglioside injection (CPCGI) versus piracetam on cognition and functional outcomes for adults with traumatic brain injury: A study protocol for randomized controlled trial. Heliyon 2024; 10:e37296. [PMID: 39319135 PMCID: PMC11419906 DOI: 10.1016/j.heliyon.2024.e37296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a common neurosurgical disease in emergency rooms with poor prognosis, imposing severe burdens on patients and their families. Evidence indicates that piracetam and compound porcine cerebroside and ganglioside injection (CPCGI) can improve cognitive levels in TBI patients to enhance functional prognosis, but there is still a research gap regarding the efficacy of CPCGI. This study aims to determine the effectiveness and safety of CPCGI in improving cognitive and functional outcomes in TBI patients. Methods This study is a multicenter, randomized, parallel-group, double-blind trial aiming to recruit 900 adult patients with mild to moderate TBI. After providing informed consent, 600 patients will be randomly assigned to the CPCGI group (20 ml/d, for 14 days), and 300 patients will be randomized to the piracetam group as a control (20 ml/d, for 14 days), followed up for 3 months after treatment. The primary outcome is the change in the Montreal Cognitive Assessment (MoCA) score from baseline after 3 months. The main secondary outcome measures include Mini-Mental State Examination (MMSE) scores, Glasgow Outcome Scale-Extended (GOS-E), and the Barthel Index at 1 and 3 months. Discussion This multi-center clinical trial aims to provide high-quality evidence on the efficacy and safety of CPCGI in improving cognitive and functional outcomes in mild to moderate TBI patients. Trial registration ChiCTR2000040466, date of registration: November 28, 2020.
Collapse
Affiliation(s)
- Tao Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Yunhu Yu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
- Department of Clinical Research Center for Neurological Disease, the People's Hospital of HongHuaGang District of ZunYi, Guizhou, China
| | - Liang Mi
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihao Zhao
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingqi Liu
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Jiao Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Liaoning, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Biao Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Kun Lin
- Department of Neurosurgery, Fujian Provincial Hospital, Fujian, China
| | - Zhanying Li
- Department of Neurosurgery, Kailuan General Hospital, Hebei, China
| | - Zhenyu Luo
- Department of Neurosurgery, Shandong Provincial Third Hospital, Jinan, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, State Key Laboratory of Experimental Hematology, Key Laboratory of Post-Neuroinjury Neurorepair and Regeneration in Central Nervous System Tianjin & Ministry of Education, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Kim ES, Shin Y, Kim EH, Kim D, De Felice M, Majid A, Bae ON. Neuroprotective efficacy of N-t-butylhydroxylamine (NtBHA) in transient focal ischemia in rats. Toxicol Res 2022; 38:479-486. [PMID: 36277357 PMCID: PMC9532490 DOI: 10.1007/s43188-022-00131-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022] Open
Abstract
The pharmacological or toxicological activities of the degradation products of drug candidates have been unaddressed during the drug development process. Ischemic stroke accounts for 80% of all strokes and is responsible for considerable mortality and disability worldwide. Despite decades of research on neuroprotective agents, tissue plasminogen activators (t-PA), a thrombolytic agent, remains the only approved acute stroke pharmacological therapy. NXY-059, a free radical scavenger, exhibited striking neuroprotective properties in preclinical models and met all the criteria established by the Stroke Academic Industry Roundtable (STAIR) for a neuroprotective agent. In phase 3 clinical trials, NXY-059 exhibited significant neuroprotective effects in one trial (SAINT-I), but not in the second (SAINT-II). Some have hypothesized that N-t-butyl hydroxylamine (NtBHA), a breakdown product of NXY-059 was the actual neuroprotective agent in SAINT-I and that changes to the formulation of NXY-059 to prevent its breakdown to NtBHA in SAINT -II was the reason for the lack of efficacy. We evaluated the neuroprotective effect of NtBHA in N-methyl-D-aspartate (NMDA)-treated primary neurons and in rat focal cerebral ischemia. NtBHA significantly attenuated infarct volume in rat transient focal ischemia, and attenuated NMDA-induced cytotoxicity in primary cortical neurons. NtBHA also reduced free radical generation and exhibited mitochondrial protection.
