1
|
Pușcaș A, Ștefănescu R, Vari CE, Ősz BE, Filip C, Bitzan JK, Buț MG, Tero-Vescan A. Biochemical Aspects That Lead to Abusive Use of Trimetazidine in Performance Athletes: A Mini-Review. Int J Mol Sci 2024; 25:1605. [PMID: 38338885 PMCID: PMC10855343 DOI: 10.3390/ijms25031605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Trimetazidine (TMZ), used for treating stable angina pectoris, has garnered attention in the realm of sports due to its potential performance-enhancing properties, and the World Anti-Doping Agency (WADA) has classified TMZ on the S4 list of prohibited substances since 2014. The purpose of this narrative mini-review is to emphasize the biochemical aspects underlying the abusive use of TMZ among athletes as a metabolic modulator of cardiac energy metabolism. The myocardium's ability to adapt its energy substrate utilization between glucose and fatty acids is crucial for maintaining cardiac function under various conditions, such as rest, moderate exercise, and intense effort. TMZ acts as a partial inhibitor of fatty acid oxidation by inhibiting 3-ketoacyl-CoA thiolase (KAT), shifting energy production from long-chain fatty acids to glucose, reducing oxygen consumption, improving cardiac function, and enhancing exercise capacity. Furthermore, TMZ modulates pyruvate dehydrogenase (PDH) activity, promoting glucose oxidation while lowering lactate production, and ultimately stabilizing myocardial function. TMZs role in reducing oxidative stress is notable, as it activates antioxidant enzymes like glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD). In conclusion, TMZs biochemical mechanisms make it an attractive but controversial option for athletes seeking a competitive edge.
Collapse
Affiliation(s)
- Amalia Pușcaș
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Ruxandra Ștefănescu
- Pharmacognosy and Phytotherapy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Camil-Eugen Vari
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Bianca-Eugenia Ősz
- Pharmacology and Clinical Pharmacy Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (C.-E.V.); (B.-E.Ő.)
| | - Cristina Filip
- Biochemistry and Chemistry of the Environmental Factors Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (A.P.); (C.F.)
| | - Jana Karlina Bitzan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Campus Hamburg—UMCH, 22761 Hamburg, Germany;
| | - Mădălina-Georgiana Buț
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| | - Amelia Tero-Vescan
- Medical Chemistry and Biochemistry Department, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania; (M.-G.B.); (A.T.-V.)
| |
Collapse
|
2
|
Kamranian H, Asoudeh H, Sharif RK, Taheri F, Hayes AW, Gholami M, Alavi A, Motaghinejad M. Neuroprotective potential of trimetazidine against tramadol-induced neurotoxicity: role of PI3K/Akt/mTOR signaling pathways. Toxicol Mech Methods 2023; 33:607-623. [PMID: 37051630 DOI: 10.1080/15376516.2023.2202785] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/10/2023] [Accepted: 04/10/2023] [Indexed: 04/14/2023]
Abstract
Tramadol (TRA) causes neurotoxicity whereas trimetazidine (TMZ) is neuroprotective. The potential involvement of the PI3K/Akt/mTOR signaling pathway in the neuroprotection of TMZ against TRA-induced neurotoxicity was evaluated. Seventy male Wistar rats were divided into groups. Groups 1 and 2 received saline or TRA (50 mg/kg). Groups 3, 4, and 5 received TRA (50 mg/kg) and TMZ (40, 80, or 160 mg/kg) for 14 days. Group 6 received TMZ (160 mg/kg). Hippocampal neurodegenerative, mitochondrial quadruple complex enzymes, phosphatidylinositol-3-kinases (PI3Ks)/protein kinase B levels, oxidative stress, inflammatory, apoptosis, autophagy, and histopathology were evaluated. TMZ decreased anxiety and depressive-like behavior induced by TRA. TMZ in tramadol-treated animals inhibited lipid peroxidation, GSSG, TNF-α, and IL-1β while increasing GSH, SOD, GPx, GR, and mitochondrial quadruple complex enzymes in the hippocampus. TRA inhibited Glial fibrillary acidic protein expression and increased pyruvate dehydrogenase levels. TMZ reduced these changes. TRA decreased the level of JNK and increased Beclin-1 and Bax. TMZ decreased phosphorylated Bcl-2 while increasing the unphosphorylated form in tramadol-treated rats. TMZ activated phosphorylated PI3Ks, Akt, and mTOR proteins. TMZ inhibited tramadol-induced neurotoxicity by modulating the PI3K/Akt/mTOR signaling pathways and its downstream inflammatory, apoptosis, and autophagy-related cascades.
