1
|
Li J, Bi W, Xiong M, Nasifu L, Zhang L, Zhu C, He B. Association of the DRD and OXT Genetic Polymorphisms With Schizophrenia in a Chinese Population. J Nerv Ment Dis 2025; 213:71-77. [PMID: 39993143 DOI: 10.1097/nmd.0000000000001824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
ABSTRACT The polymorphism of dopamine receptor (DRD) and oxytocin (OXT) may be associated with schizophrenia. A case-control study of 248 schizophrenia patients and 236 controls was conducted using the Sequenom MassARRAY platform. The results showed that DRD2 rs1800497 was a heterozygote (AG vs. GG: adjusted odds ratio [OR] = 1.88; 95% confidence interval [CI]: 1.09-3.25) and DRD3 rs7631540 (TC vs. CC: adjusted OR = 0.60; 95% CI: 0.36-1.02) may be associated with an increased risk of developing schizophrenia. In addition, the DRD2 rs1800497 genotype GA showed a reduced risk of schizophrenia in the male subgroup and the late-onset subgroup (>27 years of age). For DRD3 polymorphisms, the rs7631540 TC genotype was associated with schizophrenia in the female subgroup. In OXT polymorphism analysis, rs2740210 codominant CA/AA was a risk factor for schizophrenia in the male and early-onset subgroup (≤27 years old). This study also concluded that OXT rs2740210 codominant CA/AA is associated with schizophrenia.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Bi
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | | - Chengbin Zhu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Bosun A, Albu-Kalinovic R, Neda-Stepan O, Bosun I, Farcas SS, Enatescu VR, Andreescu NI. Dopaminergic Epistases in Schizophrenia. Brain Sci 2024; 14:1089. [PMID: 39595853 PMCID: PMC11592377 DOI: 10.3390/brainsci14111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The dopaminergic theory, the oldest and most comprehensively analyzed neurotransmitter theory of schizophrenia, remains a focal point of research. Methods: This systematic review examines the association between combinations of 14 dopaminergic genes and the risk of schizophrenia. The selected genes include dopamine receptors (DRD1-5), metabolizing enzymes (COMT, MAOA, MAOB, DBH), synthesizing enzymes (TH, DDC), and dopamine transporters (DAT, VMAT1, and VMAT2). Results: Recurring functional patterns show combinations with either hyperdopaminergic effects in limbic and striatal regions or high striatal and low prefrontal dopamine levels. The protective statuses of certain alleles or genotypes are often maintained in epistatic effects; however, exceptions exist. This complexity could explain the inconsistent results in previous genetic studies. Investigating individual alleles may be insufficient due to the heterozygous advantage observed in some studies. Conclusions: Schizophrenia may not be a monolithic disease, but rather a sum of different phenotypes which respond uniquely to different treatment and prevention approaches.
Collapse
Affiliation(s)
- Adela Bosun
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (R.A.-K.); (O.N.-S.)
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
| | - Raluka Albu-Kalinovic
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (R.A.-K.); (O.N.-S.)
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
| | - Oana Neda-Stepan
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (A.B.); (R.A.-K.); (O.N.-S.)
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
- Department of Neurosciences, Discipline of Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ileana Bosun
- Department of Ophthalmology, Clinical Hospital “Cai Ferate”, 300173 Timisoara, Romania;
| | - Simona Sorina Farcas
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Virgil-Radu Enatescu
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania;
- Department of Neurosciences, Discipline of Psychiatry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Nicoleta Ioana Andreescu
- Department of Microscopic Morphology, Discipline of Genetics, Genomic Medicine Centre, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Regional Center of Medical Genetics Timis, Clinical Emergency Hospital for Children “Louis Turcanu”, Iosif Nemoianu Street N°2, 300011 Timisoara, Romania
| |
Collapse
|
3
|
Pardossi S, Cuomo A, Fagiolini A. Unraveling the Boundaries, Overlaps, and Connections between Schizophrenia and Obsessive-Compulsive Disorder (OCD). J Clin Med 2024; 13:4739. [PMID: 39200881 PMCID: PMC11355622 DOI: 10.3390/jcm13164739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Schizophrenia (SCZ) and obsessive-compulsive disorder (OCD) typically have distinct diagnostic criteria and treatment approaches. SCZ is characterized by delusions, hallucinations, disorganized speech, and cognitive impairments, while OCD involves persistent, intrusive thoughts (obsessions) and repetitive behaviors (compulsions). The co-occurrence of these disorders increases clinical complexity and poses significant challenges for diagnosis and treatment. Epidemiological studies indicate a significant overlap, with prevalence rates of comorbid OCD in SCZ patients ranging from 12% to 25%, which is higher than in the general population. Etiological hypotheses suggest shared genetic, neurobiological, and environmental factors, with genetic studies identifying common loci and pathways, such as glutamatergic and dopaminergic systems. Neuroimaging studies reveal both overlapping and distinct neural abnormalities, indicating shared and unique neurobiological substrates. Environmental factors, like early life stressors and urbanicity, also contribute to the comorbidity. The overlapping clinical features of both disorders complicate diagnosis. Treatment approaches include combining SSRIs with antipsychotics and cognitive behavioral therapy (CBT). The complexity of SCZ and OCD comorbidity underscores the need for a dimensional, spectrum-based perspective on psychiatric disorders, alongside traditional categorical approaches, to improve diagnosis and treatment outcomes.