Collapse
Affiliation(s)
- Eun-Sun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Yusun Shin
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Eun-Hye Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| | - Milena De Felice
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2TN Sheffield, UK
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2TN Sheffield, UK
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 15588 Ansan, Korea
| |
Collapse
|
3
|
Lima DFPDA, da Cruz VAR, Pereira GL, Curi RA, Costa RB, de Camargo GMF. Genomic Regions Associated with the Position and Number of Hair Whorls in Horses. Animals (Basel) 2021; 11:ani11102925. [PMID: 34679946 PMCID: PMC8532986 DOI: 10.3390/ani11102925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Whorls have been used to indicate the temperaments of domestic animals; however, little is known about the biological events that drive this association. The present study is the first that aims to find the main genomic regions that influence the whorl traits in livestock, with horses as a model. Genes related to hair follicle growth were found. Interestingly, some of these genes also influence psychiatric diseases and neurological disorders, thus evidencing a consistent biological explanation for the association. Abstract The position and number of hair whorls have been associated with the behavior, temperament, and laterality of horses. The easy observation of whorls assists in the prediction of reactivity, and thus permits the development of better measures of handling, training, mounting, and riding horses. However, little is known about the genetics involved in the formation of hair whorls. Therefore, the aim of this study was to perform a genome-wide association analysis to identify chromosome regions and candidate genes associated with hair whorl traits. Data from 342 Quarter Horses genotyped for approximately 53,000 SNPs were used in an association study using a single-step procedure. The following traits were analyzed: vertical position of hair whorl on the head, number of whorls on the head, and number of whorls on the left and right sides of the neck. The traits had between one and three genomic windows associated. Each of them explained at least 4% of the additive variance. The windows accounted for 20–80% of additive variance for each trait analyzed. Many of the prospected genes are related to hair follicle growth. Some of these genes exert a pleiotropic effect on neurological and behavioral traits. This is the first indication of biological and physiological activity that might explain the association of hair whorls and temperament.
Collapse
Affiliation(s)
- Diogo Felipe Pereira de Assis Lima
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
| | - Valdecy Aparecida Rocha da Cruz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
| | - Guilherme Luís Pereira
- Departamento de Melhoramento e Nutrição Animal, Universidade Estadual Paulista (Unesp), Botucatu 18618-681, SP, Brazil; (G.L.P.); (R.A.C.)
| | - Rogério Abdallah Curi
- Departamento de Melhoramento e Nutrição Animal, Universidade Estadual Paulista (Unesp), Botucatu 18618-681, SP, Brazil; (G.L.P.); (R.A.C.)
| | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
| | - Gregório Miguel Ferreira de Camargo
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador 40170-110, BA, Brazil; (D.F.P.d.A.L.); (V.A.R.d.C.); (R.B.C.)
- Correspondence:
| |
Collapse
|
4
|
Song H, Xun S, He H, Duan C, Li Q. Compound Porcine Cerebroside and Ganglioside Injection (CPCGI) Attenuates Sevoflurane-Induced Nerve Cell Injury by Regulating the Phosphorylation of p38 MAP Kinase (p38MAPK)/Nuclear Factor kappa B (NF-κB) Pathway. Med Sci Monit 2020; 26:e919600. [PMID: 32114591 PMCID: PMC7065510 DOI: 10.12659/msm.919600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Compound porcine cerebroside and ganglioside injection (CPCGI) has been widely applied in clinical practice in China to treat functional confusion caused by brain diseases. Sevoflurane, a frequently-used inhalational anesthetic, was discovered to have neurotoxicity that can cause neurological damage in patients. The present study was performed to investigate the protective effect of CPCGI on sevoflurane-induced nerve damage and to reveal the neuroprotective mechanisms of CPCGI. Material/Methods Firstly, the hippocampal neurons were separated from Sprague-Dawley embryonic rats, and were stimulated by 3% sevoflurane for different times (0, 2, 4, and 6 h). Then, cell viability and cell apoptosis were assessed by thiazolyl blue tetrazolium bromide (MTT) and flow cytometry (FCM), respectively. Western blot analysis was used to determine the apoptosis-related protein expression levels. Results The results demonstrated that 3% sevoflurane significantly inhibited cell viability but induced cell apoptosis in neurons in a time-dependent manner. Treatment with 3% sevoflurane also promoted the Bax [B cell leukemia/lymphoma 2 (Bcl2)-associated X protein] and cleaved caspase3 protein expressions, and suppressed Bcl-2 and pro-caspase3 expressions in hippocampal neurons. In addition, phosphorylated (p)-p38 and p-p65 expression and the ratio of p-p38/p38 and p-p65/p65 were upregulated in a time-dependent manner after 3% sevoflurane treatment. Further analysis indicated that all the effects of 3% sevoflurane on hippocampal neurons were reversed by CPCGI pre-treatment. Conclusions We demonstrated the neuroprotective role of CPCGI in sevoflurane-stimulated neuronal cell damage via regulation of the MAPK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Haigang Song