Collapse
Affiliation(s)
- Houman Kamranian
- Department of Psychiatry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hadi Asoudeh
- Faculty of Pharmacy, Central Branch of Islamic Azad University, Tehran, Iran
| | | | - Fereshteh Taheri
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Alavi
- Department of Medicine, Islamic Azad University, Qom Branch, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Li C, Cai Q, Su Z, Chen Z, Cao J, Xu F. Could peripheral 5-HT level be used as a biomarker for depression diagnosis and treatment? A narrative minireview. Front Pharmacol 2023; 14:1149511. [PMID: 36959863 PMCID: PMC10028199 DOI: 10.3389/fphar.2023.1149511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The serotonin hypothesis of depression is still influential, but the relationship between peripheral 5-HT levels and depression is still unknown. This review aimed to verify whether peripheral 5-HT levels could be used as a biomarker for depression diagnosis and treatment. PubMed and EMBASE were searched using terms appropriate to the area of research. Articles from 1957 to 2022 in the following terms were identified: depression, 5-HT, serotonin and peripheral (serum, plasma, blood platelets). 33 studies were included: seven clinical trials about periphery 5-HT levels in depressive patients compared to normal subjects, 15 clinical trials about changes of peripheral 5-HT levels in patients with depression after drug treatment and 11 animal experiments about peripheral 5-HT levels in animal models of depression. Peripheral 5-HT levels presented three different outcomes before and after antidepressant treatments: increased, decreased and no significant change. In conclusion, changes in peripheral 5-HT levels did not show consistent results among these studies. Peripheral 5-HT level could not be used as a biomarker both for depression diagnosis and for antidepressant efficacy evaluation.
Collapse
Affiliation(s)
- Canye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qiming Cai
- Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| | - Zuanjun Su
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zhicong Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinming Cao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Feng Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Sixth People's Hospital South Campus, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
4
|
Borowicz-Reutt K, Banach M. Trimetazidine, an Anti-Ischemic Drug, Reduces the Antielectroshock Effects of Certain First-Generation Antiepileptic Drugs. Int J Mol Sci 2022; 23:ijms231911328. [PMID: 36232629 PMCID: PMC9570019 DOI: 10.3390/ijms231911328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Trimetazidine (TMZ), an anti-ischemic drug for improving cellular metabolism, is mostly administered to patients with poorly controlled ischemic heart disease (IHD). Since IHD is considered the most frequent causative factor of cardiac arrhythmias, and these often coexist with seizure disorders, we decided to investigate the effect of TMZ in the electroconvulsive threshold test (ECT) and its influence on the action of four first-generation antiepileptic drugs in the maximal electroshock test (MES) in mice. The TMZ (up to 120 mg/kg) did not affect the ECT, but applied at doses of 20–120 mg/kg it decreased the antielectroshock action of phenobarbital. The TMZ (50–120 mg/kg) reduced the effect of phenytoin, and, when administered at a dose of 120 mg/kg, it diminished the action of carbamazepine. All of these revealed interactions seem to be pharmacodynamic, since the TMZ did not affect the brain levels of antiepileptic drugs. Furthermore, the combination of TMZ with valproate (but not with other antiepileptic drugs) significantly impaired motor coordination, evaluated using the chimney test. Long-term memory, assessed with a passive-avoidance task, was not affected by either the TMZ or its combinations with antiepileptic drugs. The obtained results suggest that TMZ may not be beneficial as an add-on therapy in patients with IHD and epilepsy.
Collapse
|
5
|
Liu J, Shang Y, Xiao J, Fan H, Jiang M, Fan S, Bai G. Phenotype-Based HPLC-Q-TOF-MS/MS Coupled With Zebrafish Behavior Trajectory Analysis System for the Identification of the Antidepressant Components in Methanol Extract of Anshen Buxin Six Pills. Front Pharmacol 2021; 12:764388. [PMID: 34880758 PMCID: PMC8645982 DOI: 10.3389/fphar.2021.764388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Phenotype screening has become an important tool for the discovery of active components in traditional Chinese medicine. Anshen Buxin Six Pills (ASBX) are a traditional Mongolian medicine used for the treatment of neurosis in clinical settings. However, its antidepressant components have not been explicitly identified and studied. Here, the antidepressant effect of ASBX was evaluated in adult zebrafish. High performance liquid chromatography-mass spectrometry (HPLC-Q-TOF-MS/MS) was combined with zebrafish behavior trajectory analysis to screen and identify the antidepressant-active extract fraction and active components of ASBX. Finally, the antidepressant effect of the active ingredients were verified by the behavior, pathology, biochemical indices and protein level of adult fish. The novel tank driving test (NTDT) showed that ASBX can effectively improve the depressive effect of reserpine on zebrafish. Petroleum ether and dichloromethane extracts of ASBX were screened as antidepressant active extracts. Costunolide (COS) and dehydrocostus lactone (DHE) were screened as the active components of ASBX. COS had been shown to significantly improve the depressive behavior, nerve injury and neurotransmitter levels (5-hydroxytryptamine (5-HT) and norepinephrine (NE)) of zebrafish by inhibiting the high expression of serotonin transporter and norepinephrine transporter induced by reserpine suggesting the antidepressant effect of COS may be related to its effect on 5-HT and NE pathways. This study provided a phenotype based screening method for antidepressant components of traditional Chinese medicines, so as to realize the separation, identification and activity screening of components at the same time.