Collapse
Affiliation(s)
| | | | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy; (S.P.); (A.C.)
| |
Collapse
|
4
|
Yang HM, Lung H, Yang MC, Lung FW. DRD4 VNTR 4/4 homozygosity as a genetic biomarker for treatment selection in patients with schizophrenia. Asian J Psychiatr 2024; 91:103831. [PMID: 37988928 DOI: 10.1016/j.ajp.2023.103831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE There seems to be an association between the DRD4 48-bp VNTR polymorphisms and antipsychotic treatment response, but there is a rare reference to confirm this finding. Hence, the present study tried to investigate the association between DRD4 48-bp VNTR polymorphisms and the treatment response of antipsychotics in patients with schizophrenia in Taiwan, using a propensity score matching (PSM) method. METHODS A total of 882 participants were enrolled in this study and completed informed consent, research questionnaires, including demographic information and the revised Chinese version Beliefs about Voices Questionnaire, and blood sampling. For descreasing of the selection bias and confounding variables, the PSM nearest neighbor matching method was used to select 765 paitents with schizophrenia (ratio of 1:8 between 85 persistent auditory hallucination and 680 controls) with matched and controlled the age and gender. RESULTS Schizophrenia patients with DRD4 4 R homozygosity had a lower rate of good antipsychotic treatment response than the other DRD4 genotype carriers (DRD4 non-4/4). Among those 4 R homozygosity carriers, 60 cases of 503 (11.9%) retain persistent auditory hallucinations. Furthermore, this subgroup of patients is accounted for up to 70.6% of cases with poor neuroleptic treatment response. CONCLUSIONS A poor treatment outcome for patients with the 4 R homozygosity had presented,that comparing with those DRD non-4/4 genotype carriers. DRD4 VNTR 4 R homozygosity could be a genetic biomarker to predict poor antipsychotic treatment response in schizophrenia. Patients with DRD 4/4 probably receive novel antipsychotic medications preferentially or in combination with alternative therapy, such as psychotherapy or milieu therapy.
Collapse
Affiliation(s)
- Hao-Ming Yang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Hsuan Lung
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Dentistry and Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - For-Wey Lung
- Calo Psychiatric Center, Pingtung County, Taiwan; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan; International Graduate Program of Education and Human Development, National SunYat-sen University, Kaohsiung, Taiwan; Institute of Education, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Saha S, Chatterjee M, Dutta N, Sinha S, Mukhopadhyay K. Analysis of neurotransmitters validates the importance of the dopaminergic system in autism spectrum disorder. World J Pediatr 2023; 19:770-781. [PMID: 36847977 DOI: 10.1007/s12519-023-00702-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND The reasons behind the cardinal symptoms of communication deficits and repetitive, stereotyped behaviors that characterize autism spectrum disorder (ASD) remain unknown. The dopamine (DA) system, which regulates motor activity, goal-directed behaviors, and reward function, is believed to play a crucial role in ASD, although the exact mechanism is still unclear. Investigations have shown an association of the dopamine receptor D4 (DRD4) with various neurobehavioral disorders. METHODS We analyzed the association between ASD and four DRD4 genetic polymorphisms, 5' flanking 120-bp duplication (rs4646984), rs1800955 in the promoter, exon 1 12 bp duplication (rs4646983), and exon 3 48 bp repeats. We also examined plasma DA and its metabolite levels, DRD4 mRNA expression, and correlations of the studied polymorphisms with these parameters by case-control comparative analyses. The expression of DA transporter (DAT), which is important in regulating the circulating DA level, was also evaluated. RESULTS A significantly higher occurrence of rs1800955 "T/TT" was observed in the probands. ASD traits were affected by rs1800955 "T" and the higher repeat alleles of the exon 3 48 bp repeats, rs4646983 and rs4646984. ASD probands exhibited lower DA and norepinephrine levels together with higher homovanillic acid levels than the control subjects. DAT and DRD4 mRNA expression were down-regulated in the probands, especially in the presence of DAT rs3836790 "6R" and rs27072 "CC" and DRD4 rs4646984 higher repeat allele and rs1800955 "T". CONCLUSION This pioneering investigation revealed a positive correlation between genetic variants, hypodopaminergic state, and impairment in socio-emotional and communication reciprocity in Indian subjects with ASD, warranting further in-depth analysis.