- Department of Anesthesiology, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China (mainland)
| | - Shining Xun
- Department of First Anesthesiology and Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Huali He
- Department of First Anesthesiology and Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Chongzhen Duan
- Department of First Anesthesiology and Surgery, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, China (mainland)
| | - Qiang Li
- Department of Anesthesiology, The Fifth Medical Center of PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
5
|
Wang X, Zhao J. Neuroprotective effect of CPCGI on Alzheimer's disease and its mechanism. Mol Med Rep 2020; 21:115-122. [PMID: 31939621 PMCID: PMC6896362 DOI: 10.3892/mmr.2019.10835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder causing progressive memory loss and cognitive impairment. The aberrant accumulation of amyloid‑β (Aβ) and neuroinflammation are two major events in AD. Aβ‑induced neurotoxicity and oxidative stress are also involved in the pathogenesis of AD. The purpose of the current study was to investigate the effect of compound porcine cerebroside and ganglioside injection (CPCGI) on the progression of AD, and to explore the molecular mechanism. In vivo and in vitro models of AD were established and treated with CPCGI. Aβ40 and Aβ42 protein levels were detected using western blotting. Production of pro‑inflammatory factors [tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β] and oxidative stress markers [malondialdehyde (MDA), superoxide dismutase (SOD)] and reactive oxygen species (ROS) production were determined. Cell viability and apoptosis were detected using 3‑(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide assay and flow cytometry analysis respectively. Results demonstrated that CPCGI administration reduced Aβ40 and Aβ42 accumulation, and inhibited inflammatory response and oxidative stress in the in vivo rat model of AD, evidenced by decreased Aβ40 and Aβ42 protein expression, reduced levels of TNF‑α and IL‑1β, reduced MDA content, enhanced SOD activity, and reduced ROS level. It was found that CPCGI enhanced cell viability and reduced cell apoptosis of Aβ25‑35 induced PC12 cells. In addition, the mitogen‑activated protein kinase/NF‑κB pathway was involved in the protective effect of CPCGI on AD. Taken together, the data demonstrated that CPCGI exerted a protective effect on AD by reducing Aβ accumulation, inhibiting inflammatory response and oxidative stress, In addition to preventing neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
6
|
Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Sun M. Antiapoptotic and Anti-Inflammatory Effects of CPCGI in Rats with Traumatic Brain Injury. Neuropsychiatr Dis Treat 2020; 16:2975-2987. [PMID: 33324059 PMCID: PMC7733055 DOI: 10.2147/ndt.s281530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/16/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI) has been used for the treatment of certain brain disorders. Apoptosis and inflammation were reported to be involved in the pathogenesis of traumatic brain injury (TBI). Therefore, this study primarily investigated the effects of CPCGI on mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling in a rat model of controlled cortical impact (CCI). MATERIALS AND METHODS CPCGI (0.6 mL/kg) was administered intraperitoneally 30 min after the induction of CCI. Mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling were evaluated 24 h after CCI, and apoptotic cell death, neutrophil infiltration, and astrocyte and microglial activation were determined by TUNEL and immunofluorescent staining 3 days after CCI. RESULTS 1) CPCGI markedly enhanced cytosolic and mitochondrial Bcl-xL levels, the mitochondrial Bcl-xL/Bax ratio, and mitochondrial cytochrome (cyt) c levels and reduced cytosolic cyt c levels, caspase-3 activity, and nuclear AIF levels in brain tissues after traumatic injury; however, CPCGI had no significant effects on cytosolic or mitochondrial Bax levels, the cytosolic Bcl-xL/Bax ratio, or mitochondrial AIF levels. Moreover, CPCGI markedly reduced the TUNEL staining score in the contusion region. 2) CPCGI markedly reduced cytosolic and nuclear PARP levels and nuclear NF-κB p65 levels in brain tissues after traumatic injury but had no significant effect on cytosolic NF-κB p65 levels. In addition, CPCGI markedly reduced caspase-1 activity and the levels of caspase-1, ICAM-1, TNF-α, and IL-1β in brain tissues after traumatic injury and decreased the immunoreactivities of neutrophils, GFAP and Iba-1 in the region of CCI-induced contusion. CONCLUSION These data suggest that CPCGI can reduce brain injury due to trauma by suppressing both mitochondrial apoptotic signaling and PARP/NF-κB inflammatory signaling.