Collapse
Affiliation(s)
- Jiani Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yue Shang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juanlan Xiao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huirong Fan
- The Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Yousefi-Manesh H, Shirooie S, Noori T, Tavangar SM, Sheibani M, Chaboki A, Mohammadi S, Dehpour AR. Assessment of Sumatriptan on Sepsis-Induced Kidney injury in the Cecal Ligation and Puncture Mice Model. Drug Res (Stuttg) 2021; 72:156-162. [PMID: 34852366 DOI: 10.1055/a-1685-0482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Sepsis is a severe systemic inflammatory response with high mortality rate resulting from different microorganisms. Cytokines activation is essential for the immune response, but in painful conditions like sepsis, cytokines act as a double-edged sword and dysregulate immune response which is life-threatening owing to multiple organ dysfunction. The abnormality in 5-HT function is involved in pathological conditions like irritable bowel syndrome, inflammation, myocardial ischemia, itch and renal injury. Sumatriptan, a 5-HT1B/1D agonist, has anti-inflammatory and anti-oxidative stress effects on animal models. This study was aimed to assess the effects of sumatriptan on kidney injury, the levels of pro-inflammatory cytokines and the percentage of survival in (CLP)-induced sepsis were examined.Cecal ligation and puncture (CLP) model was done on adult C57BL/6 male mice to induce Polymicrobial sepsis. Sumatriptan was injected intraperitoneally 1 h after the sepsis induction by CLP at doses of 0.1, 0.3, and 1 mg/kg in 3 treatment groups. To study the effect of sumatriptan on short-term survival, septic animals were detected 72 h after CLP. Serum levels of TNF-α, IL-1β, IL-6 and IL-10 were evaluated. To study sepsis-induced acute renal failure, kidney functional biomarkers and histopathological alterations were evaluated.Sumatriptan (0.3 mg/kg) administration significantly enhanced survival rate (P<0.01) compared to the CLP group. The beneficial effects of sumatriptan were related to a significant decrease in the pro-inflammatory cytokines and elevated level of IL-10. Sumatriptan presented protective effects on kidney biomarkers and histopathology assay.Anti-inflammatory effects of sumatriptan lead to decrease mortality rate and inflammatory cytokines in CLP induction sepsis in C57BL/6 mice.
Collapse
Affiliation(s)
- Hasan Yousefi-Manesh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Chaboki
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mohammadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Luo XY, Zhong Z, Chong AG, Zhang WW, Wu XD. Function and Mechanism of Trimetazidine in Myocardial Infarction-Induced Myocardial Energy Metabolism Disorder Through the SIRT1-AMPK Pathway. Front Physiol 2021; 12:645041. [PMID: 34220528 PMCID: PMC8248253 DOI: 10.3389/fphys.2021.645041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Myocardial energy metabolism (MEM) is an important factor of myocardial injury. Trimetazidine (TMZ) provides protection against myocardial ischemia/reperfusion injury. The current study set out to evaluate the effect and mechanism of TMZ on MEM disorder induced by myocardial infarction (MI). Firstly, a MI mouse model was established by coronary artery ligation, which was then treated with different concentrations of TMZ (5, 10, and 20 mg kg-1 day-1). The results suggested that TMZ reduced the heart/weight ratio in a concentration-dependent manner. TMZ also reduced the levels of Bax and cleaved caspase-3 and promoted Bcl-2 expression. In addition, TMZ augmented adenosine triphosphate (ATP) production and superoxide dismutase (SOD) activity induced by MI and decreased the levels of lipid peroxide (LPO), free fatty acids (FFA), and nitric oxide (NO) in a concentration-dependent manner (all P < 0.05). Furthermore, an H2O2-induced cell injury model was established and treated with different concentrations of TMZ (1, 5, and 10 μM). The results showed that SIRT1 overexpression promoted ATP production and reactive oxygen species (ROS) activity and reduced the levels of LPO, FFA, and NO in H9C2 cardiomyocytes treated with H2O2 and TMZ. Silencing SIRT1 suppressed ATP production and ROS activity and increased the levels of LPO, FFA, and NO (all P < 0.05). TMZ activated the SIRT1-AMPK pathway by increasing SIRT1 expression and AMPK phosphorylation. In conclusion, TMZ inhibited MI-induced myocardial apoptosis and MEM disorder by activating the SIRT1-AMPK pathway.