Collapse
Affiliation(s)
- Sharmistha Saha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Mahasweta Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Nilanjana Dutta
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, Manovikas Kendra, 482 Madudah, Plot I-24, Sector-J, E.M. Bypass, Kolkata, West Bengal, 700107, India.
| |
Collapse
|
6
|
Rahman MM, Islam MR, Mim SA, Sultana N, Chellappan DK, Dua K, Kamal MA, Sharma R, Emran TB. Insights into the Promising Prospect of G Protein and GPCR-Mediated Signaling in Neuropathophysiology and Its Therapeutic Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8425640. [PMID: 36187336 PMCID: PMC9519337 DOI: 10.1155/2022/8425640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) are intricately involved in the conversion of extracellular feedback to intracellular responses. These specialized receptors possess a crucial role in neurological and psychiatric disorders. Most nonsensory GPCRs are active in almost 90% of complex brain functions. At the time of receptor phosphorylation, a GPCR pathway is essentially activated through a G protein signaling mechanism via a G protein-coupled receptor kinase (GRK). Dopamine, an important neurotransmitter, is primarily involved in the pathophysiology of several CNS disorders; for instance, bipolar disorder, schizophrenia, Parkinson's disease, and ADHD. Since dopamine, acetylcholine, and glutamate are potent neuropharmacological targets, dopamine itself has potential therapeutic effects in several CNS disorders. GPCRs essentially regulate brain functions by modulating downstream signaling pathways. GPR6, GPR52, and GPR8 are termed orphan GPCRs because they colocalize with dopamine D1 and D2 receptors in neurons of the basal ganglia, either alone or with both receptors. Among the orphan GPCRs, the GPR52 is recognized for being an effective psychiatric receptor. Various antipsychotics like aripiprazole and quetiapine mainly target GPCRs to exert their actions. One of the most important parts of signal transduction is the regulation of G protein signaling (RGS). These substances inhibit the activation of the G protein that initiates GPCR signaling. Developing a combination of RGS inhibitors with GPCR agonists may prove to have promising therapeutic potential. Indeed, several recent studies have suggested that GPCRs represent potentially valuable therapeutic targets for various psychiatric disorders. Molecular biology and genetically modified animal model studies recommend that these enriched GPCRs may also act as potential therapeutic psychoreceptors. Neurotransmitter and neuropeptide GPCR malfunction in the frontal cortex and limbic-related regions, including the hippocampus, hypothalamus, and brainstem, is likely responsible for the complex clinical picture that includes cognitive, perceptual, emotional, and motor symptoms. G protein and GPCR-mediated signaling play a critical role in developing new treatment options for mental health issues, and this study is aimed at offering a thorough picture of that involvement. For patients who are resistant to current therapies, the development of new drugs that target GPCR signaling cascades remains an interesting possibility. These discoveries might serve as a fresh foundation for the creation of creative methods for pharmacologically useful modulation of GPCR function.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sadia Afsana Mim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia
- Enzymoics, Novel Global Community Educational Foundation, Australia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| |
Collapse
|
7
|
Ceccarini MR, Fittipaldi S, Ciccacci C, Granese E, Centofanti F, Dalla Ragione L, Bertelli M, Beccari T, Botta A. Association Between DRD2 and DRD4 Polymorphisms and Eating Disorders in an Italian Population. Front Nutr 2022; 9:838177. [PMID: 35369087 PMCID: PMC8964431 DOI: 10.3389/fnut.2022.838177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) are the three most common eating disorders (EDs). Their etiopathogenesis is multifactorial where both the environmental and genetic factors contribute to the disease outcome and severity. Several polymorphisms in genes involved in the dopaminergic pathways seem to be relevant in the susceptibility to EDs, but their role has not been fully elucidated yet. In this study, we have analyzed the association between selected common polymorphisms in the DRD2 and DRD4 genes in a large cohort of Italian patients affected by AN (n = 332), BN (n = 122), and BED (n = 132) compared to healthy controls (CTRs) (n = 172). Allelic and genotypic frequencies have been also correlated with the main psychopathological and clinical comorbidities often observed in patients. Our results showed significant associations of the DRD2-rs6277 single nucleotide polymorphism (SNP) with AN and BN, of the DRD4-rs936461 SNP with BN and BED and of DRD4 120-bp tandem repeat (TR) polymorphism (SS plus LS genotypes) with BED susceptibility. Moreover, genotyping of DRD4 48-bp variable number TR (VNTR) identified the presence of ≥7R alleles as risk factors to develop each type of EDs. The study also showed that ED subjects with a history of drugs abuse were characterized by a significantly higher frequency of the DRD4 rs1800955 TT genotype and DRD4 120-bp TR short-allele. Our findings suggest that specific combinations of variants in the DRD2 and DRD4 genes are predisposing factors not only for EDs but also for some psychopathological features often coupled specifically to AN, BN, and BED. Further functional research studies are needed to better clarify the complex role of these proteins and to develop novel therapeutic compounds based on dopamine modulation.