Collapse
Affiliation(s)
- Fei Niu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Hongyan Qi
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People's Republic of China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
7
|
Niu F, Qian K, Qi H, Zhao Y, Jiang Y, Jia W, Sun M. CPCGI Reduces Gray and White Matter Injury by Upregulating Nrf2 Signaling and Suppressing Calpain Overactivation in a Rat Model of Controlled Cortical Impact. Neuropsychiatr Dis Treat 2020; 16:1929-1941. [PMID: 32904488 PMCID: PMC7455756 DOI: 10.2147/ndt.s266136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Compound porcine cerebroside and ganglioside injection (CPCGI), which involves injection of a neurotrophic drug, has been widely used to treat certain brain disorders in the clinic; however, the detailed mechanism is unknown. This study investigated whether CPCGI protects the brain from trauma by stimulating antioxidative nuclear factor erythroid-2-related factor 2 (Nrf2) signaling and suppressing calpain overactivation in a rat model of controlled cortical impact (CCI). MATERIALS AND METHODS The rat model of CCI was used. Neurological deficits, contusion, and white matter damage were evaluated 3 days after CCI. Calpain activation, Nrf2 signaling and oxidative stress were determined 24 h after CCI. RESULTS CPCGI dose-dependently reduced neurological deficits, attenuated axonal and myelin sheath injury, and decreased contusion volume 3 days post-CCI. Moreover, CPCGI reduced calpain activity, and enhanced the cytosolic levels of calpastatin, αII-spectrin, microtubule-associated protein 2 (MAP2), neurofilament heavy chain (NF-H) and myelin basic protein (MBP) in traumatic tissues 24 h post-CCI. Furthermore, CPCGI reduced the levels of nuclear Kelch-like ECH-associated protein 1 (Keap1) and thioredoxin interacting protein (TXNIP); increased the levels of cytosolic Nrf2 and thioredoxin 1 (Trx 1) and nuclear Nrf2; increased the cytosolic and nuclear Nrf2/Keap1 and Trx 1/TXNIP ratios; enhanced the levels of heme oxygenase 1 (HO-1), glutathione (GSH), superoxide dismutase activity, and total antioxidative capacity; and reduced the levels of malondialdehyde in TBI tissues. CONCLUSION These data confirm the neuroprotective effect of CPCGI against gray and white matter damage due to CCI and suggest that activating Nrf2 signaling and alleviating oxidative stress-mediated calpain activation could be one mechanism by which CPCGI protects against brain trauma.