Collapse
Affiliation(s)
- Xiu-Ying Luo
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Zhong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Guo Chong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Wei Zhang
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Dong Wu
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Tolunay H. Antinociceptive effect of ranolazine and trimetazidine. Expert Rev Cardiovasc Ther 2021; 19:457-464. [PMID: 33823738 DOI: 10.1080/14779072.2021.1914589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background:Ranolazine and trimetazidine are piperazine derivatives used in antianginal therapy. There are data on the use of these drugs in the treatment of neuropathic pain. In this study, it was aimed to evaluate the antinociceptive effects of ranolazine and trimetazidine.Methods: Sixty patients who were started on trimetazidine or ranolazine treatment were included in the study. The patients were evaluated with Seattle Angina Questionnaire (SAQ), Visual Analog Scale (VAS) and State-Trait Anxiety Inventory (STAI) on the first day of treatment and at the first month follow-up.Results: The SAQ scores of the patients given ranolazine were statistically significantly higher than the patients given trimetazidine. The most significant increase was observed in terms of treatment satisfaction (53.03 ± 8.11 vs. 72.88 ± 5.29, p < 0.001) and quality of life (49.79 ± 8.62 vs. 68.01 ± 0.65, p = 0.016). The decrease in VAS (p = 0.001) and the decrease in STAI scores (p = 0.002) after treatment in the ranolazine group were significantly higher than in the trimetazidine group.Conclusions: Ranolazine and trimetazidine are two effective drugs in antianginal treatment. While both drugs are effective on general systemic musculoskeletal pain and anxiety, the efficacy of ranolazine is more pronounced.
Collapse
Affiliation(s)
- Hatice Tolunay
- Department of Cardiology, Gulhane Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
9
|
Rana A, Singh S, Deshmukh R, Kumar A. Pharmacological potential of tocopherol and doxycycline against traumatic brain injury-induced cognitive/motor impairment in rats. Brain Inj 2020; 34:1039-1050. [PMID: 32493074 DOI: 10.1080/02699052.2020.1772508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/29/2020] [Accepted: 05/06/2020] [Indexed: 01/20/2023]
Abstract
Primary Objective The primary objective of this study was to explore the pharmacological potential of tocopherol and doxycycline against traumatic brain injury-induced cognitive/motor impairment in rats. Research Design Weight drop model of traumatic brain injury. Methods and Procedures After TBI, the animals were treated with doxycycline (50 and 100 mg/kg; p.o), tocopherol (5 and 10 mg/kg; p.o) alone and in combination as doxycycline and tocopherol (50 and 10 mg/kg; p.o) from 1st day to 28th day. The behavioral parameters were performed on a weekly basis from 1st day to 28th day. On 29th day, animals were sacrificed and striatum and cortex were homogenized for the estimation of biochemical (LPO, nitrite, and GSH), neuroinflammatory (IL-6, IL-1β, and TNF-α), and neurotransmitters (dopamine, norepinephrine, serotonin, GABA, and glutamate) analysis. Main Outcomes and Results Induction of TBI had significantly reduced locomotor activity, recognition memory, increased neuroinflammatory markers, and imbalance neurotransmitter levels. The treatment with doxycycline and tocopherol alone and in combination significantly attenuated locomotor activity, memory recognition, reduced neuroinflammation, preserved oxidative balance, and restored the level of neurotransmitters. Conclusions The neuroprotective effect of doxycycline and tocopherol might be due to its anti-inflammatory and free radical scavenging mechanisms. Abbreviations TBI: Traumatic brain injury; Doxy: Doxycycline; Toco: Tocopherol; LPO: Lipid peroxidation; MDA: Malondialdehyde; TNF-α: Tumor necrosis factor-alpha; IL-1b: Interleukin-1 beta; GSH: Glutathione; GABA: gamma-Aminobutyric acid.
Collapse
Affiliation(s)
- Arti Rana
- Department of Neuropharmacology, ISF College of Pharmacy , Moga, Punjab, India
| | - Shamsher Singh
- Department of Neuropharmacology, ISF College of Pharmacy , Moga, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU) , Bathinda, Punjab, India
| | - Anoop Kumar
- Department of Neuropharmacology, ISF College of Pharmacy , Moga, Punjab, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli , Lucknow, UP, India
| |
Collapse
|