Collapse
Affiliation(s)
- Maria Rachele Ceccarini
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.,Consorzio Interuniversitario per le Biotecnologie (C.I.B), Trieste, Italy
| | - Simona Fittipaldi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Erika Granese
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - Federica Centofanti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Laura Dalla Ragione
- Food Science and Human Nutrition Unit, University Campus Biomedico of Rome, Rome, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy.,Consorzio Interuniversitario per le Biotecnologie (C.I.B), Trieste, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
8
|
AMIRI S, SHEKARI KHANIANI M, MOHAMMADI A, ASADIAN M, MEHDIZADEH FANID L, SHAFIEE-KANDJANI AR. Molecular Evaluation of Ex3 VNTR Polymorphism of the DRD4 Gene in Patients With Autism Spectrum Disorder. IRANIAN JOURNAL OF CHILD NEUROLOGY 2022; 16:23-31. [PMID: 36478994 PMCID: PMC9699926 DOI: 10.22037/ijcn.v16i4.34289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/26/2021] [Indexed: 01/03/2023]
Abstract
Objective Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that affect social and communication skills. These diseases are characterized by severe communication and social skills disabilities and limited and repetitive activities. The prevalence of these disorders appears to be steadily increasing. It is proposed that the genes involved in the dopamine pathway may play an essential role in the development of autism. In this study, we investigated the possible association between Ex3 VNTR polymorphism of the DRD4 gene and autism spectrum disorders in the Iranian population. Materials & Methods In this case-control study, 97 children with autism and 103 healthy individuals from a northwestern area of Iran as the case and control groups, respectively. After genomic xtraction from peripheral blood samples by the proteinase K method, the polymerase chain reaction (PCR) technique was used to determine the polymorphism genotypes. The data were then coded and analyzed using SPSS version 22 software. Results The study results showed that the allele frequencies differed in the two groups, some of them being statistically significant. The most common allele in both the ASD and the control group was the 700 bp allele, and its frequency was significantly different in the two groups and was more common in the ASD group (p-value=0.0018). The other allele with a statistically different frequency was the 800 bp allele which was less frequent in the ASD group (p-value=0.0017). Conclusion These results suggest a potential association between Ex3 VNTR polymorphism of the DRD4 gene and autism spectrum disorder in the Iranian population. This necessitates further studies for the evaluation of the DRD4 gene.
Collapse
Affiliation(s)
- Shahrokh AMIRI
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud SHEKARI KHANIANI
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Arman MOHAMMADI
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahan ASADIAN
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila MEHDIZADEH FANID
- Division of Cognitive Neuroscience, Department of Psychology, Faculty of Education and Psychology, Unive
| | | |
Collapse
|
9
|
Xiao X, Zhang CY, Zhang Z, Hu Z, Li M, Li T. Revisiting tandem repeats in psychiatric disorders from perspectives of genetics, physiology, and brain evolution. Mol Psychiatry 2022; 27:466-475. [PMID: 34650204 DOI: 10.1038/s41380-021-01329-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies (GWASs) have revealed substantial genetic components comprised of single nucleotide polymorphisms (SNPs) in the heritable risk of psychiatric disorders. However, genetic risk factors not covered by GWAS also play pivotal roles in these illnesses. Tandem repeats, which are likely functional but frequently overlooked by GWAS, may account for an important proportion in the "missing heritability" of psychiatric disorders. Despite difficulties in characterizing and quantifying tandem repeats in the genome, studies have been carried out in an attempt to describe impact of tandem repeats on gene regulation and human phenotypes. In this review, we have introduced recent research progress regarding the genomic distribution and regulatory mechanisms of tandem repeats. We have also summarized the current knowledge of the genetic architecture and biological underpinnings of psychiatric disorders brought by studies of tandem repeats. These findings suggest that tandem repeats, in candidate psychiatric risk genes or in different levels of linkage disequilibrium (LD) with psychiatric GWAS SNPs and haplotypes, may modulate biological phenotypes related to psychiatric disorders (e.g., cognitive function and brain physiology) through regulating alternative splicing, promoter activity, enhancer activity and so on. In addition, many tandem repeats undergo tight natural selection in the human lineage, and likely exert crucial roles in human brain evolution. Taken together, the putative roles of tandem repeats in the pathogenesis of psychiatric disorders is strongly implicated, and using examples from previous literatures, we wish to call for further attention to tandem repeats in the post-GWAS era of psychiatric disorders.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhonghua Hu
- Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Eye Center of Xiangya Hospital and Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, Hunan, China. .,National Clinical Research Center on Mental Disorders, Changsha, Hunan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.