Collapse
Affiliation(s)
- Fei Niu
- Department of Neurotrauma, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ke Qian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Hongyan Qi
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang City 222000, Jiangsu Province, People's Republic of China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, People's Republic of China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, People's Republic of China
| |
Collapse
|
8
|
Miao Y, Wang R, Wu H, Yang S, Qiu Y. CPCGI confers neuroprotection by enhancing blood circulation and neurological function in cerebral ischemia/reperfusion rats. Mol Med Rep 2019; 20:2365-2372. [PMID: 31322214 DOI: 10.3892/mmr.2019.10472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/09/2019] [Indexed: 11/06/2022] Open
Abstract
The current study used a rat middle cerebral artery occlusion (MCAO) model with the aim to explore the effects of compound porcine cerebroside and ganglioside injection (CPCGI) on brain ischemia/reperfusion injury in rats. Improvement in the infarct‑side microcirculation and the overall recovery of neurological function were detected by triphenyltetrazolium chloride staining, laser speckle blood flow monitoring, latex perfusion, immunofluorescence and immunoblotting. The results revealed that administration of CPCGI for 7 consecutive days following ischemic stroke contributed to the recovery of neurological function and the reduction of cerebral infarct volume in rats. Blood flow monitoring results demonstrated that the administration of CPCGI effectively promoted cerebral blood flow following stroke, and contributed to the protection of the ischemic side blood vessels. In addition, CPCGI treatment increased the numbers of new blood vessels in the peripheral ischemic region, and upregulated the expression levels of vascular endothelial growth factor, angiopoietin 1 and its receptor TEK receptor tyrosine kinase, fibroblast growth factor and Wnt signaling pathway‑associated proteins. Taken together, the present results indicated that CPCGI improved the blood circulation and neurological function following cerebral ischemia/reperfusion in rats.
Collapse
Affiliation(s)
- Yifeng Miao
- Department of Neurosurgery, Renji Hospital, South Campus, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China
| | - Ran Wang
- Department of Neurosurgery, Renji Hospital, South Campus, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China
| | - Hui Wu
- Department of Neurosurgery, Renji Hospital, South Campus, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China
| | - Shaofeng Yang
- Department of Neurosurgery, Renji Hospital, South Campus, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China
| | - Yongming Qiu
- Department of Neurosurgery, Renji Hospital, South Campus, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China
| |
Collapse
|
9
|
Sui R, Zang L, Bai Y. Administration of troxerutin and cerebroprotein hydrolysate injection alleviates cerebral ischemia/reperfusion injury by down-regulating caspase molecules. Neuropsychiatr Dis Treat 2019; 15:2345-2352. [PMID: 31695379 PMCID: PMC6707350 DOI: 10.2147/ndt.s213212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (I/R injury) is an important pathological process for nervous system. The I/R injury usually causes cerebral hypoxia, infarct or stroke. This study aimed to evaluate effects of troxerutin and cerebroprotein hydrolysate injection (TC) on I/R injury in rat models. METHODS Middle-cerebral artery occlusion/reperfusion (MCAO/R) rat models were established. Rats were divided into normal control (NC), MCAO/R rat model (injecting saline) and MCAO/R rats administrating with TC group (injecting with TC at concentration of 2 mL/100 g body weight). Neurological scores were evaluated with Garcia scale. Magnetic resonance imaging (MRI) was employed to observe infarct area, contralateral area and apparent diffusion coefficient (ADC) values. Cerebral infarct size was examined and visualized by staining with 2,3,5-triphenyltetrazolium chloride (TTC). Western blotting assay was used to determine caspase-1, caspase-3 and caspase-8 expression. RESULTS The infarct size of mice in MCAO/R+TC group was smaller significantly compared to that in MCAO/R group (p<0.05). The infarct/contralateral area ratio of T2 and T2 Flair signals in MCAO/R+TC group were lower significantly compared to that in MCAO/R group (p<0.05). ADC values in MCAO/R+TC group were significantly enhanced compared to that in MCAO/R group (p<0.05). The troxerutin and cerebroprotein treatment significantly increased neurological scores compared to that in MCAO/R group (p<0.05). Troxerutin and cerebroprotein treatment significantly decreased expression of caspase-1, caspase-3, caspase-8 compared to that in MCAO/R group (p<0.05). CONCLUSION Troxerutin and cerebroprotein administration alleviated cerebral I/R injury by down-regulating caspase molecules.
Collapse
Affiliation(s)
- Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning, People's Republic of China
| | - Lie Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning, People's Republic of China
| | - Yanjuan Bai
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, Liaoning, People's Republic of China
| |
Collapse
|
10
|
Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 2019; 162:132-146. [DOI: 10.1016/j.ejmech.2018.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|