| |
Collapse
|
10
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
11
|
Xu FL, Yao J, Wang BJ. Association between RGS4 gene polymorphisms and schizophrenia: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27607. [PMID: 34871224 PMCID: PMC8568470 DOI: 10.1097/md.0000000000027607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Schizophrenia is a complex brain disorder, the pathogenesis of which remains unclear. Regulator of G-protein signaling 4 is regarded as a candidate gene for schizophrenia risk. The association between the regulator of G-protein signaling 4 gene and the risk of schizophrenia is complicated and controversial, thus, an updated meta-analysis is needed. METHODS A search strategy using Medical Subject Headings was developed in English (PubMed, SZGene) and Chinese (CNKI, Wanfang, and Weipu) databases. Inclusion and exclusion criteria were used to screen for eligible studies. Parameters, such as P value of Hardy-Weinberg equilibrium, odds ratios, 95% confidence intervals, P values of association, heterogeneity (Ph), and publication bias, were analyzed by the Stata software using a random effects model. Subgroup analyses were performed to detect heterogeneity. RESULTS There were 15 articles regarding rs10917670 (8046 cases and 8837 controls), 16 regarding rs951436 (8990 cases and 10,568 controls), 15 regarding rs951439 (7995 cases and 8646 controls), 15 regarding rs2661319 (8320 cases and 9440 controls), and 4 regarding rs10759 (2752 cases and 2866 controls). The frequencies of rs10917670 and rs951439 were not significantly different between the case and control groups (P > .05). As shown by the East Asian and hospital-based subgroup analyses, the genotype TT of rs951436 might be related to the risk of schizophrenia. The genotypes CC + CT of rs2661319 and CC + CA of rs10759 were statistically different between the 2 groups, and the East Asian population contributed to these differences. CONCLUSION The genotypes CC + CT of rs2661319 and CC + CA of rs10759 might be associated with the risk of schizophrenia.
Collapse
|
12
|
Zharinov GM, Khalchitsky SE, Loktionov A, Sogoyan MV, Khutoryanskaya YV, Neklasova NY, Bogomolov OA, Smirnov IV, Samoilovich MP, Skakun VN, Vissarionov SV, Anisimov VN. The presence of polymorphisms in genes controlling neurotransmitter metabolism and disease prognosis in patients with prostate cancer: a possible link with schizophrenia. Oncotarget 2021; 12:698-707. [PMID: 33868590 PMCID: PMC8021032 DOI: 10.18632/oncotarget.27921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Polymorphisms of neurotransmitter metabolism genes were studied in patients with prostate cancer (PC) characterized by either reduced or extended serum prostate-specific antigen doubling time (PSADT) corresponding to unfavorable and favorable disease prognosis respectively. The ‘unfavorable prognosis’ group (40 cases) was defined by PSADT ≤ 2 months, whereas patients in the ‘favorable prognosis’ group (67 cases) had PSADT ≥ 30 months. The following gene polymorphisms known to be associated with neuropsychiatric disorders were investigated: a) the STin2 VNTR in the serotonin transporter SLC6A4 gene; b) the 30-bp VNTR in the monoamine oxidase A MAOA gene; c) the Val158Met polymorphism in the catechol-ortho-methyltransferase COMT gene; d) the promoter region C-521T polymorphism and the 48 VNTR in the third exon of the dopamine receptor DRD4 gene. The STin2 12R/10R variant of the SLC6A4 gene (OR = 2.278; 95% CI = 0.953–5.444) and the -521T/T homozygosity of the DRD4 gene (OR = 1.579; 95% CI = 0.663–3.761) tended to be overrepresented in PC patients with unfavorable disease prognosis. These gene variants are regarded as protective against schizophrenia, and the observed trend may be directly related to a reduced PC risk described for schizophrenia patients. These results warrant further investigation of the potential role of neurotransmitter metabolism gene polymorphisms in PC pathogenesis.
Collapse
Affiliation(s)
- Gennady M Zharinov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia.,These authors contributed equally to this work
| | - Sergei E Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Pushkin, St. Petersburg, 196603, Russia.,These authors contributed equally to this work
| | - Alexandre Loktionov
- DiagNodus Ltd, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Marina V Sogoyan
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Pushkin, St. Petersburg, 196603, Russia
| | - Yulia V Khutoryanskaya
- St. Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation, St. Petersburg, 194100, Russia
| | - Natalia Yu Neklasova
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Oleg A Bogomolov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Ilya V Smirnov
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Marina P Samoilovich
- A.M. Granov Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Pesochny, St. Petersburg, 197758, Russia
| | - Vladimir N Skakun
- Yaroslav-the-Wise Novgorod State University of the Ministry of Science and Higher Education of the Russian Federation, Veliky Novgorod, 173003, Russia
| | - Sergei V Vissarionov
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Pushkin, St. Petersburg, 196603, Russia
| | - Vladimir N Anisimov
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, St. Petersburg, 197758, Russia
| |
Collapse
|
13
|
Li Y, Shi P, Jiang D. Polymorphism rs1801516 (G > A) in the ATM gene is not associated with overall cancer risk: an updated meta-analysis. J Int Med Res 2020; 48:300060520937618. [PMID: 32674635 PMCID: PMC7370572 DOI: 10.1177/0300060520937618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/06/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE The ataxia telangiectasia mutated (ATM) gene contains a functional single nucleotide polymorphism (SNP) rs1801516 (G > A) that may be associated with cancer risk. This meta-analysis aimed to interrogate the relationship between rs1801516 and cancer occurrence and disease etiology. METHODS We retrieved and identified the available case-control studies that met the inclusion criteria from the PubMed, Web of Science, and Embase databases. Odds ratio (OR) and 95% confidence intervals (CIs) were used to measure the association between rs1801516 and cancer risk. Additionally, we performed sensitivity, subgroup, and publication bias analyses. RESULTS After inclusion criteria were met, the meta-analysis included 29 studies, with 9,453 cancer patients (cases) and 14,646 controls. No association was found between rs1801516 and cancer risk (pooled OR = 0.911; 95% CI, 0.740-1.123). Concordantly, no association was found between rs1801516 and cancer risk after subgroup analysis by source of controls, cancer type, or ethnicity, which confirmed the finding of the dominant model that this SNP is not involved in the occurrence of cancer. CONCLUSIONS Through this meta-analysis, we found no association between rs1801516 and cancer occurrence as a risk factor. These data provide useful information for future case-control studies on cancer etiology.
Collapse
Affiliation(s)
- Yueting Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Pengxu Shi
- Department of Bone Surgery, People’s Hospital of Liaoning Province, Shenyang, Liaoning Province, P.R. China
| | - Daqing Jiang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China
| |
Collapse
|
14
|
Zhang XY, Wei XH, Wang BJ, Yao J. The XRCC4rs1805377 polymorphism is not associated with the risk of cancer: An updated meta-analysis. J Int Med Res 2020; 48:300060520926364. [PMID: 32493081 PMCID: PMC7273771 DOI: 10.1177/0300060520926364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectivesA growing number of studies have reported that genes involved in the repair of DNA double-strand breaks might be cancer-susceptibility genes. The x-ray cross-complementing group 4 gene ( XRCC4) encodes a protein that functions in the repair of DNA double-strand breaks, and this meta-analysis aimed to investigate the relationship between the XRCC4 rs1805377 polymorphism and cancer occurrence.MethodsWe retrieved case–control studies that met the inclusion criteria from PubMed, Web of Science, Embase, and China National Knowledge Infrastructure databases. Associations between rs1805377 and cancer risk were evaluated by odds ratios (ORs) using a random effects model and 95% confidence intervals (CIs) as well as sensitivity and subgroup analyses.ResultsAfter inclusion criteria were met, the meta-analysis involved 24 studies that included 9,633 cancer patients and 10,544 healthy controls. No significant association was found between rs1805377 and the risk of cancer (pooled OR = 1.107; 95% CI = 0.955–1.284) in the dominant genetic model. Similarly, no significant association was observed in the subgroup analysis.ConclusionsThrough this meta-analysis, we found no association between the rs1805377 polymorphism and cancer occurrence. This may provide useful information for relevant future studies into the etiology of cancer.
Collapse
Affiliation(s)
- Xin-yuan Zhang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Xiao-han Wei
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, P. R. China
| |
Collapse
|
15
|
A Meta-analysis of the Association Between SLC6A3 Gene Polymorphisms and Schizophrenia. J Mol Neurosci 2019; 70:155-166. [PMID: 31440993 DOI: 10.1007/s12031-019-01399-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
The dopamine transporter is coded by the SLC6A3 gene and plays an important role in regulation of the neurotransmitter dopamine. To detect the association between the SLC6A3 gene and the risk of schizophrenia, 31 case-control articles were included in this meta-analysis. There were 23 studies with 40 bp VNTR (3246 cases and 3639 controls), 4 studies with rs40184 (2020 cases and 1674 controls), rs6347 (1317 cases and 1917 controls), rs403636 (2045 cases and 1704 controls), and rs2975226 (849 cases and 904 controls); and 3 studies with rs12516948 (1920 cases and 1569 controls), rs27072 (984 cases and 1015 controls), rs6869645 (1142 cases and 1082 controls), rs37022 (1168 cases and 1091 controls), rs464049 (1169cases and 1096 controls), rs2652511 (707 cases and 714 controls), and rs3756450 (1176 cases and 1096 controls). Pooled, subgroup, and sensitivity analyses were performed, and the results were visualized by forest and funnel plots. In the dominant genetic model, the genotype AA+AT of rs2975226 in the Indian population (Pz = 0, odds ratio [OR] = 3.245, 95% confidence interval [CI] = 1.806-5.831), TT of rs464049 (Pz = 0.002, OR = 1.389, 95% CI = 1.129-1.708), and TT of rs3756450 (Pz = 0.014, OR = 1.251, 95% CI = 1.047-1.495) might be risk factors for schizophrenia. Additionally, no other single nucleotide polymorphisms were observed. These results indicate that more functional studies are warranted.
Collapse
|
16
|
Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza C, van Amelsvoort T, Marcelis M, van Os J, Donohoe G, Mothersill D, Corvin A, Pocklington A, Raznahan A, McGuire P, Vértes PE, Bullmore ET. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc Natl Acad Sci U S A 2019; 116:9604-9609. [PMID: 31004051 PMCID: PMC6511038 DOI: 10.1073/pnas.1820754116] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Schizophrenia has been conceived as a disorder of brain connectivity, but it is unclear how this network phenotype is related to the underlying genetics. We used morphometric similarity analysis of MRI data as a marker of interareal cortical connectivity in three prior case-control studies of psychosis: in total, n = 185 cases and n = 227 controls. Psychosis was associated with globally reduced morphometric similarity in all three studies. There was also a replicable pattern of case-control differences in regional morphometric similarity, which was significantly reduced in patients in frontal and temporal cortical areas but increased in parietal cortex. Using prior brain-wide gene expression data, we found that the cortical map of case-control differences in morphometric similarity was spatially correlated with cortical expression of a weighted combination of genes enriched for neurobiologically relevant ontology terms and pathways. In addition, genes that were normally overexpressed in cortical areas with reduced morphometric similarity were significantly up-regulated in three prior post mortem studies of schizophrenia. We propose that this combined analysis of neuroimaging and transcriptional data provides insight into how previously implicated genes and proteins as well as a number of unreported genes in their topological vicinity on the protein interaction network may drive structural brain network changes mediating the genetic risk of schizophrenia.
Collapse
Affiliation(s)
- Sarah E Morgan
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom;
| | - Jakob Seidlitz
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD 20892
| | - Kirstie J Whitaker
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
| | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
| | - Nicholas E Clifton
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff CF24 4HQ, United Kingdom
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, Maastricht University, 616 6200, Maastricht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, Maastricht University, 616 6200, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
- Department of Psychiatry and Neuropsychology, Maastricht University, 616 6200, Maastricht, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, 3584 CG, Utrecht, The Netherlands
| | - Gary Donohoe
- School of Psychology, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - David Mothersill
- School of Psychology, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Aiden Corvin
- Department of Psychiatry, Trinity College Dublin, Dublin 8, D08 W9RT, Ireland
| | - Andrew Pocklington
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, MD 20892
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, United Kingdom
- ImmunoPsychiatry, GlaxoSmithKline R&D, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
17
|
Shokouhifar A, Askari N, Yazdani S, Mehrabadi JF. DISC1 gene polymorphisms and the risk of schizophrenia in an Iranian population: A preliminary study. J Cell Biochem 2019; 120:1588-1597. [PMID: 30324622 DOI: 10.1002/jcb.27427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/12/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Schizophrenia, schizoaffective disorder, and bipolar illness are common psychological disorders with high heritability and variable phenotypes. The disrupted in schizophrenia 1 ( DISC1) gene, on chromosome 1q42, has an essential role in neurite outgrowth and cell signaling. The purpose of this study was to investigate the association of three single-nucleotide polymorphisms (SNPs; rs6675281, rs2255340, and rs2738864) with schizophrenia disorder. These three SNPs were chosen as they had been used in most of the previous studies. METHODS In a case-control study of Iranian population for the first time 778 blood samples were collected including, 402 schizophrenic patients and 376 healthy controls. Genomic DNA was extracted from peripheral blood using DNA extraction kit (BioFlux Co). The genotypes of rs6675281, rs2255340, and rs2738864 were detected by nested allele-specific multiplex polymersae chain reaction (PCR). RESULTS Our data revealed that the three SNPs are significantly associated with schizophrenia (rs2255349 C>T: confidence interval (CI), 2.115 to 3.268; P = 0.0000 OR: 2.629; rs2738864 C>T: CI, 1.538 to 2.339; P = 0.0000 OR: 1.897; rs6675281 C>T: CI, 2.788 to 4.662; P = 0.0009241 OR: 3.605). Through applying the expectation-maximization (EM) algorithm, we calculated the haplotype frequency, and finally performed haplotype analysis with Bonferroni correction and data preprocessing methods and the results showed rs66875281 to have the highest association. DISCUSSION Our findings primarily showed that DISC1 gene polymorphisms contribute to schizophrenia risk and have a significant association with this disorder among Iranian population. The strategy was found to be easy, rapid, specific, and consistent for the co-occurring detection of the DISC1 polymorphisms. We could finally confirm that the polymorphisms are related to schizophrenia studied in Iranian population.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Cellular and Molecular Medicine, Mehrvarzan-e-Saba Gostar Medical Rehabilitation and Maintenance Center of Chronic Mental Patients, Karaj, Iran
| | - Nasrin Askari
- Department of Cellular and Molecular Medicine, Mehrvarzan-e-Saba Gostar Medical Rehabilitation and Maintenance Center of Chronic Mental Patients, Karaj, Iran
| | | | | |
Collapse
|
18
|
Zhao ZL, Xia L, Zhao C, Yao J. ATM rs189037 (G > A) polymorphism increased the risk of cancer: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:28. [PMID: 30709340 PMCID: PMC6359756 DOI: 10.1186/s12881-019-0760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Rs189037 (G > A) is a functional single nucleotide polymorphism (SNP) in the Ataxia-telangiectasia mutated (ATM) gene that may be associated with the risk of cancer. We performed a meta-analysis to determine whether rs189037 polymorphism influences the occurrence of cancer and examined the relationship between this SNP and the etiology of cancer. METHODS Case-control studies were retrieved from literature databases in accordance with established inclusion criteria. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between rs189037 and cancer. Subgroup analysis and sensitivity analysis also were performed. RESULTS After inclusion criteria were met, fifteen studies-comprising 8660 patients with cancer (cases) and 9259 controls-were included in this meta-analysis. Summary results indicated that an association was found between rs189037 and cancer risk. In the dominant model, the pooled OR using a random effects model was 1.207 (95% CI, 1.090-1.337; P < 0.001). The A allele of rs189037 increased the risk of lung cancer, breast cancer, and oral cancer. Results of subgroup analysis by ethnicity indicated that the SNP was associated with the risk of cancer among East Asian and Latino, but not Caucasian. CONCLUSIONS Results of this meta-analysis suggest that rs189037 is associated with the occurrence of lung cancer, breast cancer, and oral cancer as the risk factor. These data provide possible avenues for future case-control studies related to cancer.
Collapse
Affiliation(s)
- Zhi-liang Zhao
- Hospital Office, Chengdu First People’s Hospital, Chengdu, 610000 Sichuan Province People’s Republic of China
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Lu Xia
- Department of Rehabilitation, Chengdu First People’s Hospital, Chengdu, 610000 Sichuan Province People’s Republic of China
| | - Cong Zhao
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, 610000 Sichuan Province People’s Republic of China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122 China
| |
Collapse
|
19
|
Xu FL, Wang BJ, Yao J. Association between the SLC6A4 gene and schizophrenia: an updated meta-analysis. Neuropsychiatr Dis Treat 2019; 15:143-155. [PMID: 30643413 PMCID: PMC6314053 DOI: 10.2147/ndt.s190563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In order to explore the association between the SLC6A4 gene and the risk of schizophrenia, an updated meta-analysis was conducted using a total of 46 scientific articles. METHODS Through a literature search, papers studied included 35 articles on serotonin-transporter-linked polymorphic region (5-HTTLPR) with 8,752 cases and 10,610 controls, 17 articles on second intron variable number of tandem repeats with 7,284 cases and 8,544 controls, four studies on rs1042173 with 1,351 cases and 2,101 controls, and four studies on rs140700 with 1,770 cases and 2,386 controls. Pooled, subgroup, and sensitivity analyses were performed, and the results were visualized by forest and funnel plots. RESULTS An association between 5-HTTLPR and the risk of schizophrenia was not found, except for an Indian subgroup analysis (Pz =0.014, OR =1.749, 95% CI =1.120-2.731). A 10 repeats/12 repeats (10R/12R) genotype was a protective factor against schizophrenia (Pz =0.020, OR =0.789, 95% CI =0.646-0.963), but a 12R/12R genotype was a risk factor for schizophrenia (Pz =0.004, OR =1.936, 95% CI =1.238-3.029) in the pooled analyses. In Caucasians, a GG genotype of rs1042173 may be a risk factor for schizophrenia (Pz =0.006, OR =1.299, 95% CI =1.079-1.565). No association was found between rs140700 and the risk for schizophrenia. CONCLUSION Through meta-analysis, we were able to gain insight into previously reported associations between SLC6A4 polymorphism and schizophrenia.
Collapse
Affiliation(s)
- Feng-Ling Xu
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China, ;
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China, ;
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang 110122, People's Republic of China, ;
| |
Collapse
|